The construction of quantum mechanics from electromagnetism. Theory and hydrogen atom

Hernán Gustavo Solari, Mario Alberto Natiello

Abstract


We reconstruct Quantum Mechanics in a way that harmonizes with classical mechanics and electromagnetism, free from mysteries or paradoxes such as the collapse of the wave function or Schrödinger’s cat. The construction is inspired by de Broglie’s and Schrödinger’s wave mechanics, while the unifying principle is Hamilton’s principle of least action, which separates natural laws from particular circumstances such as initial conditions and leads to the conservation of energy for isolated systems.

In Part I, we construct the Quantum Mechanics of a charged unitary entity and prescribe the form in which the entity interacts with other charged entities and matter in general. In Part II, we address the quantum mechanics of the hydrogen atom, testing the correctness and accuracy of the general description. The relation between the electron and proton in the atom is described systematically in a construction that is free from analogies or ad-hoc derivations, superseding conventional Quantum Mechanics (whose equations linked to measurements can be recovered).

We briefly discuss why the concept of isolation built into Schrödinger’s time evolution is not acceptable and how it immediately results in the well-known measurement paradoxes of quantum mechanics. We also discuss the epistemic grounds of the development and provide a criticism of instrumentalism, the leading philosophical perspective behind conventional Quantum Mechanics.


Keywords


Wave mechanics; Schrödinger's equation; dynamical equations of motion; critical epistemology;

Full Text:

PDF

References


Arnold, V I. 1989. Mathematical Methods of Classical Mechanics. 2nd edition. New York: Springer. 1st edition 1978.

Aspect, Alain, Grangier, Philippe, & Roger, Gérard. 1982. Experimental realization of Einstein- Podolsky-Rosen-Bohm Gedankenexperiment: A new violation of Bell’s inequalities. Physical Review Letters, 49(2), 91–94.

Assis, AKT. 1994. Weber’s electrodynamics. In: Weber’s Electrodynamics. Fundamental theories of physics, vol. 66. Springer.

Bauer, Martin. 2023. The Stern-Gerlach Experiment, Translation of: ”Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld”.

Boltzmann, Ludwig. 1974. Theoretical physics and philosophical problems: selected writings. Vienna Circle Collection, vol. 5. D. Teidel Publishing Company. Translations from the German by Paul Foulkes.

Born, Max. 1955. Statistical Interpretation of Quantum Mechanics. Science, 122(3172), 675–679. Nobel lecture.

Brush, Stephen G. 2002. Cautious revolutionaries: Maxwell, Planck, Hubble. American Journal of Physics, 70(2), 119–127.

Carmichael, H J. 1999. Statistical methods in quantum optics 1: Master equations and Fokker-Plank equations. Berlin: Springer.

Carroll, Sean. 2019 (September 7). Even Physicists Don’t Understand Quantum Mechanics. Worse, they don’t seem to want to understand it. The New York Times.

Cat, Jordi. 2024. The Unity of Science. In: Zalta, Edward N., & Nodelman, Ur (eds), The Stanford Encyclopedia of Philosophy. Standford University.

Chow, W. W., Koch, S. W., & Sargent, M. 1994. Semiconductor-Laser Physics. Berlin: Springer-Verlag.

de Broglie, Louis. 1923. Waves and Quanta. Nature, 112(2815), 540–540.

De Broglie, Louis. 1924 (Nov.). Recherches sur la théorie des quanta. Theses, Migration-université en cours d’affectation.

Dingle, Herbert. 1960a. The doppler effect and the foundations of physics (I). The British Journal for the Philosophy of Science, 11(41), 11–31.

Dingle, Herbert. 1960b. Relativity and electromagnetism: an epistemological appraisal. Philosophy of Science, 27(3), 233–253.

Dingle, Herbert. 1972. Science at the crossroads. Martin Brian and O’Keefe.

Dirac, Paul Adrien Maurice. 1928. The quantum theory of the electron. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 117(778), 610–624.

Einstein, A. 1924. Über den Äther. Verhandlungen der Schweizerischen Naturforschenden Gesellschaft, 105(2), 85–93. English translation.

Einstein, A., Podolsky, B., & Rosen, N. 1935. Can Quantum-Mechanical Description of Physical Reality be Considered Complete? Physical Review, 47, 777–780.

