Causality and no-go theorems

Paolo Casella, Canio Noce

Abstract


The aim of the paper is to investigate the role played by causality, and more specifically the no-signaling condition, in the assessment of the quantum theory. To this end, we discuss why it is important that even a non-relativistic theory such as Quantum Mechanics doesn’t imply a violation of this condition. Then, we use this argument to prove an original result stating that the destructive behaviour of the measurement process on the entanglement properties of quantum systems is a necessary and unavoidable feature of the quantum theory. Finally, we critically review the no-cloning theorem. The original formulation of the theorem states that a linear quantum cloning machine, designed in order to successfully clone states that coincide with appropriate basis vectors, fails to copy states that are a non-trivial superposition of those basis vectors; we will furthermore prove that such a linear cloning device, even with the hypothesis that it can only clone basis vectors successfully, may provide a violation of the no-signaling condition and therefore cannot exist.

Keywords


Quantum mechanics; Entanglement; Quantum nonlocality; Quantum cloning

Full Text:

PDF

References


S. Bandyopadhyay. Impossibility of creating a superposition of unknown quantum states. Phys. Rev. A, 102:050202, Nov 2020. doi:10.1103/PhysRevA.102.050202. URL https://link.aps.org/doi/10.1103/PhysRevA.102.050202.

D. Bruss, G. M. D’Ariano, C. Macchiavello, and M. F. Sacchi. Approximate quantum cloning and the impossibility of superluminal information transfer. Phys. Rev. A, 62:062302, Nov 2000. doi: 10.1103/PhysRevA.62.062302. URL https://link.aps.org/doi/10.1103/PhysRevA.62.062302.

J. Bub. Quantum Entanglement and Information. In E. N. Zalta and U. Nodelman, editors, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Summer 2023 edition, 2023. URL https://plato.stanford.edu/archives/sum2023/entries/qt-entangle/.

I. Chakrabarty, S. Adhikari, and B. S. Choudhury. Probabilistic exact deletion and probabilistic no-signalling. Phys. Scr., 74(5):555, 2006. doi: 10.1088/0031-8949/74/5/012. URL http://dx.doi.org/10.1088/0031-8949/74/5/012.

R. Dardashti. No-go theorems: What are they good for? Studies in History and Philosophy of Science Part A, 86:47–55, 2021. ISSN 0039-3681. doi: https://doi.org/10.1016/j.shpsa.2021.01.005. URL https://doi.org/10.48550/arXiv.2103.03491.

J. Faye. Backward Causation. In E. N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Spring 2021 edition, 2021. URL https://plato.stanford.edu/entries/causation-backwards/.

A. G. Ferraioli and C. Noce. The measurement problem in quantum mechanics. Science and Philosophy, 7:41–58, 2019. doi: 10.23756/sp.v7i1.462. URL http://dx.doi.org/10.23756/sp.v7i1.462.

S. Friederich and P. W. Evans. Retrocausality in Quantum Mechanics. In E. N. Zalta and U. Nodelman, editors, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Winter 2022 edition, 2022. URL https://plato.stanford.edu/entries/qm-retrocausality/.

R. Gill. Further comments on ‘Is the moon there if nobody looks? Bell inequalities and physical reality’. Qeios, 2023. ISSN 2632-3834. doi: 10.32388/OLGL3Z. URL https://doi.org/10.32388/OLGL3Z.

R. D. Gill and J. P. Lambare. General commentary: Is the moon there if nobody looks—bell inequalities and physical reality. Frontiers in Physics, 10, 2022. ISSN 2296-424X. doi: 10.3389/fphy.2022.1024718. URL https://doi.org/10.3389/fphy.2022.1024718.

R. D. Gill and J. P. Lambare. Kupczynski’s contextual locally causal probabilistic models are constrained by bell’s theorem. Quantum Reports, 5(2): 481–495, 2023. ISSN 2624-960X. doi: 10.3390/quantum5020032. URL https://www.mdpi.com/2624-960X/5/2/32.

N. Gisin. Quantum cloning without signaling. Phys. Lett. A, 242:1, 1998. doi: 10.1016/s0375-9601(98)00170-4. URL http://dx.doi.org/10.1016/S0375-9601(98)00170-4.

D. J. Griffiths and D. F. Schroeter. Introduction to Quantum Mechanics. Cambridge University Press, 3 edition, 2018. doi: 10.1017/9781316995433.

R. B. Griffiths. EPR, Bell, and quantum locality. American Journal of Physics, 79(9):954–965, 09 2011. ISSN 0002-9505. doi: 10.1119/1.3606371. URL https://doi.org/10.1119/1.3606371.

