Lie-isotopic representation of stable nuclei II: Exact and time invariant representation of the Deuteron data
Abstract
In the preceding paper, we have presented apparent insufficiencies of quan- tum mechanics in nuclear physics To attempt a resolution of the indicated insufficiencies, in this paper we present a systematic and upgraded out- line of the axiom-preserving, time reversal invariant, Lie-isotopic branch of hadronic mechanics for the characterization of stable nuclei via the rep- resentation of the dimension, shape and density of protons and neutrons in the experimentally measured conditions of partial mutual penetration in a nuclear structure, with ensuing potential-Hamiltonian and contact non- Hamiltonian terms in nuclear force. We show that the Lie-isotopic methods allow a numerically exact and time invariant representations of all Deuteron data in the ground state without orbital contributions. We finally show that said representations are primarily due to the violation by Lie-isotopic meth- ods of Bell’s inequalities with explicit and concrete realizations of Bohm’s hidden variables, as well as to the completion of Heisenberg’s uncertainty principle for point-like particles in vacuum under electromagnetic interac- tions into the isouncertainty principle of hadronic mechanics for extended nucleons in condiitons of partial mutual penetration allowing a progressive recovering of Einstein’s determinism under strong interactions up to its full recovery at the limit of Schwartzschild’s horizon.
Keywords
Full Text:
PDFReferences
Einstein, A., Podolsky, B. and Rosen, N.: Can quantum-mechanical descrip- tion of physical reality be considered complete?, Phys. Rev. 47, 777-780 (1935),
http://www.eprdebates.org/docs/epr-argument.pdf
Beghella-Bartoli, S. and Santilli, R. M., Editors: Proceedings of the 2020 Teleconference on the Einstein-Podolsky-Rosen argument that ’Quantum mechanics is not a compete theory,’ Curran Associates, New York, NY (2021),
Printed version: http://www.proceedings.com/59404.html
Santilli, R. M.: Overview of historical and recent verifications of the
Exact Lie-isotopic representation of the Deuteron data
Einstein- Podolsky-Rosen argument and their applications to physics, chem- istry and biology, APAV - Accademia Piceno Aprutina dei Velati, Pescara, Italy (2021),
http://www.santilli-foundation.org/epr-overview-2021.pdf
Dunning-Davies, J.: A Present Day Perspective on Einstein-Podolsky-Rosen and its Consequences, Journal of Modern Physics 12, 887-936 (2021), www.scirp.org/journal/paperinformation.aspx?paperid=109219
Santilli, R.M.: Elements of nuclear physics according to hadronic mechan- ics, I: Apparent insufficiencies of quantum mechanics in nuclear physic, sub- mitted to Ratio Mathematica
IAEA, Nuclear data services, website, https://www.iaea.org/about/organizational-structure/department-of- nuclear-sciences-and-applications/division-of-physical-and-chemical- sciences/nuclear-data-section
Vonsovsk, S.: Magnetism of Elementary Particles, Mir Publishers (1975).
