Problematic aspects of 20-th century antiparticles and their apparent resolution via isodual mathematics

Ruggero Santilli

Abstract


In this paper, we recall Dirac’s negative energy antiparticles, their compatibility with particle-antiparticle annihilation into light, and their lack of compatibility with special relativity as well as causality laws. We then recall the 20th-century positive energy antiparticles, their compatibility with special relativity and causality laws, but their incompatibility with annihilation into light, with ensuing problematic aspects for a true antimatter character of antiprotons, anti-Hydrogen atoms, and related gravity tests. We then review the isodual branch of hadronic mechanics whose isodual theory of antimatter: 1) Represents Dirac’s negative energy antiparticles without causality problems. 2) Admits special and general relativities due to the invariance of quantum axioms under the isoidual map. 3) Implies matter-antimatter antigravity at all levels. 4) Predicts the existence of the negative energy antiphoton. 5) Is compatible with existing experimental evidence on antiparticles. We suggest the conduction of resolutory tests on the gravity of well-established antiparticles, such as the positrons in horizontal flight in a supercooled vacuum tube. We conclude with the indication of intriguing open problems in antimatter, such as the possible expulsion of antiphotons by black holes following internal particle-antiparticle creation and annihilation.

Keywords


quantum mechanics; nonunitary transforms; hadronic mechanics1

Full Text:

PDF

References


Dirac, P. A. M.: The Quantum Theory of the Electron, Proceedings of the Royal Society A 117, 610-624 (1928), https://www.jstor.org/stable/94981?origin=ads

Sodickson, L., Bowman, W., Stephenson, J. and Weinstein, R.: Single-Quantum Annihilation of Positrons, Phys. Rev. 124, 1851-1861 (1970), https://ui.adsabs.harvard.edu/abs/1961PhRv..124.1851S/abstract

Martin, B. R. and Shaw, G.: Hole theory and the positron, Chichester, UK: ProQuest (2008).

Oppenheimer, J.R.: On the Theory of Electrons and Protons, Phys. Rev. 35, 562-573 (1930), https://journals.aps.org/pr/abstract/10.1103/PhysRev.35.562

Boyarkin, O.: Advanced Particle Physics, CRC Press (2018).

Costa, G. and Fogli, G.: Symmetries and Group Theory in Particle Physics: An Introduction to Space-Time and Internal Symmetries, Springer (2012).

Rowlands, P.: The nilpotent Dirac equation and its applications in particle physics, arXiv

/0301071 (2003), https://arxiv.org/abs/quant-ph/0301071

Dvoeglazof, V. V.: Negative-energy and tachyonic solutions in the Weinberg-Tucker-Hammer equation for spin 1, Intern. J. Theor. Phys., in press (2023).

Pitaevskii, L. and Stringari, S.: Bose-Einstein Condensation, Oxford Science Publications (2003).

Santilli, R. M.: Implications for antigravity tests of Dirac’s negative energy antiparticles, Journal of Applied Mathematics and Physics 12, 1661-1667 (2024), in press, http://www.santilli-foundation.org/docs/jamp-santilli-antigravity.pdf

Velardo, E.: Antiprotons or pseudoprotons? Submitted for publication, http://www.santilli-foundation.org/docs/velardo-2024.pdf

Mewaldt, A, R.: Cosmic Rays, website, https://web.archive.org/web/20090830191145/http://www.srl.caltech.edu/-personnel/dick/cos$_$encyc.html

Helmholz, A. C.: The nobel prize in physics for 1959. Nuclear Physics, 15, 387-389 (1960), www.sciencedirect.com/science/article/abs/pii/0029558260903163

Jackson, G.: Commercial production and use of antiprotons, Proceedings of EPAC 2002, Paris, France (2002), https://accelconf.web.cern.ch/e02/PAPERS/FRXGB003.pdf

Georgi, H.: Lie Algebras In Particle Physics: from Isospin To Unified Theories, Taylor and Francis Groups (2000).

Rutherford, H.: Balkerian Lecture: Nuclear Constitution of Atoms, Proc. Roy. Soc. A, 97, 374-387 (1920), royalsocietypublishing.org/doi/10.1098/rspa.1920.0040

Santilli, R. M.: Reduction of Matter in the Universe to Protons and Electrons via the Lie-isotopic Branch of Hadronic Mechanics, Progress in Physics, 19, 73-99 (2023), https://www.santilli-foundation.org/docs/pip-6.pdf

Norman, R., Beghella Bartoli, S., Buckley, B., Dunning-Davies, J., Rak J. and Santilli, R. M.: Experimental Confirmation of the Synthesis of Neutrons and Neutroids from a Hydrogen Gas, American Journal of Modern Physics 6, 85-104 (2017), http://www.santilli-foundation.org/docs/confirmation-neutron-synthesis-2017.pdf

Santilli, R. M.: Apparent Experimental Confirmation of Pseudoprotons and their Application to New Clean Nuclear Energies, Intern. Journal of Appl. Phys. and Math. 9, 72-100 (2019), www.santilli-foundation.org/docs/pseudoproton-verification-2018.pdf

Baker, D. J. and Halvorson, H.: Antimatter, The British Journal for the Philosophy of Science 61, https://www.journals.uchicago.edu/doi/full/10.1093/bjps/axp009$#$

Close, F.: Antimatter, Oxford University press (2018).

