Helix-Hopes on Finite Hyperfields

Thomas Vougiouklis, Souzana Vougiouklis


Hyperstructure theory can overcome restrictions which ordinary algebraic structures have. A hyperproduct on non-square ordinary matrices can be defined by using the so called helix-hyperoperations. We study the helix-hyperstructures on the representations using ordinary fields. The related theory can be faced by defining the hyperproduct on the set of non square matrices. The main tools of the Hyperstructure Theory are the fundamental relations which connect the largest class of hyperstructures, the Hv-structures, with the corresponding classical ones. We focus on finite dimensional helix-hyperstructures and on small Hv-fields, as well.



hyperstructures, Hv-structures, h/v-structures, hope.

Full Text:



Chvalina J., Hoskova S. (2007). Modelling of join spaces with proximities by first-order linear partial differential operators. Ital. J. Pure Appl. Math. 21, 177–190.

Corsini P., Leoreanu V. (2003). Applications of Hypergroup Theory, Kluwer Academic Publishers.

Davvaz B., Leoreanu V. (2007). Hyperring Theory and Applications. Int. Academic Press.

Davvaz B., Vougioukli S., Vougiouklis T. (2011) On the multiplicative Hv-rings derived from helix hyperoperations, Util. Math., 84, 53-63.

Kambaki-Vougioukli P., Vougiouklis T. (2008). Bar instead of scale. Ratio Sociologica, 3, 49-56.

Maturo A., Sciarra E., Tofan I. (2008). A formalization of some aspects of the Social Organization by means of fuzzy set theory, Ratio Sociologica, V. 1, N. 1, 5-20.

Santilli R.M., Vougiouklis T. (1996). Isotopies, Genotopies, Hyperstructures and their Appl., Proc. New Frontiers: Hyperstructures Related Algebras, Hadronic, 1-48.

Vougiouklis S. (2009). Hv-vector spaces from helix hyperoperations, Int. J. Math. Anal. (New Series), 1(2), 109-120.

Vougiouklis T. (1988). Groups in hypergroups, Annals Discrete Math. 37, 459-468

Vougiouklis T. (1991). The fundamental relation in hyperrings. The general hyperfield, Proc. 4th AHA, World Scientific, 203-211.

Vougiouklis T. (1994). Hyperstructures and their Representations. Monographs in Math. Hadronic Press.

Vougiouklis T. (1995). Some remarks on hyperstructures, Contemporary Math., Amer. Math. Society, 184, 427-431.

Vougiouklis T. (1999). Enlarging Hv-structures, Algebras and Combinatorics, ICAC’97, Hong Kong, Springer-Verlag, 455-463.

Vougiouklis T. (1999). On Hv-rings and Hv-representations, Discrete Math., Elsevier, 208/209, 615-620.

Vougiouklis T. (2003). The h/v-structures, J. Discrete Math. Sci. Cryptography, V.6, N.2-3, 235-243.

Vougiouklis T. (2008). -operations and Hv-fields. Acta Mathematica Sinica. English Series, V.24, N.7, 1067-1078.

Vougiouklis T. (2013). The Lie-hyperalebras and their fundamental relations, Southeast Asian Bull. Math., V.37(4), 601-614.

Vougiouklis T., Vougiouklis P. (2015). Questionnaires with the ‘bar’ in social sciences. Science & Philosophy, 3(2), 47-58.

Vougiouklis T., Vougiouklis S. (2005). The helix hyperoperations, Italian J. Pure Appl. Math., 18, 197-206.

Vougiouklis T., Vougiouklis S. (2015). Hyper-representations by non square matrices. Helix-hopes, American J. Modern Physics, 4(5), 52-58.

DOI: http://dx.doi.org/10.23755/rm.v31i0.321


  • There are currently no refbacks.

Copyright (c) 2017 Thomas Vougiouklis, Souzana Vougiouklis

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.