Helix-Hopes on S-Helix Matrices

Souzana Vougioukli, Thomas Vougiouklis


A hyperproduct on non-square ordinary matrices can be defined by using the so called helix-hyperoperations. The main characteristic of the helix-hyperoperation is that all entries of the matrices are used. Such operations
cannot be defined in the classical theory. Several classes of non-square matrices have results of the helix-product with small cardinality. We study the helix-hyperstructures on the representations and we extend our study up to Lie-H_v theory by using ordinary fields. We introduce and study the class of S-helix matrices.


hyperstructures; H v -structures; h/v-structures; hope; helix-hopes

Full Text:



P. Corsini and V. Leoreanu, Application of Hyperstructure Theory, Klower Academic Publishers, 2003.

B. Davvaz and V. Leoreanu, Hyperring Theory and Applications Int. Acad. Press, 2007.

B. Davvaz, S. Vougioukli and T Vougiouklis, On the multiplicative H_v-rings derived from helix hyperoperations, Util. Math., 84, (2011), 53-63.

A. Dramalidis and T. Vougiouklis, Lie-Santilli Admissibility on non-square matrices with the helix hope, Clifford Algebras Appl. CACAA, V. 4, N. 4, (2015), 353-360.

R.M. Santilli and T. Vougiouklis, Isotopies, Genotopies, Hyperstructures and their Appl., Proc. New Frontiers Hyperstructures Related Alg., Hadronic, (1996), 1-48.

S. Vougioukli, H_v -vector spaces from helix hyperoperations, Intern. J. Math. and Analysis, (New Series), V.1, N.2, (2009), 109-120.

S. Vougioukli and T Vougiouklis, Helix-hopes on Finite H_v-fields, Algebras Groups and Geometries (AGG), V.33, N.4, (2016), 491-506.

T. Vougiouklis, Representations of hypergroups by hypermatrices, Rivista Mat. Pura Appl., N 2, (1987), 7-19.

T. Vougiouklis, Groups in hypergroups, Annals Discrete Math. 37, (1988), 459-468.

T. Vougiouklis, The fundamental relation in hyperrings. The general hyperfield, 4 th AHA, Xanthi 1990, World Scientific, (1991), 203-211.

T. Vougiouklis, Hyperstructures and their Representations, Monographs in Math., Hadronic, (1994).

T. Vougiouklis, Some remarks on hyperstructures, Contemporary Math., Amer. Math. Society, 184, (1995), 427-431.

T. Vougiouklis, Enlarging H_v-structures, Algebras and Combinatorics, ICAC’97, Hong Kong, Springer-Verlag, (1999), 455-463.

T. Vougiouklis, On H_v-rings and H_v-representations, Discrete Math., Elsevier, 208/209, (1999), 615-620.

T. Vougiouklis, The h/v-structures, J. Discrete Math. Sciences and Cryptography, V.6, N.2-3, (2003), 235-243.

T. Vougiouklis, The Lie-hyperalgebras and their fundamental relations, Southeast Asian Bull. Math., V. 37(4), (2013), 601-614.

T. Vougiouklis, From H_v-rings to H_v-fields, Int. J. Algebraic Hyperstr. and Appl. Vol.1, No.1, (2014), 1-13.

T. Vougiouklis, Hypermatrix representations of finite H_v -groups, Europ. J. Combinatorics, V.44 B, (2015), 307-315.

T. Vougiouklis and S. Vougioukli, The helix hyperoperations, Italian J. Pure Appl. Math., 18, (2005), 197-206.

T. Vougiouklis and S. Vougioukli, Hyper-representations by non square matrices. Helix-hopes, American J. Modern Physics, 4(5), (2015), 52-58.

T. Vougiouklis and S. Vougioukli, Helix-Hopes on Finite Hyperfields, Ratio Mathematica, V.31, (2016), 65-78. doi:http://dx.doi.org/10.23755/rm.v31i0.321.

T. Vougiouklis and S. Vougioukli, Hyper Lie-Santilli Admissibility, Algebras Groups and Geometries (AGG), V.33, N.4, (2016), 427-442.

DOI: http://dx.doi.org/10.23755/rm.v33i0.385


  • There are currently no refbacks.

Copyright (c) 2017 Souzana Vougioukli, Thomas Vougiouklis

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.