Rau, S. et al.: Penning trap measurements of the deuteron and the HD+ molecular ion, Nature 585, 43-47 (2020), //doi.org/10.1038/s41586-020-2628-7
ScienceDirect, Helium nucleus, website, https://www.sciencedirect.com/topics/mathematics/helium-nucleus
The NIST Reference on Constants, Units, and Uncertainty: proton mass energy equivalent in MeV, 20 May 2019. Retrieved 2022-09-11, https://www.physics.nist.gov/cgi-bin/cuu/Value?mpc2mev
Pohl, R., Antognini, A. and Kottmann, F.: The size of the proton, Nature 466, 213-216 (2010),
http://www.nature.com/articles/nature09250
Wietfeldt, F. E.: Measurements of the Neutron Lifetime, Atroms 6, 1-19 (2018),
https://www.mdpi.com/2218-2004/6/4/70
Heisenberg, W.: Nachr. Akad. Wiss. Gottingen IIa, 111- 133 (1953), https://link.springer.com/chapter/10.1007/978-3-642-70079-8 23
Stanford Encyclopedia of Philosophy, Bohmian (de Broglie-Bohm) Mechan- ics, (2021),
https://plato.stanford.edu/entries/qm-bohm/
R. M. Santilli
Santilli, R. M.: Foundation of Theoretical Mechanics, Springer-Verlag, Hei- delberg, Germany, Vol. I (1978) The Inverse Problem in Newtonian Mechan- ics,
http://www.santilli-foundation.org/docs/Santilli-209.pdf
Santilli, R. M.: Foundation of Theoretical Mechanics, Springer-Verlag, Hei- delberg, Germany, Vol. II (1983) Birkhoffian Generalization of Hamiltonian Mechanics,
http://www.santilli-foundation.org/docs/santilli-69.pdf
Santilli, R. M.: Initiation of the representation theory of Lie-admissible al- gebras of operators on bimodular Hilbert spaces, Hadronic J. 3, 440 (1979), http://www.santilli-foundation.org/docs/santilli-1978-paper.pdf
Anderson, R.: Outline of Hadronic Mathematics, Mechanics and Chemistry as Conceived by R. M. Santilli, American Journal of Modern Physics 6, 1-16 (2016),
http://www.santilli-foundation.org/docs/HMMC-2017.pdf
Anderson, A: Collected OA Papers on Hadronic Mathematics, Mechanics and Chemistry,
https://www.santilli-foundation.org/docs/HMMC.pdf
Anderson, R.: List of early OA international workshops and conferences in hadronic mechanics,
https://www.santilli-foundation.org/docs/workshops-conf-hm.pdf
Aringazin, A. K., Jannussis, A., Lopez, F., Nishioka, M. and Veljanosky, B.: Santilli’s Lie-Isotopic Generalization of Galilei and Einstein Relativities, Kostakaris Publishers, Athens, Greece (1991), http://www.santilli-foundation.org/docs/Santilli-108.pdf
Sourlas, D. S. and Tsagas, Gr. T.: Mathematical Foundation of the Lie- Santilli Theory, Ukraine Academy of Sciences (1993), http://www.santilli-foundation.org/docs/santilli-70.pdf
Lohmus, J., Paal, E. and Sorgsepp, L.: Nonassociative Algebras in Physics, Hadronic Press, Palm Harbor, (1994),
http://www.santilli- foundation.org/docs/Lohmus.pdf
Kadeisvili, J. V.: Santilli’s Isotopies of Contemporary Algebras, Geometries and Relativities, Ukraine Academy of Sciences, Second edition (1997), http://www.santilli-foundation.org/docs/Santilli-60.pdf
Exact Lie-isotopic representation of the Deuteron data
Jiang, C.-X.: Foundations of Santilli Isonumber Theory, International Aca- demic Press (2001),
http://www.i-b-r.org/docs/jiang.pdf
Ganfornina, R. M. F. and Valdes, J. N.: Fundamentos de la Isotopia de San- tilli, International Academic Press (2001), http://www.i-b-r.org/docs/spanish.pdf
English translation: Algebras, Groups and Geometries 32, 135-308 (2015), http://www.i-b-r.org/docs/Aversa-translation.pdf
Davvaz, B. and Vougiouklis, Th.: A Walk Through Weak Hyperstructures and Hv-Structures, World Scientific (2018)
Gandzha, I. and Kadeisvili, J. V.: New Sciences for a New Era: Mathemati- cal, Physical and Chemical Discoveries by Ruggero Maria Santilli, Sankata Printing Press, Nepal (2011), http://www.santilli-foundation.org/docs/RMS.pdf
Georgiev, S.: Foundations of IsoDifferential Calculus, Nova Publishers, New York,
Vol. 1: Iso-Differential and Iso-Integral Calculus for Iso-Functions in One Variable (2014),
Vol. 2: Iso-Differential and Iso-Integral Calculus for Iso-Functions in Sev- eral Variables (2014),
Vol. 3: Iso-Ordinary Iso-Differential Equations (2014),
Vol. 4: Iso-Difference Equations (2015),
Vol. 5: Iso-Stochastic Iso-Differential Equations (2015),
Vol. 6: Theory of Iso-Measurable Iso-Functions (2016),
New Edition of Vol. 1: Iso-Differential and Iso-Integral Calculus for Iso- Functions in One Variable (2022). Iso-Mathematics, Lambert Academic Publishing (2022).
