Lie-isotopic representation of stable nuclei III: Exact and time invariant representation of nuclear stability
Abstract
Abstract
In the preceding two papers, we presented exact and time invariant represen- tations of stable nuclei via the Lie-isotopic branch of hadronic mechanics and showed the necessity for the results of lifting Heisenberg’s uncertainty principle for point-like particles into the isouncertainty principle of hadronic mechanics, also called Einstein’s isodeterminism, for extended nucleons in condition of mutual penetration. In this paper we present apparently for the first time: the treatment of protons and neutrons as isoparticles charac- terized by the isosymmetries and isorelativities of hadronic mechanics; the representation of all characteristics of the neutron at the nonrelativistic and relativistic levels as a hadronic bound state of an isoelectron and an isopro- ton; the identification of the density of the neutron in a way compatible with other experimental data; and the representation of nuclear stability despite the natural instability of the neutron and despite the extremely repulsive pro- tonic Coulomb forces. The main implications of the above studies are: 1) The prediction of novel means for the recycling of radioactive nuclear waste by nuclear power plants via new stimulated decays. 2) The possible return to the continuous creation of matter in the universe as a consistent way to explain the 0.782 MeV missing in the neutron synthesis. 3) The apparent confirmation of the historical reduction of all matter in the universe to pro- tons and electrons
Keywords
Full Text:
PDFReferences
Einstein, A., Podolsky, B. and Rosen, N.: Can quantum-mechanical descrip- tion of physical reality be considered complete?, Phys. Rev. 47, 777-780 (1935),
http://www.eprdebates.org/docs/epr-argument.pdf
Santilli, R. M.: Elements of nuclear physics according to hadronic mechan- ics, I: Apparent insufficiencies of quantum mechanics in nuclear physics, submitted for publication to Ratio Mathematica.
Santilli, R. M.: Elements of nuclear physics according to hadronic mechan- ics, II: Exact Lie-isotopic representation of the Deuteron data, submitted for publication to Ratio Mathematica.
Santilli, R. M.: Elements of Hadronic Mechanics, Ukraine Academy of Sci- ences, Kiev, Vol. I (1995), Mathematical Foundations, http://www.santilli-foundation.org/docs/Santilli-300.pdf
Exact Lie-isotopic representation of nuclear stability
Santilli, R. M.: Elements of Hadronic Mechanics, Ukraine Academy of Sci- ences, Kiev, Vol. II (1994), Theoretical Foundations, www.santilli-foundation.org/docs/Santilli-301.pdf
Santilli, R. M.: Elements of Hadronic Mechanics, Ukraine Academy of Sciences, Kiev, Vol. III (2016), Experimental verifications, www.santilli-foundation.org/docs/elements-hadronic-mechanics- iii.compressed.pdf
Santilli, R. M.: A quantitative representation of particle entanglements via Bohm’s hidden variables according to hadronic mechanics,” Progress in Physics 18, 131-137 (2022), http://www.santilli-foundation.org/docs/pip-entanglement-20
Bohm, D.: A Suggested Interpretation of the Quantum Theory in Terms of ’Hidden Variables,’ Phys. Rev. 85, 166-182 (1952), journals.aps.org/pr/abstract/10.1103/PhysRev.85.166
Bohm, D.: Quantum Theory, Prentice-Hall, New York (1951).
