Is a theory of everything possible? Critical reflections and variations on the theme (È possibile una teoria del tutto? Riflessioni critiche e variazioni sul tema)
Abstract
The evolution of the history of physics shows how natural phenomena can be grouped into discrete regimes, between which there are precise relationships and specific connecting elements but which, with an excellent approximation, can be considered independent of each other. Here it is clarified, in the light of developments in contemporary physics, in what sense theory of everything means "theory that aims to explain a specific and limited level of energy", highlighting the link between the world we experience daily and the background of the theories of everything.
Keywords: theories of everything; quantum gravity; principle of collective organization
Sunto
L’evoluzione della storia della fisica mostra come i fenomeni naturali possono essere raggruppati in regimi discreti, tra cui esistono precise relazioni e specifici elementi di raccordo ma che, con un’ottima approssimazione, si possono considerare indipendenti l’uno dall’altro. Qui si chiarisce, alla luce degli sviluppi della fisica contemporanea, in che senso teoria del tutto significa “teoria che si propone di spiegare un livello di energia specifico e limitato”, evidenziando il legame tra il mondo che sperimentiamo quotidianamente e il background delle teorie del tutto.
Parole Chiave: teorie del tutto; gravità quantistica; principio di organizzazione collettiva.
Full Text:
PDFReferences
Al-Khalili, J. Il mondo secondo la fisica. Torino: Boringhieri. 2020.
A. Ashtekar, E. Bianchi. A short review of loop quantum gravity. arXiv:2104.04394v1. 2021.
S. Carlip et al. Quantum Gravity: A Brief History of Ideas and Some Prospects. International Journal of Modern Physics D, 24/11, 1530028. 2015.
Close, F. Teorie del tutto, Torino: Boringhieri. 2018.
P.A.M. Dirac. The quantum theory of the emission and absorption of radiation. Proceedings of the Royal Society A, 114/767, 243-265. 1927.
F. Dyson. The radiation theories of Tomonaga, Schwinger, and Feynman. Physical Review, 75/3, 486-502. 1949.
A. Einstein. Zur Elektrodynamik bewegter körper. Annalen der Physik, 17/10, 891-921. 1905.
R.P. Feynman. Relativistic cut-off for quantum electrodynamics. Physical Review, 74, 1430-1438. 1949.
Fiscaletti, D. The timeless approach. Frontier perspectives in 21st century physics. Singapore: World Scientific. 2015.
D. Fiscaletti. About dark energy and dark matter in a three-dimensional quantum vacuum model. Foundations of Physics, 46/10, 1307-1340. 2016.
Fiscaletti, D. Il quadro olografico. Le frontiere non-locali della fisica moderna. Roma: Di Renzo Editore. 2017.
D. Fiscaletti. Towards a non-local timeless quantum cosmology for the beyond Standard Model physics. Bulgarian Journal of Physics, 45/4, 334-356. 2018.
Fiscaletti, D. Le immagini dinamiche. Forma e qualità nella scienza moderna, Trieste: Asterios Editore. 2020.
D. Fiscaletti, A. Sorli. About a three-dimensional quantum vacuum as the ultimate origin of gravity, electromagnetic field, dark energy … and quantum behaviour. Ukrainian Journal of Physics, 61/5, 413-431. 2016a.
D. Fiscaletti, A. Sorli. Dynamic quantum vacuum and relativity. Annales UMCS Sectio AAA: Physica, LXXI, 11-52. 2016b.
D. Fiscaletti, A. Sorli. About electroweak symmetry breaking, electroweak vacuum and dark matter in a new suggested proposal of completion of the Standard Model in terms of energy fluctuations of a timeless three-dimensional quantum vacuum. Quantum Physics Letters, 5/3, 55-69. 2016c.
D. Fiscaletti, A. Sorli. “Quantum relativity: variable energy density of quantum vacuum as the origin of mass, gravity and the quantum behaviour. Ukrainian Journal of Physics, 63/7, 623-644. 2018.
Greene, B. The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory. New York: Vintage Books. 1999.
H. Alioscia, F. Markopoulou, S. Loyd, F. Caravelli, S. Severini, K. Markstrom. A quantum Bose-Hubbard model with evolving graph as toy model for emergent spacetime. https://arxiv.org/abs/0911.5075. 2009.
P. Jordan. Zur quantenmechanik der gasentartung. Zieitschrift für Physik, 44/6, 473-480. 1927.
Kaku, M. Introduction to Superstrings and M-Theory. Berlino: Springer. 1999.
