Superior Eccentric Domination Polynomial

R Tejaskumar, A Mohamed Ismayil


In this paper we introduce the superior eccentric domination polynomial $SED(G, φ) = β\sum_{ l=\gamma_{sed}(G)} |sed(G, l)|φ^{l}$ where |sed(G, l)| is the number of all distinct superior eccentric dominating sets with cardinality l and $\gamma_{sed}(G)$ is superior eccentric domination number. We find SED(G, φ) for different standard graphs. Results are presented.


Superior distance, superior eccentricity, superior eccentric domination polynomial

Full Text:



S. Alikhani and Y.-h. Peng. Introduction to domination polynomial of a graph. arXiv preprint arXiv:0905.2251, 2009.

M. Bhanumathi and R. M. Abirami. Superior eccentric domination in graphs. International Journal of Pure and Applied Mathematics, 117(14):175–182, 2017.

F. Harary. Graph theory. Narosa Publishing House, New Delhi, 2001.

A. M. Ismayil and R. Tejaskumar. Eccentric domination polynomial of graphs.Advances in Mathematics: Scientific Journal, 9(4):1729–1739, 2020.

K. Kathiresan and G. Marimuthu. Superior domination in graphs. Utilitas Mathematica, 76:173, 2008.

K. Kathiresan, G. Marimuthu, and W. Sivakasi. Superior distance in graphs. Journal of combinatorial mathematics and combinatorial computing, 61:73, 2007



  • There are currently no refbacks.

Copyright (c) 2023 R Tejaskumar, A Mohamed Ismayil

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.