Amoretti et al., M.: Production and detection of cold antihydrogen atoms (ATHENA Collab.), Nature 419, 456–459 (2002), https://pubmed.ncbi.nlm.nih.gov/12368849/

Anderson et al., E. K.: Observation of the effect of gravity on the motion of antimatter, Nature 621, 716-722 (2023), www.nature.com/articles/s41586-023-06527-1?utm$_$source=cision$&$utm-medium=referral$&$utm$_$content=unsuns$&$-utm$_$campaign=230928ezalphagravitybs

Santilli, R. M.: Elements of Hadronic Mechanics, Ukraine Academy of Sciences, Kiev, Vol. I (1995), Mathematical Foundations, http://www.santilli-foundation.org/docs/Santilli-300.pdf

Santilli, R. M.: Elements of Hadronic Mechanics, Ukraine Academy of Sciences, Kiev, Vol. II (1995), Theoretical Foundations, www.santilli-foundation.org/docs/Santilli-301.pdf

Santilli, R. M.: Isodual Theory of Antimatter with Application to Antigravity, Grand Unification and the Spacetime Machine, Springer (2001), www.santilli-foundation.org/docs/santilli-79.pdf

Georgiev, S.: Iso-Mathematics, Lambert Academic Publishing, New York (2022).

Muktibodh, A. S.: Isodual Mathematics for Antimatter, Algebras, Groups and Geometries 36, 683-700 (2019-2020), http://www.santilli-foundation.org/docs/Muktibodh-2019.pdf

Santilli, R. M.: Isonumbers and Genonumbers of Dimensions 1, 2, 4, 8, their Isoduals and Pseudoduals, and 'Hidden Numbers,' of Dimension 3, 5, 6, 7, Algebras, Groups and Geometries 10, 273-295 (1993), www.santilli-foundation.org/docs/Santilli-34.pdf

Santilli, R. M.: Nonlocal-Integral Isotopies of Differential Calculus, Mechanics and Geometries, Rendiconti Circolo Matematico Palermo, Suppl. 42, 7-82 (1996), www.santilli-foundation.org/docs/Santilli-37.pdf

Santilli, R. M.: Isotopies of Lie Symmetries, I: Basic theory, Hadronic J. 8, 8-35 (1985), www.santilli-foundation.org/docs/santilli-65.pdf

Santilli, R. M.: Isotopies of Lie Symmetries, II: Isotopies of the rotational symmetry, Hadronic J. 8, 36-52 (1985), www.santilli-foundation.org/docs/santilli-65.pdf

Santilli, R. M.: Nonlinear, Nonlocal and Noncanonical Isotopies of the Poincaré Symmetry, Moscow Phys. Soc. 3, 255-239 (1993), http://www.santilli-foundation.org/docs/Santilli-40.pdf

Santilli, R. M.: Recent theoretical and experimental evidence on the cold fusion of elementary particles, Chinese J. System Eng. and Electr. 6, 177-199 (1995), www.santilli-foundation.org/docs/Santilli-18.pdf

Santilli, R. M.: Isominkowskian Geometry for the Gravitational Treatment of Matter and its Isodual for Antimatter, Intern. J. Modern Phys. D 7, 351-377 (1998), www.santilli-foundation.org/docs/Santilli-35.pdf

Santilli, R. M.: Representation of antiparticles via isodual numbers, spaces and geometries, Comm. Theor. Phys. 3, 153-166 (1994), http://www.santilli-foundation.org/docs/Santilli-112.pdf

Davvaz, B., Santilli, R. M. and Vougiouklis, T.: Studies of Multi-Valued Hyperstructures for the Characterization of Matter-Antimatter Systems and their Extension, Proceed. of the 2011 Intern. Conf. on Lie-admissible Formul. for Irreversible Processes, Kathmandu University, Nepal, 45-57 (2011), http://www.santilli-foundation.org/Hyperstructures.pdf

Santilli, R. M.: A quantitative representation of particle entanglements via Bohm's hidden variables according to hadronic mechanics, Progress in Physics 18, 131-137 (2022), www.santilli-foundation.org/docs/pip-entanglement-2022.pdf

Santilli, R. M.: Need of Isodual Mathematics for the Representation of Antimatter and Dark Matter, Algebras, Groups and Geometries 36, 271-293 (2019-2020), www.santilli-foundation.org/docs/Isodual-2020.pdf




DOI: http://dx.doi.org/10.23755/rm.v52i0.1615

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Ruggero Santilli

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.