Santilli, R. M.: Elements of Hadronic Mechanics, Ukraine Academy of Sci- ences, Kiev, Vol. I (1995), Mathematical Foundations,. www.santilli-foundation.org/docs/Santilli-300.pdf
Santilli, R. M.: Elements of Hadronic Mechanics, Ukraine Academy of Sciences, Kiev, Vol. II (1995), Theoretical Foundations, www.santilli- foundation.org/docs/Santilli-301.pdf
Santilli, R. M.: Elements of Hadronic Mechanics, Ukraine Academy of Sciences, Kiev, Vol. III (2016), Experimental verifications, www.santilli- foundation.org/docs/elements-hadronic-mechanics-iii.compressed.pdf
R. M. Santilli
Bengtsson, I. and Z ̇yczkowski K.: An Introduction to Quantum Entangle- ment, Cambridge University Press, second, revised edition (2006), https://chaos.if.uj.edu.pl/ karol/geometry.htm
Santilli, R. M.: A quantitative representation of particle entanglements via Bohm’s hidden variables according to hadronic mechanics,” Progress in Physics 18, 131-137 (2022) http://www.santilli-foundation.org/docs/pip-entanglement-2022.pdf
Santilli R. M.: Representation of the anomalous magnetic moment of the muons via the novel Einstein-Podolsky-Rosen entanglement. In: Guzman J. C., ed. Scientific Legacy of Professor Zbigniew Oziewicz: Selected Pa- pers from the International Conference ”Applied Category Theory Graph- Operad-Logic”. Word Scientific, in press, //www.santilli-foundation.org/ws-rv961x669.pdf
R. Berkowitz, R.: Macroscopic systems can be controllably entangled and limitlessly measured, Physics Today July issue, p. 16-18 (2021), http://www.santilli-foundation.org/docs/particle-entanglement.pdf
Muktibodh, A.: Santilli’s recovering of Einstein’s determinism, submitted for publication (2024).
Bell, J. S.: On the Einstein Podolsky Rosen paradox Physics 1, 195 (1964), https://cds.cern.ch/record/111654/files/vol1p195-200 001.pdf
Santilli, R. M.: Isorepresentation of the Lie-isotopic SU(2) Algebra with Application to Nuclear Physics and Local Realism, Acta Applicandae Math- ematicae 50, 177-190 (1998), http://www.santilli-foundation.org/docs/Santilli-27.pdf
Fadel, M. et al.: Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates. Science 360, 409–415 (2018), www.santilli-foundation.org/Basel-paper.pdf
Colciaghi, P. et al.: Einstein-Podolsky-Rosen Experiment with Two Bose- Einstein Condensates, Phys. Rev. X 13, 021031-1/021031-10 (2023), https://journals.aps.org/prx/pdf/10.1103/PhysRevX.13.021031
Aspect, A. et al.: Experimental Realization of Einstein-Podolsky-Rosen- Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities, Phys. Rev. Lett. 49, 91-94 (1982), https://ui.adsabs.harvard.edu/abs/1982PhRvL..49...91A
Exact Lie-isotopic representation of the Deuteron data
Santilli, R. M.: Need of subjecting to an experimental verification the validity within a hadron of Einstein special relativity and Pauli ex- clusion principle, Hadronic Journal 1, 574-901 (1978), www.santilli- foundation.org/docs/santilli-73.pdf
Santilli, R. M.: Generalization of Heisenberg’s uncertainty principle for strong interactions, Hadronic Journal 4, 642 (1981), http://www.santilli-foundation.org/docs/generalized-uncertainties-1981.pdf
Santilli,R.M.:IsotopicliftingofHeisenberg’suncertaintiesforgravitational singularities, Communications in Theoretical Physics 3, 47-66 (1994), https://santilli-foundation.org/docs/santilli-511.pdf
Santilli, R. M.: Studies on the classical determinism predicted by A. Ein- stein, B. Podolsky and N. Rosen, Ratio Mathematica 37, 5-23 (2019), http://www.eprdebates.org/docs/epr-paper-ii.pdf
Reiter, E. S.: The trouble with quantum mechanics is the quantum, (2023) http://www.thresholdmodel.com
Bohm, D.: A Suggested Interpretation of the Quantum Theory in Terms of ’Hidden Variables,’ Phys. Rev. 85, 166-182 (1952), journals.aps.org/pr/abstract/10.1103/PhysRev.85.166
Bohm, D.: Quantum Theory, Prentice-Hall, New York (1951).
