Art Gallery Theorems

Luigi Togliani


Some important results about art gallery theorems are proposed, starting from Chvátal’s essay, using also polygon triangulations and orthogonal polygons.


art gallery; polygon triangulations; orthogonal polygon

Full Text:



Aggarwal A. (1984). The Art Gallery Theorem: Its Variations, Applications, and Algorithmic Aspects. Ph.D. Thesis, The Johns Hopkins University.

Bajuelos, A.L.; Canales, S.; Hernández, G. and Martins, M. A. (2007). “Solving some Combinatorial Problems in grid n-ogons”. International Journal on Mathematics and Computers in Simulation, 2, 1, 177-183.

Chvátal, V. (1975). “A combinatorial theorem in plane geometry”. Journal of Combinatorial Theory (B) 18, 39-41.

Elnagar, A. and Lulu, L. (2004). “Guarding polygons with holes for robot motion planning applications”. 2004 IEEE International Conference on Systems, Man and Cybernetics, 1, 923-928.

Fisk, S. (1978). “A Short Proof of Chvátal’s Watchman Theorem”. Journal of Combinatorial Theory (B) 24, 374.

Hoffmann F.; Kriegel K. (1996). “A graph coloring result and its consequences for polygon guarding problems”. SIAM J. Discrete Mathematics, 9(2), 210-224.

Kaul, H. (2014). The Art Gallery Problem. Chicago: Illinois Institute of Technology. (ultimo accesso: 19-07-2018).

Kahn, J.; Klawe, M.M. and Kleitman, D. (1980). “Traditional Galleries Require Fewer Watchmen”. SIAM Journal on Algebraic and Discrete Methods. 4. 10.1137/0604020.



  • There are currently no refbacks.

Copyright (c) 2018 Luigi Togliani

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Science & Philosophy - Journal of Epistemology, Science and Philosophy. ISSN 2282-7757; eISSN  2282-7765.