Weak and weak*I^K-convergence in normed spaces

Mahendranath Paul, Amar Kumar Banerjee


The main object of this paper is to study the concept of weak $I^K$-convergence, a generalization of weak $I^*$-convergence of sequences in a normed space, introducing the idea of weak* $I^K$-convergence of sequences of functionals where $I,K$ are two ideals on $\mathbb{N}$, the set of all positive integers. Also we have studied the ideas of weak $I^K$ and weak* $I^K$-limit points to investigate the properties in the same space.


weak $I^K$-Convergence, weak* $I^K$-Convergence, Condition AP($I,K$), weak $I^K$-Limit Points, weak* $I^K$-Limit Points.

Full Text:



I. Bala, On weak* statistical convergence of sequences of functionals, International J. Pure Appl. Math., 70(5) (2011), 647-653.

M. Balcerzak, K. Dems, A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, J. Math Anal. Appl. 328(1) (2007), 715-729.

A. K. Banerjee, A. Banerjee, A Note on I-Convergence and I∗-Convergence of Sequence and Nets in Topological Spaces, Mathematicki Vesnik 67(3) (2015), 212-221.

A. K. Banerjee, A. Banerjee, I-convergence classes of sequences and nets in topological spaces, Jordan Journal of Mathematics and Statistics 11(1) (2018), 13-31.

A. K. Banerjee, R. Mondal, A note on convergence of double sequences in topological spaces, Mathematicki Vesnik 69(2) (2017), 144-152.

A. K. Banerjee, M. Paul, A Note on IK and IK∗-Convergence in Topological Spaces, arXive: 1807.11772v1(2018).

A. K. Banerjee, M. Paul, Strong-IK-Convergence in Probabilistic metric Spaces, Iranian Journal of Mathematics Sciences and Informatics 17(2) (2022), 273-288.

V. K. Bhardwaj, I. Bala, On weak statistical convergence, International J. Math. Math. Sc. (2007), Article ID 38530, 9 pages,doi:10.1155/2007/38530.

V. K. Bhardwaj, I. Bala, Weak ideal convergence in lp spaces , International J. of pure and applied Math., 75(2) (2012), 247-256.

J. Connor, M. Ganichev, V. Kadets, A characterization of Banach spaces with separable duals via weak statistical convergence, J. Math. Anal. Appl., 244(1) (2000), 251-261.

P. Das, E. Savas, S. K. Ghosal, On generalizations of certain summability methods using ideals, Appl. Math. Lett. 24 (2011), 1509-1514.

P. Das, D. Chandra, Spaces not distinguishing pointwise and I-quasinormal convergence, Comment. Math. Univ. Carolin. 54(1) (2013) 83–96.

P. Das, P. Kostyrko, P. Malik, W. Wilczy´nski, I and I∗-convergence of double sequences, Math. Slov. 58(5) (2008), 605-620.

P. Das, M. Sleziak, V. Toma, IK-Cauchy functions, Topology and its Applications 173 (2014), 9-27.

H. Fast, Sur la convergence ststistique, Colloq. Math. 2 (1951), 241-244.

J. A. Fridy, On statistical convergence, Analysis 11 (1991) 59-66.

J. A. Fridy, Statistical limit points, Proc. Amer. Math. Soc. 118 (1993), 1187-1192.

P. Kostyrko, M. Ma˘caj, T. ˘Sal´at, Statistical convergence and I-convergence, Unpublished, http://thales.doa.fmph.uniba.sk/macaj/ICON.pdf.

P. Kostyrko, T. ˘Sal´at, W. Wilczy´nski, I-convergence, Real Analysis Exchange 26(2) (2000/2001), 669-686.

B. K. Lahiri, P. Das, I and I∗-convergence in topological spaces, Math. Bohem. 2 (2005), 153-160.

M. Macaj, T. ˘Sal´at, Statistical convergence of subsequences of a given sequence, Math. Bohem. 126 (2001), 191-208.

M. Macaj, M. Sleziak, IK-convergence, Real Analysis Exchange 36(1) (2010/2011), 177-194.

S. K. Pal, On I and IK-Cauchy nets and completeness, Sarajevo Journal of Mathematics 10(23) (2014), 247-255.

S. K. Pal, P. Malik, On a criterion of weak ideal convergence and some further results on weak ideal summability, South Asian Bulletin of Mathematics, 39 (2015), 685-694.

S. Pehlivan, C. Sencimen, Z. H. Yaman, On weak ideal convergence in normed spaces, Journal of Interdisciplinary Mathematics, 13(2) (2010), 153-162.

T. ˘Sal´at, On statistically convergent sequence of real numbers, Mathematica Slovaca 30(2) (1980), 139-150.

H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951) 73-74.

DOI: http://dx.doi.org/10.23755/rm.v47i0.882


  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.