Algebraic Hyperstructures and Fuzzy Logic in the Treatment of Uncertainty
Abstract
This study presents some fundamental aspects of recent theories on algebraic Hyperstructures, an important tool for an interdisciplinary vision of Geometry and Algebra. We examine some hypergroupoids of events, useful for a new algebraic-geometry perspective in the study and issues of probability applications. This paper considers some fundamental aspects of fuzzy classifications and their applications to problems of evaluation and decision in Architecture and Economics. Finally, we present hypergroups and join space associated with these classifications.
Iperstrutture algebriche e logica fuzzy nel trattamento dell’incertezza
Si presentano alcuni aspetti fondamentali della relativamente recente teoria delle iperstrutture algebriche, importante strumento per una visione interdisciplinare di Geometria e Algebra. Si esaminano alcuni ipergruppoidi di eventi, utili per un nuovo punto di vista algebrico - geometrico nello studio e nelle applicazioni di alcune questioni di probabilità. Si considerano alcuni aspetti fondamentali delle classificazioni fuzzy e le loro applicazioni a problemi di valutazione e decisione in Architettura e in Economia. Si presentano infine ipergruppi e join space associati a tali classificazioni.
Parole Chiave: Iperstrutture algebriche. Logica fuzzy. Applicazioni a Architettura e Economia.
Keywords
Full Text:
PDFReferences
Beltrami E.J., (1977), Models for Public Systems Analysis, Academic Press, New York
Bezdek J., (1981), Pattern recognition with fuzzy objective function algorithms, Plenum Press, New York
Corsini P., (1993), Prolegomena of Hypergroup Theory, Aviani Editore
Corsini P., (1994), Join spaces, power sets, fuzzy sets, Proc. of the Fifth International Congress on Algebraic Hyperstructures and Applications, Jasi, Romania
Corsini P., Leoreanu V., (2003), Applications of Hyperstructure Theory, Kluver Academic Publishers, London
Doria S., Maturo A., (1995), An Hyperstructures of Conditional Events for artificial intelligence, in "Mathematical models for handling partial knowledge in artificial intelligence", Plenum press, New York, pagg.201-208
Doria S., Maturo A., (1996), Hyperstructures and geometric spaces associated to a family of events, in Rivista di Matematica Pura e Applicata, n 19, pp.125-137
Fadini A., (1979), Introduzione alla teoria degli insiemi sfocati, Liguori Editore, Napoli
Ferri B, Maturo A., (1998), An Application of the Fuzzy Set Theory to Evaluation of Urban Project, in: New Trends in Fuzzy Systems, pp. 82-91, World Scientific, Singapore
Ferri B., Maturo A., (1999), Fuzzy Classification and Hyper-structures: An Application to Evaluation of Urban Project, in: Classification and Data Analysis, pp. 55-62, Springer-Verlag, Berlin
Marty F., (1934), Sur une généralisation de la notion de group, IV Congres des Mathématiciens Scandinave, Stockholm
Maturo A., (1997a), Probability assessments on hyperstructures of events, in Proceedings of the 4th workshop on uncertainty processing. pp. 111-119, Prague, January 22-25, 1997
Maturo A., (1997b), On some hyperstructures of conditional events, in Proceedings of Conference on Algebraic Hyperstructures and Applications ‘96, pp. 115-132, Prague, September 1-9, 1996
Maturo A., (1997c), Conditional events, conditional probabilities and hyperstructures, in Proceedings EUFIT ’97, September 8-11, pp. 1509/1513, Aachen, Germany
Prenowitz W., Jantosciak J., (1979), Join geometries, Springer-Verlag VTM
Ross T. J., (1997), Fuzzy Logic with engineering applications, MacGraw Hill
DOI: http://dx.doi.org/10.23756/sp.v4i1.253
Refbacks
- There are currently no refbacks.
Copyright (c) 2016 Antonio Maturo, Annamaria Porreca
This work is licensed under a Creative Commons Attribution 4.0 International License.
Science & Philosophy - Journal of Epistemology, Science and Philosophy. ISSN 2282-7757; eISSN 2282-7765.