Santilli, R. M.: Iso-Representation of the Deuteron Spin and Magnetic Mo- ment via Bohm’s Hidden Variables, Progress in Physics, 18, 74-81 (2022), http://www.santilli-foundation.org/docs/PiP-paper-3-22.pdf
Santilli, R. M. and Sobczyk, G.: Representation of nuclear magnetic mo- ments via a Clifford algebra formulation of Bohm’s hidden variables, Scien- tific Reports 12, 1-10 (2022), http://www.santilli-foundation.org/Santilli-Sobczyk.pdf
Bell, J. S.: On the Einstein Podolsky Rosen paradox Physics 1, 195 (1964), https://cds.cern.ch/record/111654/files/vol1p195-200 001.pdf
Santilli, R. M.: Isorepresentation of the Lie-isotopic SU(2) Algebra with Application to Nuclear Physics and Local Realism, Acta Applicandae Math- ematicae 50, 177-190 (1998), http://www.santilli-foundation.org/docs/Santilli-27.pdf
Santilli, R. M.: Studies on the classical determinism predicted by A. Ein- stein, B. Podolsky and N. Rosen, Ratio Mathematica 37, 5-23 (2019), http://www.eprdebates.org/docs/epr-paper-ii.pdf
Santilli, R. M.: Studies on A. Einstein, B. Podolsky and N. Rosen pre- diction that quantum mechanics is not a complete theory, II: Apparent proof of the EPR argument, Ratio Mathematica 38, 71-138 (2020),]] www.eprdebates.org/docs/epr-review-ii.pdf
R. M. Santill
The NIST Reference on Constants Units and Uncertainty: electron rest en- ergy, 20 May 2019, retrieved 2019-05-20, https://physics.nist.gov/cgi-bin/cuu/Value?me
Jompol, Y. et al:. Probing Spin-Charge Separation in a Tomonaga-Luttinger Liquid”. Science, 325, 597–601 (2009), https://www.science.org/doi/10.1126/science.1171769
Fan, X. et ak.: Measurement of the Electron Magnetic Moment, Physical Review Letters 130, 071801 (2023), https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.071801
The NIST Reference on Constants, Units, and Uncertainty: proton mass energy equivalent in MeV, 20 May 2019. Retrieved 2022-09-11, https://www.physics.nist.gov/cgi-bin/cuu/Value?mpc2mev
Pohl, R., Antognini, A. and Kottmann, F.: The size of the proton, Nature 466, 213-216 (2010),
http://www.nature.com/articles/nature09250
The NIST Reference on Constants, Units and Uncertainty: proton magnetic moment to Bohr magneton ratio. May 20, 2019. Retrieved June 12, 2023, https://physics.nist.gov/cgi-bin/cuu/Value?mupsmub
Wietfeldt, F. E.: Measurements of the Neutron Lifetime, Atroms 6, 1-19 (2018),
https://www.mdpi.com/2218-2004/6/4/70
The NIST Reference on Constants, Units, and Uncertainty: neutron mag- netic moment, May 20, 2019, retrieved September 17, 2022, https://physics.nist.gov/cgi-bin/cuu/Value?munn
Santilli, R. M.: Lie-isotopic Lifting of Special Relativity for Extended De- formable Particles, Lettere Nuovo Cimento 37, 545-555 (1983), www.santilli-foundation.org/docs/Santilli-50.pdf
Santilli, R. M.: Nonlinear, Nonlocal and Noncanonical Isotopies of the Poincare’ Symmetry, Moscow Phys. Soc. 3, 255-239 (1993), http://www.santilli-foundation.org/docs/Santilli-40.pdf
Santilli, R. M.: Isotopies of the spinorial covering of the Poincare ́ symmetry, Chinese J. System Eng. and Electr. 6, 177-199 (1995), www.santilli-foundation.org/docs/Santilli-18.pdf
Exact Lie-isotopic representation of nuclear stability
Santilli, R. M.: Need of subjecting to an experimental verification the valid- ity within a hadron of Einstein special relativity and Pauli exclusion princi- ple, Hadronic Journal 1, 574-901 (1978), www.santilli-foundation.org/docs/santilli-73.pdf
Martin, S. P. and Wells, J. D.: Elementary Particles and their Interactions Springer Nature (2022).
