Fixed point theorems in uniformly convex Banach spaces
Abstract
In this article, we establish a concept of fixed point result in Uniformly convex Banach space. Our main finding uses the Ishikawa iteration technique in uniformly convex Banach space to demonstrate strong convergence. Additionally, we use our primary result to demonstrate some corollaries.
Keywords
Full Text:
PDFReferences
V. Berinde. On the convergence of the ishikawa iteration in the class of quasi contractive operators. Acta Math. Univ. Comenianae, LXXIII:1-11, 2004.
L. Bernal-Gonzalez. A schwarz lemma for convex domains in arbitrary banach spaces. Journal of Mathematical Analysis and Applications, 200:511-517, 1996
S. Ishikawa. Fixed points by a new iteration method. Proc. Amer. Math. Soc., 44: 147-150,1974.
H.V. Machado. A chracterization of convex subsets of normed spaces. kodai math-sem.Rep., 25:307-320, 1973.
W. R. Mann. Mean value methods in iteration. Proc. Amer. Math. Soc., 44:506510,1953.
W. A. Takahashi. convexity in metric space and non-expansive mappings. Kodai math.sem rep., 22:142-149, 1970.
DOI: http://dx.doi.org/10.23755/rm.v47i0.835
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Manoj Karuppasamy, R. Jahir Hussain, K. Maheshwaran, D. Dhamodharan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.