Einstein, Albert. 1905. On a heuristic point of view about the creation and conversion of light. Annalen der Physik, 17(6), 132–148.

Einstein, Albert. 1907. On the relativity principle and the conclusions drawn from it. Jahrb Radioaktivitat Elektronik, 4, 411–462.

Einstein, Albert. 1936. Physics and reality. Journal of the Franklin Institute, 221(3), 349–382.

Essen, Louis. 1971. The special theory of relativity: A critical analysis. Vol. 5. Clarendon Press Oxford.

Essen, Louis. 1978. Relativity and time signals. Wireless world, 84(1514), 44–45.

Faraday, Michael. 1855. Experimental Researches in Electricity (Vol III). Richard and John Edward Taylor.

Goethe, Johann Wolfgang von. 2009. The metamorphosis of plants. Cambridge, Massachusetts: The MIT press.

Hamilton, William Rowan. 1834. On a General Method in Dynamics. Philosophical Transactions of the Royal Society, 247–308. Edited by David R. Wilkins, 2000.

Hegel, G. F. 2001. Science of Logic. Blackmask Online.

Hertz, H. 1893. Electric waves. MacMillan and Co. Translated by D E Jones with a preface by Lord Kevin.

Jungnickel, Christa, & McCormmach, Russell. 2017. The Second Physicist (On the History of Theoretical Physics in Germany). Archimedes, vol. 48. Springer.

Kant, Immanuel. 1787. The Critique of Pure Reason. An Electronic Classics Series Publication. translated by J. M. D. Meiklejohn.

Kant, Immanuel. 1798. The Conflict of the Faculties (The Contest of the Faculties). Der Streit der Fakultäten. Hans Reiss, ed., Kant: Political Writings, 2d ed. (Cambridge: Cambridge University Press, 1991).

Kastberg, Anders. 2020. Structure of Multielectron Atoms. Springer. Springer Series on Atomic, Optical and Plasma Physics, vol. 112.

Kragh, Helge S. 1990. Dirac: A Scientific Biography. Cambridge University Press.

Kramida, A., Ralchenko, Yu., Reader, J., & (2023)., NIST ASD Team. 2023. NIST Atomic Spectra Database (ver. 5.11), [Online].

Lerner, Eric. 2010. The Big Bang never happened: a startling refutation of the dominant theory of the origin of the universe. Vintage.

Lorentz, H A. 1892. La Théorie Électromagnétique de Maxwell et son Application aux Corps Mouvants. Archives Néerlandaises des Sciences exactes et naturelles, XXV, 363–551. Scanned by Biodiversity Heritage Library from holding at Harvard University Botany Libraries.

Lorentz, Hendrik Antoon. 1904. Electromagnetic phenomena in a system moving with any velocity smaller than that of light. Proceedings of the Royal Netherlands Academy of Arts and Sciences, 6. Reprint from the English version of the Proceedings of the Royal Netherlands Academy of Arts and Sciences, 1904, 6: 809-831,.

Lorenz, L. 1861. XLIX. On the determination of the direction of the vibrations of polarized light by means of diffraction. The London, Edinburgh, and Dublin

Philosophical Magazine and Journal of Science, 21(141), 321–331.

Lorenz, Ludvig. 1867. XXXVIII. On the identity of the vibrations of light with electrical currents. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 34(230), 287–301.

Mach, Ernst. 2012. Popular Scientific Lectures. Project Guthemberg.

Maxwell, James Clerk. 1865. A Dynamical Theory of the Electromagnetic Field. Proceedings of the Royal Society (United Kingdom).

Maxwell, James Clerk. 1873. A Treatise on Electricity and Magnetism. Vol. 1 and 2. Dover (1954).

Maxwell, James Clerk. 2003. XLI . Address to the Mathematical and Physical Sections of the British Association (1870). In: Niven, W D (ed), The Scientific Papers of James Clerk Maxwell, vol. II. Dover Publications. From the British Association Report, 1870.

Michelson, Albert A, & Morley, Edward W. 1887. On the Relative Motion of the Earth and of the Luminiferous Ether. Sidereal Messenger, vol. 6, pp. 306-310, 6, 306–310.

Natiello, MA, & Solari, HG. 2021. Relational electromagnetism and the electromagnetic force. ArXiv preprint arXiv:2102.13108.