Santilli, R. M.: The notion of non-relativistic isoparticle, ICTP release IC/91/265 (1991),
www.santilli-foundation.org/docs/Santilli-145.pdf
Santilli, R. M.: Isotopic Generalizations of Galilei and Einstein Relativities, International Academic Press (1991), Vol. I Mathematical Foundations, http://www.santilli-foundation.org/docs/Santilli-01.pdf
Santilli, R. M.: Isotopic Generalizations of Galilei and Einstein Relativities, International Academic Press (1991), Vol. II: Classical Formulations, www.santilli-foundation.org/docs/Santilli-61.pdf
Aringazin, A. K., Jannussis, A., Lopez. F., Nishioka, M. and Veljanosky, B.: Santilli’s Lie-Isotopic Generalization of Galilei and Einstein Relativities, Kostakaris Publishers, Athens, Greece (1991), http://www.santilli-foundation.org/docs/Santilli-108.pdf
Santilli, R. M.: Overview of historical and recent verifications of the Einstein-Podolsky-Rosen argument and their applications to physics, chem- istry and biology, APAV - Accademia Piceno Aprutina dei Velati, Pescara, Italy (2021), www.santilli-foundation.org/epr-overview-2021.pdf
Kadeisvili, J. V.: Santilli’s Isotopies of Contemporary Algebras, Geometries and Relativities, Second edition, Ukraine Academy of Sciences, Kiev (1997), http://www.santilli-foundation.org/docs/Santilli-60.pdf
Gandzha, I. and Kadeisvili, J. V.: New Sciences for a New Era: Mathemati- cal, Physical and Chemical Discoveries of Ruggero Maria Santilli, Sankata Printing Press, Nepal (2011),
http://www.santilli-foundation.org/docs/
Santilli,R.M.:Isotopicquantizationofgravityanditsuniversalisopoincare’ symmetry, in the Proceedings of The Seventh Marcel Grossmann Meeting on Gravitation, SLAC, 1992, Jantzen, R. T., Keiser, G. M. and Ruffini, R., Editors, World Scientific Publishers, 500-505 (1994), www.santilli-foundation.org/docs/Santilli-120.pdf
R. M. Santill
Santilli, R. M.: Unification of gravitation and electroweak interactions, in the Proceedings of the Eight Marcel Grossmann Meeting on Gravitation, Israel, 1997, T. Piran, T. and Ruffini, R. Editors, World Scientific, p. 473-475 (1999),
www.santilli-foundation.org/docs/Santilli-137.pdf
Schwartzchild, K.: Uber das Gravitationsfeld eines Massenpunktesnack der Einsteinshen Theorie, Sitzber. Deut. Akad. Wiss. Berlin, Kl. Math.-Phys. Tech., 189-196 (1916).
Santilli, R. M.: Isominkowskian Geometry for the Gravitational Treatment of Matter and its Isodual for Antimatter, Intern. J. Modern Phys. D 7, 351- 377 (1998),
www.santilli-foundation.org/docs/Santilli-35.pdf
Santilli, R. M.: Partons and Gravitation: some Puzzling Questions, (MIT) Annals of Physics, 83, 108-132 (1974), http://www.santilli-foundation.org/docs/Santilli-14.pdf
Santilli, R. M.: Rudiments of IsoGravitation for Matter and its IsoDual for AntiMatter, American Journal of Modern Physics 4, 59-62 (2015), www.santilli-foundation.org/docs/10.11648.j.ajmp.s.2015040501.18.pdf
Schwartzchild, K.: Uber das Gravitationsfeld einer Kugel aus inkompress- ibler Flussigkeit nach Einsteinshen Theorie, Sitzber. Deut. Akad. Wiss. Berlin, Kl. Math.-Phys. Tech., 424-434 (1915).
Poincare ́,H.:Surladynamiquedel’e ́lectron,RendicontidelCircoloMatem- atico di Palermo, 21, 129-176 (1906), https://babel.hathitrust.org/cgi/pt?id=uiug.30112063899089&seq=7
Santilli, R. M. Partons and Gravitation: some Puzzling Questions, (MIT) Annals of Physics, 83, 108-132 (1974), http://www.santilli-foundation.org/docs/Santilli-14.pdf
Santilli, R. M. Rudiments of IsoGravitation for Matter and its IsoDual for AntiMatter, American Journal of Modern Physics 4, 59-62 (2015), www.santilli-foundation.org/docs/10.11648.j.ajmp.s.2015040501.18.pdf
Rutherford, E.: The Existence of a Neutron, Bakerian Lecture: Nuclear Con- stitution of Atoms. Proc. Roy. Soc. A 97, 374-382 (1920), royalsocietypublishing.org/doi/10.1098/rspa.1920.0040
Exact Lie-isotopic representation of nuclear stability
Chadwick, J.: Proc. Roy. Soc. A, 136, 692-723 (1932),
https://royalsocietypublishing.org/doi/10.1098/rspa.1932.0112
Rapports du Septie`me Conseil de Physique Solvay, Gauthier-Villars, Paris, 324 (1933),
https://www.worldcat.org/title/23422639?oclcNum=23422639
Fermi, E.: Nuclear Physics, University of Chicago Press (1949).
