Lie-isotopic representation of stable nuclei II: Exact and time invariant representation of the Deuteron data

Ruggero Santilli

Abstract


In the preceding paper, we have presented apparent insufficiencies of quan- tum mechanics in nuclear physics To attempt a resolution of the indicated insufficiencies, in this paper we present a systematic and upgraded out- line of the axiom-preserving, time reversal invariant, Lie-isotopic branch of hadronic mechanics for the characterization of stable nuclei via the rep- resentation of the dimension, shape and density of protons and neutrons in the experimentally measured conditions of partial mutual penetration in a nuclear structure, with ensuing potential-Hamiltonian and contact non- Hamiltonian terms in nuclear force. We show that the Lie-isotopic methods allow a numerically exact and time invariant representations of all Deuteron data in the ground state without orbital contributions. We finally show that said representations are primarily due to the violation by Lie-isotopic meth- ods of Bell’s inequalities with explicit and concrete realizations of Bohm’s hidden variables, as well as to the completion of Heisenberg’s uncertainty principle for point-like particles in vacuum under electromagnetic interac- tions into the isouncertainty principle of hadronic mechanics for extended nucleons in condiitons of partial mutual penetration allowing a progressive recovering of Einstein’s determinism under strong interactions up to its full recovery at the limit of Schwartzschild’s horizon.


Keywords


nuclear physics 81V35, EPR argument, hadronic me- chanics, nuclear data.

Full Text:

PDF

References


Einstein, A., Podolsky, B. and Rosen, N.: Can quantum-mechanical descrip- tion of physical reality be considered complete?, Phys. Rev. 47, 777-780 (1935),

http://www.eprdebates.org/docs/epr-argument.pdf

Beghella-Bartoli, S. and Santilli, R. M., Editors: Proceedings of the 2020 Teleconference on the Einstein-Podolsky-Rosen argument that ’Quantum mechanics is not a compete theory,’ Curran Associates, New York, NY (2021),

Printed version: http://www.proceedings.com/59404.html

Santilli, R. M.: Overview of historical and recent verifications of the

Exact Lie-isotopic representation of the Deuteron data

Einstein- Podolsky-Rosen argument and their applications to physics, chem- istry and biology, APAV - Accademia Piceno Aprutina dei Velati, Pescara, Italy (2021),

http://www.santilli-foundation.org/epr-overview-2021.pdf

Dunning-Davies, J.: A Present Day Perspective on Einstein-Podolsky-Rosen and its Consequences, Journal of Modern Physics 12, 887-936 (2021), www.scirp.org/journal/paperinformation.aspx?paperid=109219

Santilli, R.M.: Elements of nuclear physics according to hadronic mechan- ics, I: Apparent insufficiencies of quantum mechanics in nuclear physic, sub- mitted to Ratio Mathematica

IAEA, Nuclear data services, website, https://www.iaea.org/about/organizational-structure/department-of- nuclear-sciences-and-applications/division-of-physical-and-chemical- sciences/nuclear-data-section

Vonsovsk, S.: Magnetism of Elementary Particles, Mir Publishers (1975).

Rau, S. et al.: Penning trap measurements of the deuteron and the HD+ molecular ion, Nature 585, 43-47 (2020), //doi.org/10.1038/s41586-020-2628-7

ScienceDirect, Helium nucleus, website, https://www.sciencedirect.com/topics/mathematics/helium-nucleus

The NIST Reference on Constants, Units, and Uncertainty: proton mass energy equivalent in MeV, 20 May 2019. Retrieved 2022-09-11, https://www.physics.nist.gov/cgi-bin/cuu/Value?mpc2mev

Pohl, R., Antognini, A. and Kottmann, F.: The size of the proton, Nature 466, 213-216 (2010),

http://www.nature.com/articles/nature09250

Wietfeldt, F. E.: Measurements of the Neutron Lifetime, Atroms 6, 1-19 (2018),

https://www.mdpi.com/2218-2004/6/4/70

Heisenberg, W.: Nachr. Akad. Wiss. Gottingen IIa, 111- 133 (1953), https://link.springer.com/chapter/10.1007/978-3-642-70079-8 23

