On The Study of Edge Monophonic Vertex Covering Number

K.A Francis Jude Shini, S Durai Raj, X Lenin Xaviour, A.M Anto

Abstract


For a connected graph G of order n ≥ 2, a set S of vertices of G is an edge monophonic vertex cover of G if S is both an edge monophonic set and a vertex covering set of G. The minimum cardinality of an edge monophonic vertex cover of G is called the edge monophonic vertex covering number of G and is denoted by . Any edge monophonic vertex cover of cardinality  is a -set of G. Some general properties satisfied by edge monophonic vertex cover are studied.

Keywords


monophonic set; edge monophonic set; vertex covering set; edge monophonic vertex cover; edge monophonic vertex covering number; etc.

Full Text:

PDF

References


F. Buckley and F. Harary. Distance in graphs. Addison‐Wesley, 1990.

F. Buckley, F. Harary, and L. Quintas. Extremal results on the geodetic number of a graph. Scientia A, 2, 1988.

G. Chartrand, F. Harary, and P. Zhang. On the geodetic number of a graph. Networks: An International Journal, , 2002.

G. Chartrand, G. L. Johns, and P. Zhang. On the detour number and geodetic number of a graph. Ars Combinatoria, 72:3-15, 2004

G. Chartrand, E. M. Palmer, and P. Zhang. The geodetic number of a graph: A survey. Congress us numeration, pages 37-58, 2002.

A. Hansberg and L. Volkmann. On the geodetic and geodetic domination numbers of a graph. Discrete mathematics, , 2010.

F. Harary. Graph theory. Addison Wesley publishing company. Reading, MA, USA., 1969.

F. Harary, E. Loukakis, and C. Tsouros. The geodetic number of a graph. Mathematical and Computer Modelling, , 1993.

J. John and S. Panchali. The upper monophonic number of a graph. International J. Math. Combin, 4:46-52, 2010.

J. John and P. A. P. Sudhahar. On the edge monophonic number of a graph. Filomat, 26(6):1081‐1089, 2012.

J. John, P. A. Paul Sudhahar, and D. Stalin. On the number of a graph. Proyecciones (Antofagasta), , 2019.

A. Santhakumaran, P. Titus, and K. Ganesamoorthy. On the monophonic number of a graph. Journal of applied mathematics & informatics, , 2014.

P. A. P. Sudhahar, M. M. A. Khayyoom, and A. Sadiquali. Edge monophonic domination number of graphs. J. . In Mathematics, , 2016.

D. Thakkar and J. Bosamiya. Vertex covering number of a graph. Mathematics Today, 27:30- 35, 2011.




DOI: http://dx.doi.org/10.23755/rm.v44i0.907

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 K.A Francis Jude Shini, S Durai Raj, X Lenin Xaviour, A.M Anto

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.