Norman, R. and Dunning-Davies, J.: Hadronic paradigm assessed: neutroid and neutron synthesis from an arc of current in hydrogen gas, Hadronic Jour- nal 40, 119-132 (2017), http://santilli-foundation.org/docs/norman-dunning-davies-hj.pdf
Borghi, C., Giori, C. and Dall’Olio, A.: Communications of CENUFPE, Number 8 (1969) and 25 (1971), reprinted in the (Russian) Phys. Atomic Nuclei 56, 205-221 (1993).
Santilli, R. M.: Apparent consistency of Rutherford’s hypothesis on the neu- tron as a compressed hydrogen atom, Hadronic J. 13, 513-533 (1990), http://www.santilli-foundation.org/docs/Santilli-21.pdf
Santilli, R. M.: Apparent consistency of Rutherford’s hypothesis on the neu- tron structure via the hadronic generalization of quantum mechanics, non- relativistic treatment. ICTP communication IC/91/47, (1992), http://www.santilli-foundation.org/docs/Santilli-150.pdf
Santilli, R. M.: The synthesis of the neutron according to hadronic mechan- ics and chemistry. Journal Applied Sciences 5, 32-47 (2006).
Santilli, R. M.: Recent theoretical and experimental evidence on the syn- thesis of the neutron, Communication of the Joint Institute for Nuclear Re- search, Dubna, Russia, No. E4-93-252 (1993).
Santilli, R. M.: Recent theoretical and experimental evidence on the synthe- sis of the neutron. Chinese J. System Eng. and Electr. 6, 177-195 (1995), http://www.santilli-foundation.org/docs/Santilli-18.pdf
Santilli, R. M.: The Physics of New Clean Energies and Fuels According to Hadronic Mechanics, Special issue of the Journal of New Energy (1998), http://www.santilli-foundation.org/docs/Santilli-114.pdf
Santilli,R.M.:ReductionofMatterintheUniversetoProtonsandElectrons via the Lie-isotopic Branch of Hadronic Mechanics, Progress in Physics,
Vol. 19, 73-99 (2023), https://www.santilli-foundation.org/docs/pip-6.pdf
Santilli, R. M.: Apparent confirmation of Don Borghi’s experiment on the laboratory synthesis of neutrons from protons and electrons, Hadronic J. 30, 29-41 (2007),
http://www.i-b-r.org/NeutronSynthesis.pdf
Santilli, R. M.: Confirmation of Don Borghi’s experiment on the synthesis of neutrons. arXiv physics/0608229v1 Aug.15, 2007, http://arxiv.org/pdf/physics/0608229v1.pdf
Burande, C. S.: On the experimental verification of Rutherford-Santilli neu- tron model, AIP Conf. Proc. 158, 693-721 (2013), http://www.santilli-foundation.org/docs/Burande-2.pdf
Santilli,R.M.andNas,A.ConfirmationoftheLaboratorySynthesisofNeu- trons from a Hydrogen Gas. Journal of Computational Methods in Sciences and Eng. 14, 405–414 (2014), www.hadronictechnologies.com/docs/neutron-synthesis-2014.pdf
Santilli, R. M.: Apparent Nuclear Transmutations without Neutron Emis- sion Triggered by Pseudoprotons. American Journal of Modern Physics, 4, 15-18 (2015), https://www.sciencepublishinggroup.com/journal/paperinfo.aspx?journalid- =122&doi=10.11648/j.ajmp.20150401.13
