Semi generalization of δI*-closed sets in ideal topological space

K Palani, M Karthigai Jothi


In this paper we introduce the notion of semi generalized dI*-closed sets or gsdI*-closed sets using semi open sets and investigate its basic properties and characterizations in an ideal topological space. This class of sets is properly lies between the class of dI*-closed sets and the class of g-closed sets. Also, study the relationship with various existing closed sets in ideal topological spaces. Moreover, we introduce and study the concept of maximal gsdI*-closed sets


ideal topological space, I*-closed sets, gsI*-closed sets

Full Text:



S. P. Arya, T. Nour, Characterizations of S-normal Spaces, Indian J. Pure Appl. Math., 21 (8), 717 - 719. 1990.

P. Bhattacharya, B. K. Lahiri, Semi-generalized Closed Sets in Topology, Indian J. Math., 29, 375 – 38. 1987.

J. Dontchev, M. Ganster.,D.Rose, Ideal Resolvability. Topology and its Appl., 93, pp.1-16. 1999.

D. Jonkovic, T.R. Hamlett, New Topologies from old via Ideals, Amer.Math.,Monthly 97, pp. 295-310. 1990.

K. Kuratowski, Topology, Vol. I. New York: Academic Press, 1996.

N. Levine, Generalized Closed Sets in Topology, Rend. Circ. Mat. Palermo., 19, 89 - 96. 1970.

N. Levine, Semiopen Sets and Semi continuity in Topological Spaces, Amer. Math. Monthly,70, 36 - 41.1963.

H. Maki, R. Devi and K. Balachandran, Generalized -closed sets in Topology, Bull. Fukuoka Uni., Ed part III, 13 - 21. 1993.

H. Maki, R. Devi and K. Balachandran, Associated Topologies of Generalized -closedSetsand -generalized Closed Sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 15, 57 – 63. 1994.

M.N. Mukherjee, R. Bishwambhar, R. Sen, On Extension of Topological Spaces in terms of Ideals. Topology and its Appl., 154, pp. 3167-3172, 2007.

B.M. Munshi and D. S. Bassan, Superc continuous Mappings, Indian J. Pure Appl. Math., 13, 229 – 236, 1982.

A.A. Nasef, Rearmament, Some Applications via Fuzzy ideals. Chaos, Solitons and Fractals 13, pp. 825-831, 2002.

M. Navaneethakrishnan, J. Paulraj Joseph, g-closed sets in ideal Topological Spaces, Acta. Math. Hungar., DOI.10.107/s10474-007-7050-1.

O. Njastad, On Some Classes of Nearly Open Sets, Pacific J. Math., 15 (3), 961 –970. 1965.

T. Noiri, On -continuous Functions, J. Korean Math. Soc., 16, pp 161 – 166, 1980.

K. Palani, Karthigaijothi, δI*-Closed sets in Ideal Topological Spaces- Chap. II-Ph.d –Mini Project.

K. Palani, Karthigaijothi, Generalization of δI*-Closed Sets in Ideal Topological Spaces – Ph.d Mini Project – Chap. III.

V. Vaidyanathaswamy, The Localization Theory in set Topology, Proc. Indian.Acad. Sci. 20, 1945.

N.V. Velicko, H-Closed Topological Spaces, Math. Sb.,70, pp. 98-112, 1996.

M.K.R.S. Veerakumar, On ĝ –closed sets in Topological Spaces, Bull.Allh.Math. Soc., 99 – 112. 2003.

S. Yuksel, A. Acikgoz, T. Noiri, On δ-I-Continuous Functions, Turk J Math, 29, pp.39-51, 2005.



  • There are currently no refbacks.

Copyright (c) 2022 K Palani, M Karthigai Jothi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.