Relatively Prime Detour Domination Number of Some Switching Graphs
Abstract
Keywords
Full Text:
PDFReferences
G. Chartrand, F. Harary, H.C. Swart, P. Zhang. "Detour Distance in Graphs." Journal of Combinatorial Mathematics and Combinatorial Computing, 53: 75-94, 2005.
G. Chartrand, F. Harary, P. Zhang. "The Detour Number of a Graph." Utilitas Mathematica, 64: 97-113, 2003.
G. Chartrand, L. Lesniak. "Graphs and Digraphs." CRC Press, Boca Raton, Fourth ed., 2005.
T.W. Haynes, S.T. Hedetniemi. "Fundamentals of Domination in Graphs." Marcel Dekker, Inc., New York, 1998.
C. Jayasekaran. "Self Vertex Switching of Disconnected Unicyclic Graphs." Ars Combinatoria, 129: 51-63, 2016.
C. Jayasekaran, L.G. Binoja. "Relatively Prime Domination Number of a Graph." Mathematical Statistician and Engineering Applications, 70(2): 758-763, 2021.
C. Jayasekaran, A. Jancy Vini. "Results on Relatively Prime Dominating Sets in Graphs." Annals of Pure and Applied Mathematics, 14(3): 359-369, 2017.
J. John, N. Arianayagam. "The Detour Domination Number of a Graph." Discrete Mathematics, Algorithms and Applications, 9(1): 1-10, 2017.
J.H. Lint, J.J. Seidel. "Equilateral points in elliptic geometry." In Proc. Kon. Nederl. Acad. Wetensch, Ser. A, 69: 335-348, 1966.
DOI: http://dx.doi.org/10.23755/rm.v48i0.1289
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 C Jayasekaran et al.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.