The Lie-Santilli admissible hyperalgebras of type An

Pipina Nikolaidou, Thomas Vougiouklis


The largest class of hyperstructures is the one which satisfy the weak properties. These are called H v -structures introduced in 1990 and they proved to have a lot of applications on several applied sciences. In this paper we present a construction of the hyperstructures used in the Lie-Santilli admissible theory on square matrices.


hyperstructures, H v -structures, hopes, weak hopes, ∂-hopes, e-hyperstructures, admissible Lie-algebras.

Full Text:



P. Corsini, Prolegomena of hypergroup theory, Aviani, 1994.

P. Corsini, V. Leoreanu, Applications of Hyperstructure Theory, Kluwer Academic Publ.,2003.

B. Davvaz, A brief survey of the theory of Hv-structures, 8th AHA Congress, Spanidis Press (2003), 39-70.

B. Davvaz, Polygroup theory and related systems, World Sci., (2013).

B. Davvaz, R.M Santilli, T. Vougiouklis, Studies of multivalued hy-perstructures for the characterization of matter-antimatter systems and their extension, Algebras, Groups and Geometries, 28(1) (2011), 105-116.

B. Davvaz, R.M. Santilli, T. Vougiouklis, Multi-valued Hypermathe-matics for characterization of matter and antimatter systems, Journal of Computational Methods in Sciences and Engineering (JCMSE) 13, (2013), 37-50.

B. Davvaz, S. Vougioukli, T. Vougiouklis, On the multiplicative Hv-rings derived from helix hyperoperations,Util. Math., Vol. 84 (2011), 53-63.

B. Davvaz, V. Leoreanu, Hyperring Theory and Applications, Int. Aca-demic Press, 2007.

S. Hoskova, Hv-structure is fteen, Proc. of 4th International mathemat-ical workshop FAST VUT Brno, Czech Republic, (2005), 55-57,

V.G Kac, In nite-dimensional Lie algebras, Vol. 44. Cambridge Univer-sity Press, 1994.

P. Kampaki-Vougioukli, Bar in SILL Questionnaire for multiple results processing: Users' frequency and con dence, Sino-US English Teaching, Vol. 10 N.3, March 2013 (Serial N.111), 184-199.

J. Lepowski, R.L. Wilson, Costruction of the A ne Lie Algebra A(1)1, Comm. Math. Phys., 62, (1978), 43-53.

N. Lygeros, T. Vougiouklis, The LV-hyper structures, Ratio Mathemat-ica, 25, (2013), 59-66.

A. Maturo, B. Ferri, On some applications of fuzzy sets and commuta-tive hypergroups to evaluation in architectyre and town-planning, Ratio Mathematica, 13, (1999), 51-60.

P. Nikolaidou, T. Vougiouklis, Hv-structures and the Bar in question-naires, Italian J. Pure Applied Math 29, (2012), 341-350.

R.M. Santilli, Hadronic Mathematics, Mechanics and Chemistry, Vol. I, II, III, IV and V, International Academic Press, USA, 2008.

R.M. Santilli, T. Vougiouklis, Isotopies, Genotopies, Hyperstructures and their Applications, Proc. New Frontiers in Hyperstructures and Re-lated Algebras, Hadronic Press, (1996), 177-188.

R.M. Santilli, T. Vougiouklis, Lie-admissible hyperalgebras, Italian Jour-nal of Pure and Applied Mathematics,31,(2013), 239-254.

T. Vougiouklis, A hyperoperation de ned on a groupoid equipped with a map, Ratio Mathematica on line, N.1 (2005), 25-36.

T. Vougiouklis, Construction of Hv-structures with desired fundamental structures, New frontiers in Hyperstructures, Hadronic, (1996), 177-188.

T. Vougiouklis, Enlarging Hv-structures, Algebras and Combinatorics, ICAC' 97, Hong Kong, Springer - Verlag (1999), 455-463.

T. Vougiouklis, Finite Hv-structures and their representations, Rend. Sem. Mat. Messina S.II, V.9 (2003), 245-265.

T. Vougiouklis, Generalization of P-hypergroups, Rend. Circ. Mat. Palermo, S.II,, 36 (1987), 114-121.

T. Vougiouklis, Hyperstructures and their Representations, Monographs in Mathematics, Hadronic Press, 1994.

T. Vougiouklis, On Hv-rings and Hv-representations, Discrete Math., 208/209, (1999), 615-620.

T. Vougiouklis, On a matrix hyperalgebra, J. Basic Science V.3, N.1, (2006), 95-102.

T. Vougiouklis, On a ne Kac-Moody Lie algebras, Commentationes Mathematicae Universitatis Carolinae 26.2 (1985), 387-395.

T. Vougiouklis, Representations of hypergroups by hypermatrices, Rivista Mat. Pura ed Appl., N2(1987), 7-19.

T. Vougiouklis, Some remarks on hyperstructures, Contemp. Math., 184, (1995), 427-431.

T. Vougiouklis, The fundamental relation in hyperrings. The general hyper eld, 4th AHA Congress, World Scienti c,(1991),203-211.

T. Vougiouklis, The Lie-hyperalgebras and their fundamental relations, Southeast Asian Bulletin of Mathematics, 37(4),(2013),601-614.

T. Vougiouklis, @-operations and Hv- elds, Acta Math. Sinica, (Engl. Ser.), Vol. 24, N.7 (2008), 1067-1078.


  • There are currently no refbacks.

Copyright (c) 2014 Pipina Nikolaidou, Thomas Vougiouklis

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.