How to handle risky experiments producing uncertain phenomenon like cold fusion?

Robert W.P. Luk


Some experiments are risky in that they cannot repeatedly produce certain phenomenon at will for study because the scientific knowledge of the process generating the uncertain phenomenon is poorly understood or may directly contradict with existing scientific knowledge. These experiments may have great impact not just to the scientific community but to mankind in general. Banning them from study may incur societies a great opportunity cost but accepting them runs the risk that scientists are doing junk science. How to make an informed decision to accept/reject such study scientifically for the mainstream scientific community is of great importance to mankind. Here, we propose a statistical methodology to handle the situation. Specifically, we consider the likelihood of not observing the phenomenon after n trails so that it is statistically significant to have nil result. Consequently, we reject the hypothesis that there is some probability that we observe the phenomenon.


Risky Experiments; Cold Fusion; Hypothesis Testing; Random Model

Full Text:



Armstrong, R.D. (1989) “The cold fusion debate” Electrochimica Acta 34(9): 1287.

Armstrong, R.D., Charles, E.A., Fells, I., Molyneux, L. and Todd, M. (1989) “Some aspects of thermal energy generation during the electrolysis of D2O using a palladium cathode” Electrochimica Acta 34(9): 1319-1322.

Astakhov, I.I., Davudov, A.D., Katarin, N.V., Kazarinov, V.E., Kiseleva, I.G., Kriksunov, L.B., Yu Kudryavtsev, D., Lebedev, I.A., Myasoedov, B.F., Shcheglov, O.P., Teplitskaya, G.L. and Tsionskii, V.M. (1991) “An attempt to detect neutron and gamma radiations in heavy water electrolysis with a palladium cathode” Electrochimica Acta 36(7): 1127-1128.

Baker, M. (2016) “1,500 scientists lift the lid on reproducibility”, Nature 533(7604): 452-454.

Bednorz, J.G. and Müller, K.A. (1986) “Possible high Tc superconductivity in the Ba-La-Cu-O system”, Zeitschrift für Physik B Condensed Matter 64(2): 189-193.

Bennington S.M., Sokhi, R.S., Stonadge, P.R., Ross, D.K., Benham, M.J., Beynon, T.D., Whithey, P., Harris, I.R., and Farr, J.P.G. (1989) “A search for the emission of X-rays from electrolytically charged palladium-deuterium” Electrochimica Acta 34(9): 1323-1326.

Brillas, E., Esteve, J., Sardin, G., Casado, J., Domènech, X. and Sánchez-Cabeza, J.A. (1992) “Product analysis from D2O electrolysis with Pd and Ti cathodes” Electrochimica Acta 37(2): 215-219.

Buzz Skyline (2010) “Chemists taken in by cold fusion again!”,

Chubb, S.R. (2011) “Conventional physics can explain cold fusion excess heat” Physics Procedia 20: 404-419.

Feder, T. (2004) “DOE warms to cold fusion”, Physics Today 57(4): 27-28.

Feldman, B.J. (2010) “Cold fusion and reproducibility” Physics Today 63(11): 12.

Feller, W. (1968) An Introduction to Probability Theory and Its Application, Vol. 1, Wiley, New York.

Fleischmann, M. and Pons, S. (1989) Electrochemically induced nuclear fusion of deuterium. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 261(2) Part 1: 301-308.

Fleischmann, M., Pons, S., Anderson, M.W., Li, L.J., Hawkins, M. (1990) Calorimetry of the palladium-deuterium-heavy water system. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 287(2): 293-348.

Gibney, E. (2019) Google revives controversial cold-fusion experiments. Nature 569: 611 (doi: 10.1038/d41586-019-01683-9).

Gottman, J.M. and Roy, A.K. (2004) Sequential Analysis: A Guide for Behavioral Researchers. Cambridge, England: Cambridge University Press.

Hagelstein, P.L. (2010) “Constraints on energetic particles in the Fleischmann-Pons experiment” Naturwissenschaften 97(4): 345-352.

Horanyi, G. (1989) “Some doubts about the occurrence of electrochemically induced nuclear fusion of deuterium” Electrochimica Acta 34(6): 889-890.

Kainthla, R.C., Velev, O., Kaba, L., Lin, G.H., Packham, N.J.C., Szklarczyk, M., Wass, J. and Bockris, J.O’M. (1989) “Sporadic observation of the Fleischmann-Pons heat effect” Electrochimica Acta 34(9): 1315-1318.

Keddam, M. (1989) “Some comments on the calorimetric aspects of the electrochemical cold fusion by M.