Santilli, R. M.: Nonlocal-Integral Isotopies of Differential Calculus, Me- chanics and Geometries, Rendiconti Circolo Matematico Palermo, Suppl. 42, 7-82 (1996),
http://www.santilli-foundation.org/docs/Santilli-37.pdf
Santilli, R. M.: Iso-Representation of the Deuteron Spin and Magnetic Mo- ment via Bohm’s Hidden Variables, Progress in Physics, 18, 74-81 (2022), https://www.santilli-foundation.org/docs/pip-3.pdf
Santilli R. M. and Sobczyk G.: Representation of nuclear magnetic moments via a Clifford algebra formulation of Bohm’s hidden variables, Scientific Re- ports 12, 1-10 (2022), http://www.santilli-foundation.org/Santilli-Sobczyk.pdf
Fermi, E. Nuclear Physics, University of Chicago Press (1949).
Blatt, J. M. and Weisskopf, V. F.: Theoretical Nuclear Physics, Wiley and Sons (1952).
R. M. Santilli
Obertelli,A.andSagawa,H.:ModernNuclearPhysics:FromFundamentals
to Frontiers, Springer (2021).
Rutherford, E.: Bakerian Lecture: Nuclear Constitution of Atoms, Proc. Roy. Soc. A97, 374-382 (1920), royalsocietypublishing.org/doi/10.1098/rspa.1920.0040
Hall, B. C.: Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Springer (2015).
Aringazin, A. K.: Studies on the Lie-Santilli IsoTheory with Unit of general Form, Algebras, Groups and Geometries 28, 299-325 (2011), http://www.santilli-foundation.org/docs/Aringazin-2012.pdf
Kadeisvili, J. V.: An introduction to the Lie-Santilli isotopic theory, Mathe- matical Methods in Applied Sciences 19, 134-172 (1996), http://www.santilli-foundation.org/docs/Santilli-30.pdf
Muktibodh, A. S. and Santilli, R. M.: Studies of the Regular and Irregular Isorepresentations of the Lie-Santilli Isotheory, Journal of Generalized Lie Theories 11, 1-7 (2007), http://www.santilli-foundation.org/docs/isorep-Lie-Santilli-2017.pdf
Santilli, R. M.: Isonumbers and Genonumbers of Dimensions 1, 2, 4, 8, their Isoduals and Pseudoduals, and ’Hidden Numbers,’ of Dimension 3, 5, 6, 7, Algebras, Groups and Geometries 10, 273-295 (1993), http://www.santilli-foundation.org/docs/Santilli-34.pdf
Corda, C.: Introduction to Santilli’s IsoNumbers, AIP Conf. Proceed. 1479, 1013-1020 (2012),
http://www.santilli-foundation.org/docs/Corda-2012.pdf
Wade, M. I. and Gill, T. L.: Isonumbers and RGB Image Encryption, Alge- bras, Groups and Geometries 37, 103-119 (2021), www.santilli-foundation.org/docs/wade-gill-2021.pdf
Kadeisvili, J. V.: Elements of functional isoanalysis, Algebras, Groups and Geometries 9, 283-295 (1992).
Kadeisvili, J. V.: Elements of the Fourier-Santilli isotransforms, Algebras, Groups and Geometries 9, 319 -352 (1992).
