### The Detour Domination and Connected Detour Domination values of a graph

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

Buckley and F.Harary, Distance in Graph, Addition-Wesly-wood city, CA, (1990).

G. Chartrand, G. Johns and P. Zhang, On the detour number and geodetic number of a graph, Ars combinatoria, 72(2004), 3-15.

G. Chartrand, G. Johns and P. Zhang, The detour number of a graph, Utilitas Mathematica, 64(2003), 97-113.

T.W. Haynes, P.J. Slater and S.T. Hedetniemi, Fundamentals of Domination in graphs, Marcel Dekker, New York, (1998).

J. John and N. Arianayagam, The detour domination number of a graph, Discrete Mathematics Algorithms and Applications, 09(01), 2017, 17500069.

J. John and N. Arianayagam, The total Detour number of a graph, Journal of Discrete Mathematics Sciences and Cryptography, 17(4), 2014, 337-350.

J. John and V. R. Sunil Kumar, The open detour number of a graph, Discrete Mathematics Algorithms and Applications, 13(01), 2021, 2050088.

A. P. Santhakumaran and S. Athisayanathan, The connected detour number of graphs, J. combin.math.combin.compute;69, (2009), 205-218.

Vijaya Xavier Parthian, and C. Caroline Selvaraj, Connected Detour Domination Number of Some Standard Graphs, Journal of Applied Science and Computations, 5(11), (2018), 486-489.

DOI: http://dx.doi.org/10.23755/rm.v44i0.908

### Refbacks

- There are currently no refbacks.

Copyright (c) 2022 R.V Revathi, M Antony

This work is licensed under a Creative Commons Attribution 4.0 International License.

Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.