Fleischmann and S. Pons” Electrochimica Acta 34(7): 995-997.

Kozima, H., Watanabe, S., Hiroe, K., Nomura, M. and Ohta, M. (1997) Analysis of cold fusion experiments generating excess heat, tritium and helium. Journal of Electroanalytical Chemistry 425(1-2): 173-178.

Krivit, S.B. (2013) “Nuclear phenomena in low-energy nuclear reaction research” Naturwissenschaften 100(9): 899-900.

Lindley, D. (1989) “Official thumbs down”, Nature 342(6247): 215.

London, F. (1935) “Macroscopical interpretation of superconductivity”, Proceedings of the Royal Society (London) A152: 24-34.

Luk, R.W.P. (2010) “Understanding scientific study via process modeling”, Foundations of Science 15(1): 49-78.

Luk, R.W.P. (2017) “A theory of scientific study”, Foundations of Science 22(1): 11-38.

Luk, R.W.P. (2018) “The implications and extensions of Luk’s theory and model of scientific study”, Foundations of Science 23(1): 103-118.

Meissner, W. and Ochsenfeld, R. (1933) “Ein neuer effekt bei eintritt der supraleitfähigkeit”, Die Naturwissenschaften 21(44): 787-788.

Miles, M.H., Hollins, R.A., Bush, B.F., Lagowski, J.J. and Miles, R.E. (1993) “Correlation of excess power and helium production during D2O and H2O electrolysis using palladium cathodes”, Journal of Electroanalytical Chemistry 346(1-2): 99-117.

Miles, M.H. (2005) “Correlation of excess enthalpy and helium-4 production: a review”, Condensed Matter Nuclear Science, Edited by P.L. Hagelstein and S.R. Chubb, pp. 123-131.

Mosier-Boss, P.A., Forsley, L.P. and Gordon, F.E. (2013) “How the flawed review process impedes paradigm shifting discoveries” Journal of Condensed Matter Nuclear Science 12: 1-12.

Mosier-Boss, P.A., Gordon, F.E., Forsley, L.P. and Zhou, D. (2017) “Detection of high energy particles using CR-39 detectors part 1: results of microscopic examination, scanning, and LET analysis” International Journal of Hydrogen Energy 42(1): 416-428.

Mosier-Boss, P.A., Szpak, S., Gordon, F.E. and Forsley L.P.G. (2007) “Use of CR-39 in Pd/D co-deposition experiments” European Physical Journal - Applied Physics 40(3): 293-303.

Mosier-Boss, P.A., Szpak, S., Gordon, F.E. and Forsley L.P.G. (2009) “Triple tracks in CR-39 as the result of Pd-D co-deposition: evidence of energetic neutrons. Naturwissenschaften 96(1): 135-142.

Mössbauer, R.P. (1958) “Kernresonanzflureszenz von gammastrahlung in Ir”, Zeitschrift fur Physik A 151(2): 124-143.

Popper, K.R. (1959) The Logic of Scientific Discovery. London: Hutchinson.

Price, H. (2019) “Icebergs in the room? Cold fusion at thirty” 3 Quarks Daily, March issue, (

Sanderson, K. (2007) Cold fusion is back at the American Chemical Society. Nature (March 2007) doi:10.1038/news070326-12.

Schultze, J.W., König, U., Hochfeld, A., Van Calker, C. and Kies, W. (1989) “Prospects and problems of electrochemically induced cold nuclear fusion” Electrochimica Acta 34(9): 1289-1313.

Seeliger, D., Wiesener, K., Meister, A., Marten, H., Ohms, D., Rahner, D., Schwierz, R. and Wustner, F. (1989) “Search for DD-fusion neutrons during heavy water electrolysis” Electrochimica Acta 34(7): 991-993.

Simon, B. (1999) “Making sense of the cold fusion after the (arti)fact” Social Studies of Science 29(1): 61-85.

Storms, E.K. (2010) “Status of cold fusion (2010)” Naturwissenschaften 97(10): 861-881.

Storms, E.K. (2013) “Efforts to explain low-energy nuclear reactions” Naturwissenschaften 100(11): 1103.

Szpak, S., Mosier-Boss, P.A. and Gordon, F.E. (2007) “Further evidence of nuclear reactions in Pd/D lattice: emission of charged particles” Naturwissenschaften 94(6): 511-514.



  • There are currently no refbacks.

Copyright (c) 2019 Robert W.P. Luk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Science & Philosophy - Journal of Epistemology, Science and Philosophy. ISSN 2282-7757; eISSN  2282-7765.