Minimum measurement uncertainty in quantum systems subject to high energy fluctuations
Abstract
Full Text:
PDFReferences
A., Einstein, B., Podolsky, and N., Rosen, “Can quantum-mechanical
description of physical reality be considered complete?,” Phys. Rev.,
vol. 47 , p. 777 (1935), http://www.galileoprincipia.org/docs/epr-argument.pdf.
N., Bohr, “Can quantum mechanical description of physical reality be
considered complete?” Phys. Rev. Vol. 48, p. 696 (1935),
www.informationphilosopher.com/solutions/scientists/bohr-/EPRBohr.pdf
E., Nelson, Derivation of the Schrödinger Equation from Newtonian Mechanics.
Phys. Rev.1966, 150, 1079.
J., von Neumann, Mathematische Grundlagen der Quantenmechanik,
Springer, Berlin (1951).
J.,von Neumann, Mathematical Foundations of Quantum Mechanics; Beyer, R.T.,
Translator; Princeton University Press: Princeton, NJ, USA, 1955.
J. S., Bell: “On the Einstein Podolsky Rosen paradox” Physics Vol. 1, 195
(1964), www.santilli-foundation.org/docs/bell.pdf
D. Bohm, "A Suggested Interpretation of the Quantum Theory in Terms of 'Hidden
Variables' I and II." Physical Review, Vol. 85, Issue 2, pp. 166-179 (1952).
R. M. Santilli. "A Quantitative Representation of Particle Entanglements via
Bohm's Hidden Variable According to Hadronic Mechanics." Progress in Physics,
Vol. 1, pp. 150-159 (2002).
R. M., Santilli,: Studies on the classical determinism predicted by A. Einstein, B.
Podolsky and N. Rosen, textit{Ratio Mathematica} {bf 37}, 5-23 (2019),
http://www.eprdebates.org/docs/epr-paper-ii.pdf.
R. M., Santilli, Studies on A. Einstein, B. Podolsky and N. Rosen prediction that
quantum mechanics is not a complete theory, II: Apparent proof of the EPR argument,
textit{Ratio Mathematica} {bf 38}, 71-138 (2020),
http://eprdebates.org/docs/epr-review-ii.pdf.
A., Muktibodh: Santilli's recovering of Einstein's determinism, textit{Progress
in Physics,} in press (2024), . http://www.santilli-foundation.org/docs/muktibodh
pdf.
P., Chiarelli, Quantum-to-Classical Coexistence: Wavefunction Decay Kinetics,
Photon Entanglement, and Q-Bits. Symmetry 2023, 15, 2210.
https://doi.org/10.3390/sym15122210 H
R., Tsekov, Bohmian mechanics versus Madelung quantum hydrodynamics,
arXiv:0904.0723v8 [quantum-phys] (2011).
P., Chiarelli, The Stochastic Nature of Hidden Variables in Quantum Mechanics,
Hadronic J. 46 (2023) 3, 315 .
E.Z., Madelung, Quantentheorie in hydrodynamischer form, Phys. 1926, 40,
–326.
L., Jánossy, Zum hydrodynamischen Modell der Quantenmechanik. Z. Phys.
, 169, 79.
I.B.; Birula, M.; Cieplak, J., Kaminski, Theory of Quanta; Oxford University
Press: New York, NY, USA, 1992; pp. 87–115.
P. , Chiarelli, Can fluctuating quantum states acquire the classical behavior on
large scale? J. Adv. Phys. 2013, 2, 139–163.
Y.B.; Rumer, M.S., Ryvkin, Thermodynamics, Statistical Physics, and Kinetics;
Mir Publishers: Moscow, Russia, 1980; pp. 444–454
D., Bressanini, An Accurate and Compact Wave Function for the 4 He Dimer.
EPL 2011, 96, 23001. https://doi.org/10.1209/0295-5075/96/23001.
E.P., Gross, Structure of a quantized vortex in boson systems. Il Nuovo C.
,20, 454–456. https://doi.org/10.1007/BF02731494.
P.P., Pitaevskii, Vortex lines in an Imperfect Bose Gas. Sov. Phys. JETP 1961,
, 451–454.
P., Chiarelli, The Gravity of the Classical Klein-Gordon Field, Symmetry 2019,
, 322; doi:10.3390/sym11030322 .
P., Chiarelli, Quantum Geometrization of Spacetime in General Relativity, BP
International, 2023, ISBN 978-81-967198-7-6 (Print), ISBN 978-81-967198-3-8
(eBook), DOI: 10.9734/bpi/mono/978-81-967198-7-6 .
DOI: http://dx.doi.org/10.23755/rm.v52i0.1622
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Piero Chiarelli
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.