About a definition of metric over an abelian linearly ordered group
Abstract
A G-metric over an abelian linearly ordered group G = (G,⊙,≤) is a binary operation, d G , verifying suitable properties. We consider a particular G metric derived by the group operation ⊙ and the total weak order ≤, and show that it provides a base for the order topology associated to G.
Keywords
Full Text:
PDFReferences
J. Barzilai, Consistency measures for pairwise comparison matrices. Journal of Multi-Criteria Decision Analysis 7(1998), 123–132.
L. Basile, L. D’Apuzzo, Transitive matrices, strict preference and in-tensity operators. Mathematical Methods in Economics and Finance 1(2006), 21–36.
L. Basile, L. D’Apuzzo, Transitive matrices, strict preference and ordinal evaluation operators. Soft Computing 10(2006), 933–940.
G. Birkhoff, Lattice theory. American Mathematical Society Colloqium Publications 25(1984).
N. Burbaki, Algebre II. Masson Paris MR 84d:0002 (1981).
C. Carlsson, D. Ehrenberg, P. Eklund, M. Fedrizzi, P. Gustafsson, P. Lindholm, G. Merkuryeva, T. Riissanen, A.G.S. Ventre, Consensus in distributed soft environments. European Journal of Operational Re-search 61(1992), 165-185.
B. Cavallo, L. D’Apuzzo, A general uni ed framework for pairwise com-parison matrices in multicriterial methods. International Journal of In-telligent Systems 24(2009), 377–398.
B. Cavallo, L. D’Apuzzo, Characterizations of consistent pairwise com-parison matrices over abelian linearly ordered groups. International Jour-nal of Intelligent Systems 25(2010), 1035–1059.
B. Cavallo, L. D’Apuzzo, M. Squillante, About a consistency index for pairwise comparison matrices over a divisible alo-group. International Journal of Intelligent Systems 27(2012), 153–175.
B. Cavallo, L. D’Apuzzo, Deriving weights from a pairwise comparison matrix over an alo-group. Soft Computing 16(2012), 353-366.
P. Eklund, A. Rusinowska, H. De Swart, Consensus reaching in com-mittees. European Journal of Operational Research 178(2007), 185-193.
J. Fodor, R. Yager, A. Rybalov, Structure of uninorms. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 5 (1997), 411–427.
E.P. Klement, R., E. P. Mesiar, Triangular norms (2000).
A. Maturo, A.G. S. Ventre, An Application of the Analytic Hierarchy Process to Enhancing Consensus in Multiagent Decision Making. In: ISAHP2009, Proceeding of the International Symposium on the Analytic Hierarchy Process for Multicriteria Decision Making, July 29- August 1, 2009, University of Pittsburg, Pittsburgh, Pennsylvania, paper 48, 1-12.
A. Maturo, A.G. S. Ventre, Aggregation and consensus in multiobjective and multiperson decision making. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 17 (2009), 491-499.
A. Maturo, A.G. S. Ventre. Reaching Consensus in Multiagent Decision Making. International Journal of Intelligent Systems 25 (2010), 266-273.
T.L. Saaty, A scaling method for priorities in hierarchical structures. J. Math.Psychology 15 (1977), 234–281.
T.L. Saaty, The Analytic Hierarchy Process. McGraw-Hill, New York (1980).
T.L. Saaty, Decision Making for Leaders. University of Pittsburgh (1988).
Refbacks
- There are currently no refbacks.
Copyright (c) 2012 Bice Cavallo, Livia D’Apuzzo
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.