### The Detour Monophonic Convexity Number of a Graph

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

F. Buckley and F. Harary, Distance in Graphs, Addition-Wesley, Redwood City, CA, 1990.

G. Chartrand, G. Johns and S. Tian, Detour Distance in Graphs, Annals of Discrete Mathematics,55, 127-136, 1993.

G. Chartrand, C. Wall and P. Zhang, The Convexity number of a Graph, Graphs and Combinatorics, 18, 209-217, 2002.

G. Chartrand, G. Johns and P. Zhang, The detour number of a graph, Utilitas Mathematica, 64, 97-113, 2003.

P. Duchlet, Convex sets in Graphs, II. Minimal path convexity, J. Comb. Theory ser-B,44, 307-316, 1988.

J. John and S. Panchali, The upper monophonic number of a graph, International J. Combin, 4, 46-52,2010.

Jase Caceres and Ortrud R. Oellermann, Minimal Trees and Monophonic Convexity Discussiones Mathematicae Graph Theory, 32, 685-704,2012.

Mitre C. Dourado, Fabio Protti and Jayme L. Szwarcfiter, Complexity results related to monophonic convexity, Discrete Applied Mathematics, 158, 1268-1274. 2010.

S. V. Padmavathi, The Weak (Monophonic) convexity number of a graph, Progress in Nonlinear Dynamics and chaos, 3(2), 71-79,2015.

A. P. Santhakumaran and P. Titus, Monophonic distance in graphs, Discrete Mathematics, Algorithms and Applications, 3(2), 159 – 169,2011.

P. Titus, K. Ganesamoorthy and P. Balakrishnan, The detour monophonic number of a graph, ARS Combinatoria, 84, 179-188,2013.

DOI: http://dx.doi.org/10.23755/rm.v44i0.918

### Refbacks

- There are currently no refbacks.

Copyright (c) 2022 M Sivabalan, S Sundar Raj, V Nagarajan

This work is licensed under a Creative Commons Attribution 4.0 International License.

Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.