Aringazin, A. K., Kirukhin, D. A. and Santilli, R. M.: Isotopic Generaliza- tion of the Legendre, Jacobi and Bessel Functions, Algebras, Groups and Geometries 12, 255-285 (1995).
Exact Lie-isotopic representation of the Deuteron data
Georgiev, S.: Introduction to Iso- Euclidean Geometry, Eliva Press SRL,
Republic of Moldova.
Santilli, R. M.: Isominkowskian Geometry for the Gravitational Treatment of Matter and its Isodual for Antimatter, Intern. J. Modern Phys. D7, 351- 407 (1998),
www.santilli-foundation.org/docs/Santilli-35.pdf
Santilli,R.M.:Isotopicquantizationofgravityanditsuniversalisopoincare’ symmetry, in the Proceedings of The Seventh Marcel Grossmann Meeting on Gravitation, SLAC, 1992, Jantzen, R. T., Keiser, G. M. and Ruffini, R., Editors, World Scientific Publishers, p. 500-505 (1994), www.santilli-foundation.org/docs/Santilli-120.pdf
Santilli, R. M.: Unification of gravitation and electroweak interactions, in the Proceedings of the Eight Marcel Grossmann Meeting on Gravitation, Israel, 1997, T. Piran, T. and Ruffini, R. Editors, World Scientific, p. 473-475 (1999),
www.santilli-foundation.org/docs/Santilli-137.pdf
Santilli, R. M.: Isodual Theory of Antimatter with Application to Antigravity, Grand Unification and the Spacetime Machine, Springer Nature (2001), http://www.santilli-foundation.org/docs/santilli-79.pdf
Santilli, R. M.: Isotopic Generalizations of Galilei and Einstein Relativities, International Academic Press (1991), Vol. I Mathematical Foundations, http://www.santilli-foundation.org/docs/Santilli-01.pdf
Santilli, R. M.: Isotopic Generalizations of Galilei and Einstein Relativities, International Academic Press (1991), Vol. II: Classical Formulations, www.santilli-foundation.org/docs/Santilli-61.pdf
Santilli,R.M.:’IsotopiesofLieSymmetries,I:Basictheory,HadronicJour- nal 8, 8-35 (1985),
www.santilli-foundation.org/docs/santilli-65.pdf
Santilli, R. M.: ’Isotopies of Lie Symmetries, II: Isotopies of the rotational symmetry, Hadronic Journal 8, 36-52 (1985), www.santilli-foundation.org/docs/santilli-65.pdf
Santilli, R. M.: Rotational isotopic symmetries, ICTP communication No. IC-91-261 (1991),
www.santilli-foundation.org/docs/Santilli-148.pdf
R. M. Santilli
Santilli, R. M.: Isotopic Lifting of the SU(2) Symmetry with Applications to Nuclear Physics, JINR Rapid Comm. 6. 24-38 (1993), http://www.santilli-foundation.org/docs/Santilli-19.pdf
Santilli, R. M.: Lie-isotopic Lifting of Special Relativity for Extended De- formable Particles, Lettere Nuovo Cimento 37, 545-555 (1983), www.santilli-foundation.org/docs/Santilli-50.pdf
Santilli, R. M.: Lie-isotopic Lifting of Unitary Symmetries and of Wigner’s Theorem for Extended and Deformable Particles,Lettere Nuovo Cimento 38, 509-521 (1983),
www.santilli-foundation.org/docs/Santilli-51.pdf
Santilli, R. M.: Lie-isotopic generalization of the Poincare’ symmetry, clas- sical formulation, ICTP communication No. IC/91/45 (1991), www.santilli-foundation.org/docs/Santilli-140.pdf
Santilli, R. M.: Nonlinear, Nonlocal and Noncanonical Isotopies of the Poincare’ Symmetry, Moscow Phys. Soc. 3, 255-239 (1993), http://www.santilli-foundation.org/docs/Santilli-40.pdf
Santilli, R. M.: Isotopies of the spinorial covering of the Poincare ́ symmetry, Chinese J. System Eng. and Electr. 6, 177-199 (1995), www.santilli-foundation.org/docs/Santilli-18.pdf
Santilli, R. M.: Can strong interactions accelerate particles faster than the speed of light? Lettere Nuovo Cimento 33, 145 (1982), www.santilli-foundation.org/docs/Santilli-102.pdf
