Mathematical modelling and application of reduced differential transform method for river pollution

Manan A. Maisuria, Priti V. Tandel


This paper presents the mathematical model of pollutant transport in a river. To effectively find the analytical solution of the advectiondiffusion equation under various forms of suitable initial conditions, the reduced differential transform method (RDTM) is used. Three different initial concentration function cases, including rational, exponential, and power, are analyzed for the present model. A 2D and 3D visual comparison of the solutions obtained for each case is also shown. This article discusses the sufficient condition for convergence of the reduced differential transform approach to solving non-linear differential equations. The convergence results for the concentration functions in each case are briefly described. The present method is highly effective and more efficient in solving real-world problems. For all cases, the amount of phosphate pollutant concentration at various distances and time levels has been examined using numerical and graphical representations. While analyzing actual world problems, the current study demonstrates its effectiveness.


Pollutant transport equation; Reduced differential transform method; Convergence; River pollution

Full Text:



M. O. Al-Amr. New applications of reduced differential transform method. Alexandria Engineering Journal, 53(1):243–247, 2014. doi: 10.1016/j.aej.2014.01.003.

S. Amiri, M. Mazaheri, and N. Bavandpouri Gilan. Introducing a new method for calculating the spatial and temporal distribution of pollutants in rivers. International Journal of Environmental Science and Technology, 18(12):3777–3794, 2021. doi: 10.1007/s13762-020-03096-y.

L. G. A. Borges, A. Savi, C. Teixeira, R. P. de Oliveira, M. L. F. De Camillis, R. Wickert, S. F. M. Brodt, T. F. Tonietto, R. Cremonese, L. S. da Silva, et al. Mechanical ventilation weaning protocol improves medical adherence and results. Journal of critical care, 41:296–302, 2017. doi:10.1016/j.jcrc.2017.07.014.

B. A. Bryan and J. M. Kandulu. Designing a policy mix and sequence for mitigating agricultural non-point source pollution in a water supply catchment. Water resources management, 25(3):875–892, 2011. doi: 10.1007/s11269-010-9731-8.

H. S. C¸ adraku. Groundwater quality assessment for irrigation: case study in the blinaja river basin, kosovo. Civil Engineering Journal, 7(9):1515–1528, 2021.

J. Chen, H. Shi, B. Sivakumar, and M. R. Peart. Population, water, food, energy and dams. Renewable and Sustainable Energy Reviews, 56:18–28, 2016. doi:10.1016/j.rser.2015.11.043.

B. Fakouri, M. Mazaheri, and J. M. Samani. Management scenarios methodology for salinity control in rivers (case study: Karoon river, iran). Journal of Water Supply: Research and Technology-Aqua, 68(1):74–86, 2019. doi:10.2166/aqua.2018.056.

A. James. Mathematical models in water pollution control. Wiley, 1978.

B. Jiang, Y. Wen, Z. Li, D. Xia, and X. Liu. Theoretical analysis on the removal of cyclic volatile organic compounds by non-thermal plasma. Water, Air, & Soil Pollution, 229(2):1–12, 2018. doi: 10.1007/s11270-018-3687-3.

K. Kachiashvili, D. Gordeziani, R. Lazarov, and D. Melikdzhanian. Modeling and simulation of pollutants transport in rivers. Applied mathematical modelling, 31(7):1371–1396, 2007. doi:10.1016/j.apm.2006.02.015.

E. C. Kerich. Households drinking water sources and treatment methods options in a regional irrigation scheme. Journal of Human, Earth, and Future, 1(1):10–19, 2020. doi: 10.28991/HEF-2020-01-01-02.

Y. Keskin and G. Oturanc. Reduced differential transform method for generalized kdv equations. Mathematical and Computational applications, 15(3):382–393, 2010.

K. S. Kim and S. C. Chapra. Temperature model for highly transient shallow streams. Journal of Hydraulic Engineering, 123(1):30–40, 1997. doi:10.1061/(ASCE)0733-9429(1997)123:1(30).

R. L. Knight, V. W. Payne Jr, R. E. Borer, R. A. Clarke Jr, and J. H. Pries. Constructed wetlands for livestock wastewater management. Ecological engineering,15(1-2):41–55, 2000. doi: 10.1016/S0925-8574(99)00034-8.

J. Li, B. Zhang, M. Liu, and Y. Wang. Numerical simulation of the large-scale malignant environmental pollution incident. Process Safety and Environmental Protection, 87(4):232–244, 2009. doi:10.1016/j.psep.2009.03.001.

N. Meszaros, B. Subedi, T. Stamets, and N. Shifa. Assessment of surface water contamination from coalbed methane fracturing-derived volatile contaminants in sullivan county, indiana, usa. Bulletin of Environmental Contamination and Toxicology, 99(3):385–390, 2017. doi: 10.1007/s00128-017-2139-x.

S. R. Moosavi Noori and N. Taghizadeh. Study of convergence of reduced differential transform method for different classes of differential equations. International Journal of Differential Equations, 2021, 2021. doi:10.1155/2021/6696414.

S. Nomura, Y. Ito, S. Takegami, and T. Kitade. Development and validation of an assay method for benzene in the delgocitinib drug substance using conventional hplc. Chemical Papers, 73(3):673–681, 2019. doi: 10.1007/s11696-018-0608-2.

E. Permanoon, M. Mazaheri, and S. Amiri. An analytical solution for the advection-dispersion equation inversely in time for pollution source identification. Physics and Chemistry of the Earth, Parts A/B/C, 128:103255, 2022. doi: 10.1016/j.pce.2022.103255.

B. Razdar, K. Mohammadi, J. Samani, and B. Pirooz. Determining the best water quality model for the rivers in north of iran (case study: Pasikhan river). Computational Methods in Civil Engineering, 2(1):105–116, 2011.

R. K. Saeed and A. A. Mustafa. Numerical solution of fisher–kpp equation by using reduced differential transform method. In AIP Conference Proceedings, volume 1888, page 020045. AIP Publishing LLC, 2017. doi: 10.1063/1.5004322.

H. Shi, J. Chen, S. Liu, and B. Sivakumar. The role of large dams in promoting economic development under the pressure of population growth. Sustainability, 11(10):2965, 2019. doi:10.3390/su11102965.

V. K. Srivastava, M. K. Awasthi, and S. Kumar. Analytical approximations of two and three dimensional time-fractional telegraphic equation by reduced differential transform method. Egyptian Journal of Basic and Applied Sciences, 1(1):60–66, 2014. doi: 10.1016/j.ejbas.2014.01.002.

H. W. Streeter. Studies of the pollution and natural purification of the ohio river, part iii, factors concerned in the phenomena of oxidation and reareation. Public health bulletin, (146), 1925. URL

G. Tchobanoglous, F. L. Burton, and H. D. Stensel. Wastewater engineering. Management, 7(1):4, 1991.

M. Tsuji, T. Kawahara, K. Uto, N. Kamo, M. Miyano, J.-i. Hayashi, and T. Tsuji. Efficient removal of benzene in air at atmospheric pressure using a side-on type 172 nm xe2 excimer lamp. Environmental Science and Pollution Research, 25(19):18980–18989, 2018. doi: 10.1007/s11356-018-2103-2.



  • There are currently no refbacks.

Copyright (c) 2023 Manan A. Maisuria, Priti V. Tandel

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.