de Haan, V.: Possibilities for the Detection of Santilli Neutroids and Pseudo- protons. American Journal of Modern Physics 5, 131-136 (2015), sciencepublishinggroup.com/journal/paperinfo?journalid=122
Norman, R., Beghella Bartoli, S., Buckley, B., Dunning-Davies, J. Rak, J. and Santilli, R. M.: Experimental Confirmation of the Synthesis of Neutrons and Neutroids from a Hydrogen Gas. American Journal of Modern Physics 6, 85-104 (2017), http://www.santilli-foundation.org/docs/confirmation-neutron-synthesis- 2017.pdf
Driscoll, R. B.: Bohrs Atom Completed: the Rutherford-Santilli Neutron, APS Conf. Proc. APR03, April 5-8, (2003), http://ui.adsabs.harvard.edu/abs/2003APS.APR.D1009D/abstract
R. M. Santill
Exact Lie-isotopic representation of nuclear stability
Chandrakant, S. and Burande, C. S.: On the Rutherford-Santilli Neutron Model. AIP Conf. Proc. 1648, 51000-1 - 51000-6 (2015),
http:// www.santilli-foundation.org/docs/1.4912711(CS-Burande(1)).pdf
Kadeisvili, J. V.: The Rutherford-Santilli Neutron. Hadronic J. 31, 1-125 (2008),
http://www.i-b-r.org/Rutherford-Santilli-II.pdf
Burande, C. S.: Santilli Synthesis of the Neutron According to Hadronic Mechanics. American Journal of Modern Physics 5, 17-36 (2016), www.santilli-foundation.org/docs/pdf3.pdf
Burande, C. S.: Santilli Synthesis of the Neutron According to Hadronic Mechanics, American Journal of Modern Physics 12, 37-45 (2016), https://www.sciencepublishinggroup.com/journal/paperinfo?journalid=122&doi- =10.11648/j.ajmp.2016050201.13
Beghella-Bartoli, S.: Significance for the EPR Argument of the Neutron Synthesis from Hydrogen and of a New Controlled Nuclear Fusion without Coulomb Barrier. Proceedings of the 2020 Teleconference on the EPR argu- ment, Curran Associates Conference Proceedings, New York, USA, 459-466 (2021).
Santilli, R. M.: Foundation of Theoretical Mechanics, Springer-Verlag, Hei- delberg, Germany, Vol. I (1978) The Inverse Problem in Newtonian Mechan- ics, www.santilli-foundation.org/docs/Santilli-209.pdf
Santilli, R. M.: Foundation of Theoretical Mechanics, Springer-Verlag, Hei- delberg, Germany, Vol. II (1983) Birkhoffian Generalization of Hamiltonian Mechanics, www.santilli-foundation.org/docs/santilli-69.pdf
Santilli, R. M.: Isotopies of Lie Symmetries, I: Basic theory, Hadronic Jour- nal 8, 8-35 (1985),
www.santilli-foundation.org/docs/santilli-65.pdf
Santilli, R. M.: Isotopies of Lie Symmetries, II: Isotopies of the rotational symmetry, Hadronic Journal 8, 36-52 (1985), www.santilli-foundation.org/docs/santilli-65.pdf
Vonsovsk, S.: Magnetism of Elementary Particles, Mir Publishers (1975).
