### Changing and Unchanging strong efficient edge domination number of some standard graphs when a vertex is removed or an edge is added

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

D.W. Bange, A. E. Barkauskas, L. H. Host, and P. J. Slater. Generalized domination and efficient domination in graphs. Discrete Math., 159:1 – 11, 1996.

D.W. Bange, A. E. Barkauskas, and P. J. Slater. Efficient dominating sets in graphs. In R. D. Ringeisen and F. S. Roberts, editors, Applications of Discrete Mathematics, pages 189 – 199. SIAM, Philadelphia, PA, 1988.

Dominngos M. Cardoso, J. Orestes Cerdefra Charles Delorme, Pedro C.Silva , Efficient edge domination in regular graphs, Discrete Applied Mathematics 156 , 3060 - 3065(2008)

Teresa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater (Eds), Domination in graphs: Advanced Topics, Marcel Decker, Inc., New York 1998.

Teresa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater, Fundamentals of domination in graphs, Marcel Decker, Inc., New York 1998.

C. L. Lu, M-T. Ko, C. Y. Tang, Perfect edge domination and efficient edge domination in graphs, Discrete Appl.Math. 119227-250(2002)

S. L. Mitchell and S. T. Hedetniemi, edge domination in trees. Congr. Number.19489-509 (1977)

E. Sampath Kumar and L. Pushpalatha, Strong weak domination and domination balance in a graph, Discrete Math., 161:235 - 242, 1996.

C. Yen and R.C. T. Lee., The weighted perfect domination problem and its variants, Discrete Applied Mathematics, 66, p147-160, 1996.

DOI: http://dx.doi.org/10.23755/rm.v45i0.1024

### Refbacks

- There are currently no refbacks.

Copyright (c) 2023 M Annapoopathi, N Meena

This work is licensed under a Creative Commons Attribution 4.0 International License.

Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.