Algebraic Spaces and Set Decompositions

Jan Chvalina, Bedřich Smetana

Abstract


The contribution is growing up from certain parts of scientific work by professor Boruvka in several ways. Main focus is on the decomposition theory, especially algebraized decompositions of groups. Professor Boruvka in his excellent and well-known book [3] has developed the decomposition (partition) theory, where the fundamental role belongs to so called generating decompositions. Furthermore, the contribution is also devoted to hypergroups, to algebraic spaces called also quasi-automata or automata without outputs. There is attempt to develop more fresh view point on this topic.


Keywords


algebraic space; decomposition; join space;

Full Text:

PDF

References


Z. Bavel : The source as a tool in automata . Inform. Control 18 (1971), pp. 140 - 155.

O. Boruvka : ber Zerlegungen von Mengen. Mitteilungen. Tschech Akad. Wiss. LIII, 23 (1943), 14 pp.

O. Boruvka :Foundations of the Theory of Groupoids and Groups. VEB Deutscher Verlag der Wissenschaften, Berlin 1974.

O. Boruvka :Algebraic spaces with operators and their realization by differential equations I, II (Czech). Text of the Seminar on Differential Equations. Brno 1988, 35 pp.

J. Chvalina : Functional Graphs, Quasi-ordered Sets and Commutative Hypergroups (Czech). Masaryk University Brno 1995.

J. Chvalina - L. Chvalinova´ : State hypergroups of automata. Acta Math. et Inform. Univ. Ostrav. 4, No. 1 (1996), pp. 105 - 119.

J. Chvalina,S. Krehlık and M. Novak: Cartesian composition and the problem of generalizing the MAC condition to quasi- multiautomata. Analele Stiintifice Ale Universitatii Ovidius Constanta, Seria Matematica, 2016, Vol. XXIV, No. 3, pp. 79-100.

J. Chvalina -S. Mayerova: On certain proximities and preorderings on the transposition hypergroups of linear first-order partial differential operators. Analele Stiintifice Ale Universitatii Ovidius Constanta, Seria Matematica, 2014, Vol. 2014, No. 22, pp. 85-103.

J. Chvalina -S. Mayerova: General Omega-hyperstructures and certain applications of those. Ratio Mathematica, 2013, Vol. 2012, No. 23, pp. 3-20.

J. Chvalina, J. Moucka and R. Vemolova: Functorial passage from quasi-automata to multiautomata. In XXIV International Colloquium on the Acquisition Process Management, CD- ROM. Brno: UNOB Brno, 2006. pp. 1- 8.

P. Corsini : Prolegomena of Hypergroup Theory. Aviani Edittore, Tricesimo 1993.

P. Corsini and V. Leoreanu: Application of Hyperstructure Theory, Dordrecht, Kluwer Academic Pub., 2003.

S. Hoskova - J. Chvalina: Discrete transformation hypergroups and transformation hypergroups with phase tolerance space, DISCRETE MATHEMATICS, 2008, Vol. 2008, No. 308, pp. 4133-4143.

S. Hoskova, J. Chvalina and P. Rackova: Transposition hypergroups of Freholm integral operators and related hyperstructures I. Journal of Basic Science, 2008, Vol. 4(2008), No. 1, pp. 43-54.

S. Hoskova, J. Chvalina and P. Rackova: Transposition hypergroups of Fredholm integral operators and related hyperstructures II. Journal of Basic Science, 2008, Vol. 4(2008), No. 1, pp. 55-60.

N. Levine: An equivalence relation in tapology. Math. J. Okayama Univ. 15(1971-72), pp. 113 - 123.

B. Mikolajczak (ed.) : Algebraic and Structural Automota Theory. Annals of Discretc Math. 44, North - Holland - Amsterdam, New York, Oxford, Tokyo 1991.

T. Vougiouklis : Cyclicity in a special class of hypergroups. Acta Univ. Carol. Math Phys. 22, 1 (1981), pp. 3 - 6.




DOI: http://dx.doi.org/10.23755/rm.v34i0.415

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Bedřich Smetana, Jan Chvalina

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.