Aringazin, A. K. and K. Aringazin, M.: Universality of Santilli’s iso- Minkowskian geometry in Frontiers of Fundamental Physics, M. Barone and F. Selleri, Editors, Plenum (1995), http://www.santilli-foundation.org/docs/Santilli-29.pdf
Santilli, R. M.: Universality of special isorelativity for the invariant descrip- tion of arbitrary speeds of light,” arXiv physics/9812052 (1997), arxiv.org/pdf/physics/9812052.pdf
Santilli, R. M.: Compatibility of Arbitrary Speeds with Special Relativ- ity Axioms for Interior Dynamical Problems, American Journal of Modern Physics, 5, 143 (2016), www.santilli-foundation.org/docs/ArbitrarySpeeds.pdf
Exact Lie-isotopic representation of the Deuteron data
Santilli, R. M.: The notion of non-relativistic isoparticle, ICTP release IC/91/265 (1991),
www.santilli-foundation.org/docs/Santilli-145.pdf
Santilli, R. M.: Nonlocal formulation of the Bose-Einstein correlation within the context of hadronic mechanics, Hadronic J. 5, 1–50 and 15, 81–133 (1992),
www.santilli-foundation.org/docs/Santilli-116.pdf
Cardone, F. and Mignani, R.: Nonlocal approach to the Bose-Einstein corre- lation, JETP 83, 435 (1996), www.santilli-foundation.org/docs/Santilli-130.pdf
Miller, J. P., de Rafael, E. and Roberts, B. L.: Muon (g2): experiment and theory, Rep. Prog. Phys. 70, 795–881 (2007), news.fnal.gov/2021/04/first-results-from-fermilabs-muon-g-2-experiment- strengthen-evidence-of-new-physics
Santilli, R. M.: Representation of the anomalous magnetic moment of the muons via the Einstein-Podolsky-Rosen completion of quantum into hadronic mechanics, Progress in Physics 17, 210–215 (2021), //www.santilli-foundation.org/muon-anomaly-pp.pdf
Santilli, R. M.: Apparent Unsettled Value of the Recently Measured Muon Magnetic Moment. Progress in Physics 18, 15–18 (2022), //www.santilli-foundation.org/docs/muon-meanlife-2022.pdf
Cardone, F., Mignani R. and Santilli, R. M.: On a possible energy- dependence of the K0 lifetime. Part I J. Phys. G: Part. Phys. 18, L141-L144 (1992),
//www.santilli-foundation.org/docs/Santilli-32.pdf
Cardone, F., Mignani, R. and Santilli, R. M.: On a possible energy- dependence of the K0 lifetime. Part II J. Phys. G: Part. Phys., 18, L61-L65 (1992),
//www.santilli-foundation.org/docs/Santilli-32.pdf
Arestov, Yu., Santilli, R. M. and Solovianov, V.: Experimental evidence on the isominkowskian character of the hadronic structure, Foundation of Physics Letters 11, 483 (1998), http://www.santilli-foundation.org/docs/Santilli-52.pdf
Santilli, R. M.: Studies on A. Einstein, B. Podolsky and N. Rosen prediction that quantum mechanics is not a complete theory, III: Illustrative examples
R. M. Santilli
and applications, Ratio Mathematica 38, 139-222 (2020),
eprdebates.org/docs/epr-review-iii.pdf
Santilli, R. M.: Reduction of Matter in the Universe to Protons and Electrons via the Lie-isotopic Branch of Hadronic Mechanics, Progress in Physics, 19, 73-99 (2023),
https://www.ptep-online.com/2023/PP-65-09.PDF
Norman, R. et al.: Experimental Confirmation of the Synthesis of Neutrons and Neutroids from a Hydrogen Gas, American Journal of Modern Physics 6, 85-104 (2017), www.santilli-foundation.org/docs/confirmation-neutron-synthesis-2017.pdf
Santilli, R. M.: Invariant Lie-isotopic and Lie-admissible formulation of quantum deformations, Found. Phys. 27, 1159-1177 (1997), http://www.santilli-foundation.org/docs/Santilli-06.pdf
Biedenharn, L.: Angular momentum in quantrum physics, Cambridge Uni- versity Press (2009).
