En Route for the Calculus of Variations
Abstract
Optimal control deals with the problem of finding a control law for a given system such that a certain optimality criterion is achieved. An optimal control is an extension of the calculus of variations. It is a mathematical optimization method for deriving control policies. The calculus of variations is concerned with the extrema of functionals. The different approaches tried out in its solution may be considered, in a more or less direct way, as the starting point for new theories. While the true “mathematical” demonstration involves what we now call the calculus of variations, a theory for which Euler and then Lagrange established the foundations, the solution which Johann Bernoulli originally produced, obtained with the help analogy with the law of refraction on optics, was empirical. A similar analogy between optics and mechanics reappears when Hamilton applied the principle of least action in mechanics which Maupertuis justified in the first instance, on the basis of the laws of optics.
Keywords
Full Text:
PDFReferences
Bernoulli, J. Opera Omnia. Lausanne and Geneva, 1742.
Chabert, J.-L. The Brachistrone Problem. History of Mathematics, Histories of Problems, Elipse, Paris, 1997, pp. 183-202.
Euler, L. Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes: sive solution problematic isoperimetrici lattissimo sensu accepti, Lausanne and Geneva, 1774 (Œvres, vol. 24, Berne, Orel Füssli, 1952).
Fermat, P. Œvres, ed. Tannery, P. and Henry, C., Gauthier-Villars, Paris, 1894.
Galileo, G. Discorsi e dimostrazioni matematiche intorno a duo nuove scienze, Leyden, 1638.
Lagrange, J.-L. Essai d’une nouvelle méthode pour déterminer les maxima et les minima des formules integrals defines. Miscellanea Taurinensia, vol II, 1760-1761 (Œvres, vol. I, Paris, pp. 333-468).
Mach, E. Die Mechanik in ihrer Entwickelung : historisch-kritisch dargestellt, F. A. Brockhaus, Leipzig, 1883.
Maupertius, P. L. M. de. Accord de différentes lois de la nature qui avaient jusqu'ici paru incompatibles. Mémoires de l’Acadenie des Sciences de Paris, 1744, pp. 417-426.
Maupertius, P. L. M. de. Les lois du movement et du repos déduites d’un principe métaphysique. Mémoires de l’Acadenie des Sciences de Berlin, 1746, pp. 267-294.
Newton, I. Correspondence, ed. by Scott, J. F., vol. IV (1694-1709), Cambridge University Press, Cambridge, 1967.
DOI: http://dx.doi.org/10.23755/rm.v36i1.467
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Jan Coufal, Jiří Tobíšek
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.