The Catenary in History and Applications (La Catenaria nella Storia e nelle Applicazioni)

Giuseppe Conti, Raffaella Paoletti, Alberto Trotta


The catenary is one of the most common curves; it is, in fact, the shape assumed by a homogeneous and inextensible chain, fixed to the extremities, which is subject only to its own weight. The catenary has always fascinated not only mathematicians but also architects and engineers, who have often used it in their works due to its remarkable properties. In this note, the catenary is introduced by determining its equation and considering its history from Galileo Galilei to the present day, pointing out a historical mistake. Then, some of its applications to architecture and engineering are shown and the catenary is compared to the parabola, a curve that at first sight can look similar to catenary but must not be confused with it. Finally, some variants of the catenary are considered: the weighted catenary and the catenary of equal resistance, highlighting their properties and their practical applications.


Regular curves; length of a curve; parabola; minimal surfaces; tension; compression; decomposition of a vector; equilibrium conditions

Full Text:



Boyer C. (1990). Storia della matematica. Mondadori, Milano.

Brunetti F. a cura di (1964). Opere di Galileo Galilei. vol. II, UTET, Torino.

Conti G. & Corazzi R. (2011). Il segreto della Cupola del Brunelleschi a Firenze - The Secret of Brunelleschi’s Dome in Florence. Pontecorboli Editore, Firenze.

Coriolis G. (1836). Note sur la chaînette d’égale résistance. Journal de mathématiques pures et appliquées, 1re série, tome 1, pp. 75-76.

Crosbie M. J. (1983). Is It a Catenary? New questions about the shape of Saarinen’s St. Louis. Arch. AIA Journal (June), pp.78-79.

Galilei G. (1990). Discorsi e dimostrazioni matematiche intorno a due nuove scienze attinenti alla meccanica e i movimenti locali, a cura di E. Giusti. Giulio Einaudi Editore, Torino.

Heyman J. (1982). The Masonry Arch, Chichester. Ellis Horwood Limited.

Huygens C. (1646). Correspondance n°21, lettre à Mersenne, prop.8. Œuvres complètes de Christiaan Huygens, Société hollandaise des sciences, tome I, p.36.

Huygens C. (1691). Correspondance n°2693, lettre à Leibniz. Œuvres complètes de Christiaan Huygens, Société hollandaise des sciences, tome X, p.133.

Kline M. (1991). Storia del Pensiero Matematico; Volume I: dall’antichità al settecento. Giulio Einaudi Editore, Torino.

Leibniz G. W. (1691). De linea in quam flexile se pondere proprio curvat. Acta eruditorum, (Juin), Lipsia.

Loria G. (1982). Storia delle Matematiche, dall’alba delle civiltà al tramonto del secolo XIX. Ristampa anastatica autorizzata dall’editore Hepli, Cesalpino-Goliardica, Milano.

Macquorn Rankine W. J. (1881). Miscellaneous Scientific Papers. Charles Griffith and Company, London.

Malverd Howe A. (1897). A Treatise on Arches. John Wiley & Sons, New York.

Osserman R. (2010). How the Gateway Arch Got its Shape. Nexus Network Journal, Vol.12, No. 2, 2010, pp. 167-189.

Osserman R. (2010). Mathematics of the Gateway Arch. Notices of the American Mathematical Society 57, 2: 220-229.

Simonetti C. (2006). Galileo e la catenaria. Archimede, anno LVIII n°4. Le Monnier, Firenze.

Villarceau A. Y. (1853). Sur l’établissement des arches de pont. Imprimerie Impériale, Paris.



  • There are currently no refbacks.

Copyright (c) 2017 Giuseppe Conti et al.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Science & Philosophy - Journal of Epistemology, Science and Philosophy. ISSN 2282-7757; eISSN  2282-7765.