Natiello, Mario A, & Solari, H G. 2015. On the removal of infinities from divergent series. Philosophy of Mathematics Education Journal, 29, 13. The published version of this manuscript has typos in some equations. A preprint without typos can be found at https://arxiv.org/abs/1407.0346.

Newton, Isaac. 1687. Philosophiæ naturalis principia mathematica (“Mathematical principles of natural philosophy”). London. Consulted: Motte translation (1723) published by Daniel Adee publisher (1846). And the Motte translation revised by

Florian Cajori (1934) published by Univ of California Press (1999).

Pauli Jr, W. 1927. Zur Quantenmechanik des magnetischen Elektrons,. Zeitschrift für Physik, 43, 601–623. (English translation by D. H. Delphenich).

Peirce, Charles. 1994. Collected Papers of Charles Sanders Peirce. Electronic edition edn. Charlottesville, Va. : InteLex Corporation.

Phipps, Thomas E. 2014. Invariant physics. Physics essays, 27(4), 591–597.

Phipps Jr, Thomas E. 2006. Old Physics for New. Montreal: Apeiron.

Piaget, J, & Garcı́a, R. 1989. Psychogenesis and the History of Science. New York: Columbia University Press.

Poincaré, H. 1906. Sur la dynamique de l’électron. Rendiconti del Circolo matematico di Palermo XXI, 21, 129–176. Talk delivery on July 23rd 1905.

Poincaré, Henri. 1913. The Foundations of Science (translated by Halsted GB). The Gutemberg project edn. The Science Press, New York.

Popper, Karl. 1959. The Logic of Scientific Discovery. London: Routledge. First edition 1934.

Schrödinger, Erwin. 1926. An undulatory theory of the mechanics of atoms and molecules. Physical Review, 28(6), 1049–1070.

Schrödinger, Erwin. 1980. The present situation in quantum mechanics: A translation of Schrödinger’s ”Cat Paradox” paper. Proceedings of the American Philosophical Society, 323–38.

Schrödinger, Erwin. 1995. The Interpretation of Quantum Mechanics. Ox-Qow Press.

Solari, H G, & Natiello, M A. 2018. A Constructivist View of Newton’s Mechanics. Foundations of Science, 24:307.

Solari, H. G., & Natiello, M. A. 2021. On the relation of free bodies, inertial sets and arbitrariness. Science & Philosophy, 9(2), 7–26.

Solari, H. G., & Natiello, Mario. 2022a. Science, Dualities and the phenomenological Map. Foundations of Science, 10, 7.

Solari, Hernán G, & Natiello, Mario A. 2022b. On the symmetries of electrodynamic interactions. Science & philosophy, 22(2), 7–41.

Solari, Hernán G, & Natiello, Mario A. 2023. On abduction, dualities and reason. Science & Philosophy, 11(1).

Solari, Hernán G., Natiello, Mario A, & Romero, Alejandro G. 2024. En búsqueda de la razón perdida: un inesperado encuentro con la complejidad. In: Zoya, Leonardo G. Rodrı́guez (ed), ROLANDO GARCÍA Y LOS SISTEMAS COMPLEJOS, vol. I. Comunidad editora latinoamericana.

Solari, Hernán Gustavo, & Natiello, Mario Alberto. 2024. The construction of quantum mechanics from electromagnetism. Part I: the unitary entity. Preprint available from the authors.

Thomas, L. H. 1926. The Motion of the Spinning Electron. Nature, 117(2945), 514-514.

von Goethe, Johann Wolfgang. 1832. Maxims and Reflections. Peguin Books. Digitized by The internet Archive after a 1998 Peguin Books edition.

Whewell, William. 1840. The philosophy of the inductive sciences. Vol. 1. JW Parker.

Whewell, William. 2016. On the philosophy of discovery: chapters historical and critical. The Guthemberg project. Digitized from the 1860 Edition published by JW Parker and Son.

Yeo, Richard. 1993. Defining science: William Whewell, natural knowledge and public debate in early Victorian Britain. Ideas in context. Cambridge University Press.




DOI: http://dx.doi.org/10.23756/sp.v12i2.1659

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Hernán Gustavo Solari, Mario Alberto Natiello

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Science & Philosophy - Journal of Epistemology, Science and Philosophy. ISSN 2282-7757; eISSN  2282-7765.