Santilli, R. M.: Lie-admissible invariant representation of irreversibility for matter and antimatter at the classical and operator levels, Nuovo Cimento B121, 443 - 485 (2006), http://www.santilli-foundation.org/docs//Lie-admiss-NCB-I.pdf
Cardone, F. and Mignani, M.: Energy and geometry, an introduction to deformed special relativity, World Scientific Publishing (2004).
Cardone, F. and Mignani, M.: Deformed spacetime, Springer (2007).
Mignani, R.: Quasars redshift in isominkowski space, Physics Essay 5, 531 (1992),
http://www.santilli-foundation.org/docs/Santilli-31.pdf
Animalu, A. O. E. and Santilli, R. M.: Hadronic Mechanics and Nonpoten- tial Interactions, M. Mijatovic, Editor, Nova Science, New York, p. 19-22 (1990).
Myung, H. C. and Santilli, R. M.: Modular-isotopic Hilbert space formula- tion of the exterior strong problem, Hadronic Journal 5, 1277-1366 (1982), www.santilli-foundation.org/docs/Santilli-201.pdf
Santilli, R. M.: Relativistic hadronic mechanics: nonunitary, axiom- preserving completion of relativistic quantum mechanics, Found. Phys. 27,
Exact Lie-isotopic representation of the Deuteron data
-655 (1997), www.santilli-foundation.org/docs/Santilli-15.pdf
Santilli, R. M.: Recent theoretical and experimental evidence on the syn- thesis of the neutron, Communication of the JINR, Dubna, Russia, No. E4- 93-252 (1993).
Nishioka, M.: Extenuation of the Dirac-Myung-Santilli isodelta functions to field theory, Lettere Nuovo Cimento 39, 369-372 (1984), www.santilli-foundation.org/docs/Santilli-202.pdf
Nishioka, M.: An introduction to gauge fields by the Lie-isotopic lifting of the Hilbert space, Lettere Nuovo Cimento 40, 309-312 (1984).
Nishioka, M.: Extension of the Dirac-Myung-Santilli delta function to field theory, Lettere Nuovo Cimento 39, 369-372 (1984).
Nishioka, M.: Remarks on the Lie algebras appearing in the Lie-isotopic lifting of gauge theories, Nuovo Cimento 85, 331-336 (1985).
Santilli,R.M.StudiesonA.Einstein,B.PodolskyandN.Rosenprediction that quantum mechanics is not a complete theory, II: Apparent proof of the EPR argument, Ratio Mathematica 38, 71-138 (2020), http://eprdebates.org/docs/epr-review-ii.pdf
Liang, S-D., Lake, M. J. and Harko, T., Editors: Generalized uncertainty relations: Existing paradigms and new approaches, Special Issue of Fron- tiers in Astronomy and Space Sciences (2023), https://www.frontiersin.org/research-topics/25805/generalized-uncertainty- relations-existing-paradigms-and-new-approaches
Li, J-L, and Qiao, C-F., The Generalized Uncertainty Principle, Annalen der Physik 533, 2000335 (2021), https://ui.adsabs.harvard.edu/abs/2021AnP...53300335L/abstract
Herdegen, A. and Ziobro, P., Generalized uncertainty relations, Letters in Mathematical Physics 107, 659–671 (2017), https://link.springer.com/article/10.1007/s11005-016-0916-9
Mignani, R.: Lettere Nuovo Cimento 43, 355-369 (1985).
Mignani, M.: Studies on the scattering theory of hadronic mechanics, Hadronic Journal 9, 103-133 (1986).