Santilli, R. M.: Nonlocal formulation of the Bose-Einstein correlation within the context of hadronic mechanics, Hadronic J. 5, 1-50 and 15, 81-133 (1992),
www.santilli-foundation.org/docs/Santilli-116.pdf
R. M. Santill
Cardone, F. and Mignani, R.: Nonlocal approach to the Bose-Einstein corre- lation, JETP 83, 435 (1996), www.santilli-foundation.org/docs/Santilli-130.pdf
Santilli, R. M.: Studies on A. Einstein, B. Podolsky and N. Rosen prediction that quantum mechanics is not a complete theory, III: Illustrative examples and applications, Ratio Mathematica 38, 139-222 (2020), eprdebates.org/docs/epr-review-iii.pdf
Hylleraas, E. A. and Ore, A.: Binding Energy of the Positronium Molecule, Phys. Rev. 71, 493-521 (1947), https://journals.aps.org/pr/abstract/10.1103/PhysRev.71.493
Santilli,R. M.: Compatibility of Arbitrary Speeds with Special Relativity Axioms for Interior Dynamical Problems, American Journal of Modern Physics, 5, 143 (2016), http://www.santilli-foundation.org/docs/ArbitrarySpeeds.pdf
Rau, S. et al.: Penning trap measurements of the deuteron and the HD+ molecular ion, Nature 585, 43-47 (2020), doi.org/10.1038/s41586-020-2628-7
Santilli, R. M.: Foundations of Hadronic Chemistry, with Applications to New Clean Energies and Fuels, Kluwer Academic Publishers (2001), http://www.santilli-foundation.org/docs/Santilli-113.pdf
Russian translation by Aringazin, A. K. http://i-b-r.org/docs/Santilli-Hadronic-Chemistry.pdf
Santilli, R. M. and Shillady, D. D.: A new isochemical model of the hydro- gen molecule, Intern. J. Hydrogen Energy 24, 943-951 (1999), http://www.santilli- foundation.org/docs/Santilli-135.pdf
Santilli, R. M. and Shillady, D. D.: A new isochemical model of the water molecule, Intern. J. Hydrogen Energy 25, 173-196 (2000), http://www.santilli-foundation.org/docs/Santilli-39.pdf
ScienceDirect, Helium nucleus, website, https://www.sciencedirect.com/topics/mathematics/helium-nucleus
KAERI Table of Nuclide, website, http://pripyat.mit.edu/KAERI/
Yukawa, H.: On the interaction of elementary particles, Proc. Phys. Math. Soc. Japan 17, 48-57 (1935).
Exact Lie-isotopic representation of nuclear stability
Woods, R. D. and Saxon, D. S.: Diffuse Surface Optical Model for Nucleon- Nuclei Scattering, Phys. Rev. 95, 577-578 (1954).
Reid, R. V.: Local phenomenological nucleon-nucleon potentials, Annals of Physics 50, 411-448 (1968).
Santilli, R. M.: Why space is rigid, Il Pungolo Verde, Campobasso, Italy (1956), in Italian, English translation http://www.santilli-foundation.org/docs/rms-56-english.pdf
Santilli, R. M.: Foundations for a unified theory on the structure of the elec- tron (in Italian), Undergraduate Thesis, Institute of Nuclear Physics, Uni- versity of Naples, Italy (1959) https://santilli-foundation.org/docs/santilli- 545.pdf
Santilli, R. M.: A structure model of the elementary charge, Hadronic J.4, 770-784 (1981),
http://www.santilli-foundation.org/docs/Santilli-03.pdf
Tsagas, N. F., Mystakidis, A., Bakos, G., Sfetelis L., Koukoulis, D. and Trassanidis, S.: Experimental verification of Santilli’s clean subnuclear hadronic energy, Hadronic Journal 19, 87-90 (1996), http://www.santilli-foundation.org/docs/N-Tsagas-1996.pdf
Oberauer, L., Ianni, A. and Serenelli, A.: Solar Neutrino Physics, Wiley (2020).
Santilli, R. M.: The etherino and/or the neutrino Hypothesis? Found. Phys. 37, 670-695 (2007),
http://www.santilli-foundation.org/docs/EtherinoFoundPhys.pdf
American Chemical Society, Energy from the Sun. website, http://www.acs.org/content/acs/en/climatescience/ener- gybalance/energyfromsun.html
Nassikas, A.: Santilli’s etherino under the claim for minimum contradiction, Hadronic Journal 31, 201-225 (2008).
Rigamonti, A. and Carretta, P.: Structure of Matter, Springer Nature (2015).
Kikawa, T.: Measurement of Neutrino Interactions and Three Flavor Neu- trino Oscillations in the T2K Experiment, Springer Nature (2016).