Kaku, M. Iperspazio. Un viaggio scientifico attraverso gli universi paralleli, le distorsioni del tempo e la decima dimensione. Cesena: Macro Edizioni. 2017.
Kaku, M. L’equazione divina. La ricerca di una teoria del tutto. Milano: Rizzoli. 2021.
T. Konopka, F. Markopoulou, S. Severini, Quantum graphity: a model of emergent locality. Physical Review, 77, 104029. 2008.
R. Laughlin, D. Pines. The theory of everything. PNAS, 97/1, 28-31. 2000.
Laughlin, R. Un universo diverso. Reinventare la fisica da cima a fondo. Torino: Codice Edizioni. 2005.
R. Laughlin, D. Pines, J. Schmalian, O. Stojkovic Branko e P. Wolynes. The middle way. PNAS, 97/1, 32-37. (2000)
Licata, I. Piccole variazioni sulla scienza. Bari: Edizioni Dedalo. 2016.
I. Licata, L. Chiatti. The archaic universe: big bang, cosmological term and the quantum origin of time in projective cosmology. International Journal of Theoretical Physics, 48/4, 1003-1018. 2009.
I. Licata, L. Chiatti. Archaic universe and cosmological model: "big-bang" as nucleation by vacuum. International Journal of Theoretical Physics, 49/10, 2379-2402. 2010.
J.M. Maldacena. The Large N limit of superconformal field theories and supergravity. Advances in Theoretical and Mathematical Physics, 2/4, 231–252. 1998.
D. Oriti (ed.). Approaches to Quantum Gravity. Cambridge, UK: Cambridge University Press. 2009.
D. Oriti. The universe as a quantum gravity condensate. Comptes Rendus Physique 18, 235-245. 2017.
D. Oriti. L’universo emergente della gravità quantistica. Ithaca: Viaggio nella Scienza, MCXIV, 2067. 2018a.
D. Oriti. “Spacetime as a quantum many-body system”. In Giuseppe Angilella e Claudio Amovilli (eds.), Many-body approaches at different scales, New York: Springer. 2018b.
D. Oriti. “Levels of spacetime emergence in quantum gravity”. In Nick Huggett, Baptiste Le Bihan, Christian Whutrich (eds), Philosophy beyond spacetime, Oxford: Oxford University Press. 2019.
C. Rovelli. Statistical mechanics of gravity and thermodynamical origin of time. Classical and Quantum Gravity, 10/8, 1549-1566. 1993a.
C. Rovelli. The statistical state of the universe. Classical and Quantum Gravity, 10/8, 1567-1578. 1993b.
C. Rovelli. Loop Quantum Gravity. Living Reviews in Relativity, http://relativity.livingreviews.org/Articles/lrr-1998-1/. 1997.
C. Rovelli. “Quantum spacetime”. In Craig Callender e Nick Huggett (eds.), Physics meets philosophy at the Planck scale, Cambridge: Cambridge University Press. 2001.
C. Rovelli. Loop quantum gravity. Physics World, 7, 1-5. 2003.
Rovelli, C. Quantum gravity Cambridge: Cambridge University Press. 2004.
C. Rovelli. Forget time. arXiv:0903.3832v3 [gr-qc]. 2009.
C. Rovelli. A new look at loop quantum gravity. arXiv:1004.1780v1 [gr-qc]. 2010.
Rovelli, C. La realtà non è come ci appare. Milano: Raffaello Cortina Editore. 2014.
J. Schwinger. On Quantum-Electrodynamics and the Magnetic Moment of the Electron. Physical Review, 73, 416–417. 1948.
S.I. Tomonaga. On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields. Progress of Theoretical Physics, 1/2, 27-42. 1946.
E. Witten. String theory dynamics in various dimensions. Nuclear Physics B, 443/1, 85–126. 1995.
Woit, P. Neanche sbagliata. Il fallimento della teoria delle stringhe e la corsa all’unificazione delle leggi della fisica. Torino: Codice Edizioni. 2007.
C.N. Yang, R. Mills. Conservation of Isotopic Spin and Isotopic Gauge Invariance. Physical Review, 96, 191-196. 1954
DOI: http://dx.doi.org/10.23756/sp.v9i2.688
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Davide Fiscaletti
This work is licensed under a Creative Commons Attribution 4.0 International License.
Science & Philosophy - Journal of Epistemology, Science and Philosophy. ISSN 2282-7757; eISSN 2282-7765.