R. M. Santilli
Aringazin, A. K., Kirukhin, D. A. and Santilli, R. M.: Nonpotential elastic scattering of spinning particles, Hadronic Journal 18, 257-271 (1995), www.santilli-foundation.org/docs/Santilli-502.pdf
Animalu, A. O. E. and Santilli, R. M.: Nonunitary Lie-isotopic and Lie- admissible scattering theories of hadronic mechanics, in the Proceedings of the Third International Conference on the Lie-Admissible Treatment of Irre- versible Processes, Kathmandu University, papers I to V, p. 165 on (2011): www.santilli-foundation.org/docs/Isoscattering-I.pdf www.santilli-foundation.org/docs/Isoscattering-II.pdf www.santilli-foundation.org/docs/Isoscattering-III.pdf www.santilli-foundation.org/docs/Isoscattering-IV.pdf www.santilli-foundation.org/docs/Isoscattering-V.pdf
Davies, E. B.: Non-unitary scattering theory and capture, I: Hilbert space theory, Comm. Math. Phys. 71, 277-288 (1980), https://link.springer.com/article/10.1007/BF01197295
Mei, F.-X.: On the Birkhoffian mechanics, International Journal of Non-Linear Mechanics 36, 817-834 (2001), https://www.sciencedirect.com/science/article/abs/pii/S0020746200000494
Aringazin, A. K.: Supersymmetric properties of Birkhoffian mechanics, Hadronic Journal 16, 385-409 (1993),
http://www.i-b-r.org/docs/birk.pdf
Nadjafikha, M. and Mirala, M.: On Birkhoffian systems with Poisson bracket, Punjab university Journal of Mathematics 5, 83-91 (2019), https://figshare.com/articles/journal-contribution/On-Birkhoffian-systems- with-Poisson-bracket/12016911/1
Zhang, L.-J. and Zhang, Y.: Non-standard Birkhoffian dynamics and its
Noether’s theorems, Communications in Nonlinear Science and Numerical
Simulation 91, 105-129 (2020), https://www.sciencedirect.com/science/article/abs/pii/S1007570420302665?via%3Dihub
Luo, S.-K. and Xu, Y.-L.: Fractional Birkhoffian mechanics, Acta Mechan- ica 226, 829–844 (2015), https://link.springer.com/article/10.1007/s00707-014-1230-1
R. M. Santilli, A quantitative isotopic representation of the Deuteron magnetic moment, in Proceedings of the International Symposium Dubna Deuteron-3e, Joint Institute for Nuclear Research, Dubna, Russia (1994), http://www.santilli-foundation.org/docs/Santilli-134.pdf
Exact Lie-isotopic representation of the Deuteron data
Santilli, R. M.: The Physics of New Clean Energies and Fuels According to Hadronic Mechanics, Special issue of the Journal of New Energy (1998), http://www.santilli-foundation.org/docs/Santilli-114.pdf
Dhondge, S. S.: Studies on Santilli Three-Body Model of the Deuteron According to Hadronic Mechanics, American Journal of Modern Physics 5, 46-58 (2016),
www.santilli-foundation.org/docs/deuteron-2018.pdf
Muktibodh, A. S.: Studies on Santilli Three-Body Model of the Deuteron According to Hadronic Mechanics, American Journal of Modern Physics 5, 17-36 (2016),
/www.santilli-foundation.org/docs/pdf4.pdf
Dhondge, S. S.: Santilli’s Hadronic Mechanics Formation for the Deuteron,” AIP Conference Proceedings 648, 510009 (2015), http://www.santilli-foundation.org/docs/1.4912714(SS-Dhondge).pdf
Santilli, R. M., Apparent Resolution of the Coulomb Barrier for Nuclear Fusions Via the Irreversible Lie-admissible Branch of Hadronic Mechanics,” Progress in Physics 18, 138-163 (2022), https://www.santilli-foundation.org/hyperfusion-2022.pdf
Sangtilli, R. M.: Third hadronic reactor for nuclear fusions, video, http://www.world-lecture-series.org/dragon-iii
DOI: http://dx.doi.org/10.23755/rm.v52i0.1608
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Ruggero Santilli
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.