Logica del certo e dell’incerto per la scuola primaria

Luciana Delli Rocili, Antonio Maturo


Learning the basics of the logic of certain and the uncertain is presented as the result of a work of an interdisciplinary team. Our experimentation involves essentially two aspects: language comprehension of a statement and analysis of the information. The first aspect is to see how children interpret a sentence with subject and predicate, that is, if they believe that the truth values that can be assigned are those of bivalent logic, i.e. true or false, or truth-values of a multivalent logic i.e. if there is the possibility/need to consider truth values intermediate between true and false such as: more true than false, more false than true, halfway between true and false. It is also required children to identify phrases not complete and therefore that are not linguistic statements. Regarding the second aspect it comes to analyzing the information on the concept expressed by a proposition, i.e. to see if it is possible to immediately assign to it a truth value, or if it is necessary to acquire a further information. Moreover we highlight the distinction between uncertainty due to incomplete information, which leads to probability assessments, and semantic uncertainty that leads to the theory of fuzzy sets.


Propositions of the bivalent logic; Linguistic statements; Logic of the certain and uncertain; Fuzzy logic; Degree of information; Linguistic variables

Full Text:



Behnke and alii, (1968), Matematica 1 and 2, Feltrinelli Editore Milano.

Coletti G., Scozzafava R., (2002), Probabilistic Logic in a Coherent Setting, Kluwer Academic Publishers, Dordrecht.

De Finetti B., (1970), Teoria delle Probabilità, Einaudi, Torino,

Fadini A., (1979), Introduzione alla teoria degli insiemi sfocati, Liguori Editore, Napoli.

Klir G.J., Yuan B., (1995), Fuzzy sets and fuzzy logic, Prentice Hall.

Lindley D. V., (1990), La logica della decisione, Il Saggiatore, Milano.

Maturo A., (1993), Struttura algebrica degli eventi generalizzati, Periodico di Matematiche, 4, 1993, p. 18-26.

Maturo A., (2008), La moderna visione interdisciplinare di Geometria, Logica e Probabilità in Bruno de Finetti, Ratio Sociologica, 2, 2008, pp. 39-62.

Reichenbach H., (1942), I fondamenti filosofici della meccanica quantistica, tr. it. Einaudi, Torino, 1952

Russell B., (1962), Introduzione alla filosofia matematica, Longanesi, Milano.

Scozzafava R., (1996), La probabilità soggettiva e le sue applicazioni, Zanichelli, Bologna.

Scozzafava R., (2001), Incertezza e probabilità. Significato, valutazione, applicazioni della probabilità soggettiva, Zanichelli, Bologna.

Zadeh, L. (1965). Fuzzy sets. Inf. Control, 8, 338-353.

Zadeh, L. (1975). The Concept of a Linguistic Variable and its Application to Approximate Reasoning I. Inf. Sciences, 8, 199-249.


  • There are currently no refbacks.

Copyright (c) 2013 Luciana Delli Rocili, Antonio Maturo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Science & Philosophy - Journal of Epistemology, Science and Philosophy. ISSN 2282-7757; eISSN  2282-7765.