R. B. Griffiths. Nonlocality claims are inconsistent with Hilbert-space quantum mechanics. Phys. Rev. A, 101:022117, Feb 2020. doi: 10.1103/PhysRevA.101.022117. URL https://link.aps.org/doi/10.1103/PhysRevA.101.022117.

R. B. Griffiths. Reply to “Comment on ‘Nonlocality claims are inconsistent with Hilbert-space quantum mechanics’ ”. Phys. Rev. A, 104:066202, Dec 2021. doi: 10.1103/PhysRevA.104.066202. URL https://link.aps.org/doi/10.1103/PhysRevA.104.066202.

N. Herbert. Flash - a superluminal communicator based upon a new kind of quantum measurement. Foundations of Physics, 12(12):1171–1179, 1982. doi: 10.1007/BF00729622. URL https://doi.org/10.1007/BF00729622.

A. M. Kubicki, C. Palazuelos, and D. Perez-Garcıa. Resource quantification for the no-programing theorem. Phys. Rev. Lett., 122: 080505, Feb 2019. doi: 10.1103/PhysRevLett.122.080505. URL https://doi.org/10.48550/arXiv.1805.00756.

M. Kupczynski. Is the moon there if nobody looks: Bell inequalities and physical reality. Frontiers in Physics, 8, 2020. ISSN 2296-424X. doi: 10.3389/fphy.2020.00273. URL https://doi.org/10.3389/fphy.2020.00273.

J. P. Lambare. Comment on ‘Nonlocality claims are inconsistent with Hilbert-space quantum mechanics’. Phys. Rev. A, 104: 066201, Dec 2021. doi: 10.1103/PhysRevA.104.066201. URL https://link.aps.org/doi/10.1103/PhysRevA.104.066201.

F. Laudisa. Against the ‘no-go’ philosophy of quantum mechanics. Eur. J. Philos. Sci., 4(1):1–17, 2014. URL https://doi.org/10.1007s13194-013-0071-4.

M. Li and Y. Shang. Entangled state generation via quantum walks with multiple coins. npj Quantum Information, 7:70, 05 2021. doi: 10.1038/s41534-02100401-6. URL https://doi.org/10.1038/s41534-021-00401-6.

A. Oldofredi. No-go theorems and the foundations of quantum physics. J. Gen. Philos. Sci., 49:355, 2018. URL https://doi.org/10.1007/s10838-018-9404-5.

A. Pati and S. Braunstein. Impossibility of deleting an unknown quantum state. Nature, 404:164–5, 04 2000a. URL https://doi.org/10.1038/404130b0.

A. K. Pati. Probabilistic exact cloning and probabilistic no-signalling. Phys. Lett. A, 270(3-4):103, May 2000. ISSN0375-9601. doi: 10.1016/s0375-9601(00)00281-4. URLhttp://dx.doi.org/10.1016/S0375-9601(00)00281-4.

A. K. Pati and S. L. Braunstein. Quantum no-deleting principle and some of its implications (unpublished result), 2000b. URL https://doi.org/10.48550/arXiv.quant-ph/0007121.

A. Peres. How the no-cloning theorem got its name. Fortschritte der Phys., 51:458–461, 2003. doi: 10.1002/prop.200310062. URL http://dx.doi.org/10.1002/prop.200310062.

M. E. Peskin and D. V. Schroeder. An Introduction to quantum field theory. Addison-Wesley, Reading, USA, 1995. ISBN 978-0-201-50397-5. URL https://doi.org/10.1201/9780429503559. Section 2.1.

S. Schweber. An Introduction to Relativistic Quantum Field Theory. Harper international student reprints. Row, Peterson, 1961. URL https://books.google.it/books?id=2ghRAAAAMAAJ.

C. Simon, V. Buˇzek, and N. Gisin. No-signaling condition and quantum dynamics. Phys. Rev. Lett., 87:170405, Oct 2001. doi: 10.1103/PhysRevLett.87.170405. URL https://link.aps.org/doi/10.1103/PhysRevLett.87.170405.

L. Truda, A. Trotta, and C. Noce. Can the entanglement be considered a basic concept of quantum mechanics? Science and Philosophy, 10:57–69, 2022. doi: 10.23756/sp.v10i1.739. URL http://dx.doi.org/10.23756/sp.v10i1.739.

W. K. Wootters and W. H. Zurek. A single quantum cannot be cloned. Nature, 299:802, 1982. URL https://doi.org/10.1038/299802a0.




DOI: http://dx.doi.org/10.23756/sp.v11i2.1388

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Paolo Casella, Canio Noce

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Science & Philosophy - Journal of Epistemology, Science and Philosophy. ISSN 2282-7757; eISSN  2282-7765.