R. M. Santill
Santilli, R. M.: Apparent Experimental Confirmation of Pseudoprotons and their Application to New Clean Nuclear Energies. International Journal of Applied Physics and Mathematics 9, 72-100 (2019), www.santilli-foundation.org/docs/pseudoproton-verification-2018.pdf
NEI, What Happens to Nuclear Waste in the U.S.?, website, https://www.nei.org/news/2019/what-happens-nuclear-waste-us
Santilli, R. M.: An intriguing legacy of Einstein, Fermi, Jordan and others: The possible invalidation of quark conjectures, Found. Phys. 11, 384-396 (1981),
www.santilli-foundation.org/docs/Santilli-36.pdf
Popper, K.: Quantum Theory and the Schism in Physics, Cambridge Uni- versity Press (1982).
Santilli, R. M.: Hadronic energy, Hadronic J. 17, 311-225 (1994), http://www.santilli-foundation.org/docs/hadronic-energy.pdf
Santilli, R. M.: Conceivable new recycling of nuclear waste by nuclear power companies in their plants, arxiv, 9704014 (1997), https://arxiv.org/pdf/physics/9704014.pdf
Santilli, R. M.: Apparent Nuclear Transmutations without Neutron Emis- sion Triggered by Pseudoprotons. American Journal of Modern Physics 4, 15-18 (2015), https://www.sciencepublishinggroup.com/journal/paperinfo.aspx?journalid- =122&doi=10.11648/j.ajmp.20150401.13
de Haan, B.-O.: Possibilities for the detection of Santilli’s neutroids and pseudo-protons, American Journal of Modern Physics 5, 131-136 (2016), https://www.sciencepublishinggroup.com/journal/paperinfo?journalid=122&doi- =10.11648/j.ajmp.2016050201.17
Dunning-Davies, J.: A Present Day Perspective on Einstein-Podolsky- Rosen and its Consequences, Journal of Modern Physics 12, 887-936 (2021), www.scirp.org/journal/paperinformation.aspx?paperid=109219
Santilli, R. M.: Antigravity, Hadronic Journal 17, 257-284 (1994), http://www.santilli-foundation.org/docs/antigravity.pdf
Mills, A. P.: Possibilities of measuring the gravitational mass of electrons and positrons in free horizontal flight, in the Proceedings of the International Conference on Antimatter, Sepino, Italy, Hadronic J. 19, 77-96 (1996), http://www.santilli-foundation.org/docs/Santilli-11.pdf
Exact Lie-isotopic representation of nuclear stability
de Haan, V.: Proposal for the realization of Santilli comparative test on the gravity of electrons and positrons via a horizontal supercooled vac- uum tube, in the Proceedings of the Third International Conference on the Lie-Admissible Treatment of Irreversible Processes, Cord, C., Editor, Kath- mandu University, 57-67 (2011), http://www.santilli-foundation.org/docs/deHaan-Arxiv.pdf
Santilli, R. M.: Isodual Theory of Antimatter with Application to Antigrav- ity, Grand Unification and the Spacetime Machine, Springer Nature (2001), http://www.santilli-foundation.org/docs/santilli-79.pdf
Santilli, R. M.: Embedding of Lie-algebras into Lie-admissible algebras. Nuovo Cimento 51, 570-585 (1967), http://www.santilli-foundation.org/docs/Santilli-54.pdf
Santilli, R. M.: Lie-admissible invariant representation of irreversibility for matter and antimatter at the classical and operator levels. Nuovo Cimento, B 121, 443-485 (2006), http://www.santilli-foundation.org/docs//Lie-admiss-NCB-I.pdf
Santilli, R. M.: Apparent Resolution of the Coulomb Barrier for Nuclear Fusions Via the Irreversible Lie-admissible Branch of Hadronic Mechanics, Progress in Physics, 18, 138-163 (2022), http://www.santilli-foundation.org/hyperfusion-2022.pdf
DOI: http://dx.doi.org/10.23755/rm.v52i0.1609
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Ruggero Santilli
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.