Stanford Encyclopedia of Philosophy, Bohmian (de Broglie-Bohm) Mechan- ics, (2021),

https://plato.stanford.edu/entries/qm-bohm/

R. M. Santilli

Santilli, R. M.: Foundation of Theoretical Mechanics, Springer-Verlag, Hei- delberg, Germany, Vol. I (1978) The Inverse Problem in Newtonian Mechan- ics,

http://www.santilli-foundation.org/docs/Santilli-209.pdf

Santilli, R. M.: Foundation of Theoretical Mechanics, Springer-Verlag, Hei- delberg, Germany, Vol. II (1983) Birkhoffian Generalization of Hamiltonian Mechanics,

http://www.santilli-foundation.org/docs/santilli-69.pdf

Santilli, R. M.: Initiation of the representation theory of Lie-admissible al- gebras of operators on bimodular Hilbert spaces, Hadronic J. 3, 440 (1979), http://www.santilli-foundation.org/docs/santilli-1978-paper.pdf

Anderson, R.: Outline of Hadronic Mathematics, Mechanics and Chemistry as Conceived by R. M. Santilli, American Journal of Modern Physics 6, 1-16 (2016),

http://www.santilli-foundation.org/docs/HMMC-2017.pdf

Anderson, A: Collected OA Papers on Hadronic Mathematics, Mechanics and Chemistry,

https://www.santilli-foundation.org/docs/HMMC.pdf

Anderson, R.: List of early OA international workshops and conferences in hadronic mechanics,

https://www.santilli-foundation.org/docs/workshops-conf-hm.pdf

Aringazin, A. K., Jannussis, A., Lopez, F., Nishioka, M. and Veljanosky, B.: Santilli’s Lie-Isotopic Generalization of Galilei and Einstein Relativities, Kostakaris Publishers, Athens, Greece (1991), http://www.santilli-foundation.org/docs/Santilli-108.pdf

Sourlas, D. S. and Tsagas, Gr. T.: Mathematical Foundation of the Lie- Santilli Theory, Ukraine Academy of Sciences (1993), http://www.santilli-foundation.org/docs/santilli-70.pdf

Lohmus, J., Paal, E. and Sorgsepp, L.: Nonassociative Algebras in Physics, Hadronic Press, Palm Harbor, (1994),

http://www.santilli- foundation.org/docs/Lohmus.pdf

Kadeisvili, J. V.: Santilli’s Isotopies of Contemporary Algebras, Geometries and Relativities, Ukraine Academy of Sciences, Second edition (1997), http://www.santilli-foundation.org/docs/Santilli-60.pdf

Exact Lie-isotopic representation of the Deuteron data

Jiang, C.-X.: Foundations of Santilli Isonumber Theory, International Aca- demic Press (2001),

http://www.i-b-r.org/docs/jiang.pdf

Ganfornina, R. M. F. and Valdes, J. N.: Fundamentos de la Isotopia de San- tilli, International Academic Press (2001), http://www.i-b-r.org/docs/spanish.pdf

English translation: Algebras, Groups and Geometries 32, 135-308 (2015), http://www.i-b-r.org/docs/Aversa-translation.pdf

Davvaz, B. and Vougiouklis, Th.: A Walk Through Weak Hyperstructures and Hv-Structures, World Scientific (2018)

Gandzha, I. and Kadeisvili, J. V.: New Sciences for a New Era: Mathemati- cal, Physical and Chemical Discoveries by Ruggero Maria Santilli, Sankata Printing Press, Nepal (2011), http://www.santilli-foundation.org/docs/RMS.pdf

Georgiev, S.: Foundations of IsoDifferential Calculus, Nova Publishers, New York,

Vol. 1: Iso-Differential and Iso-Integral Calculus for Iso-Functions in One Variable (2014),

Vol. 2: Iso-Differential and Iso-Integral Calculus for Iso-Functions in Sev- eral Variables (2014),

Vol. 3: Iso-Ordinary Iso-Differential Equations (2014),

Vol. 4: Iso-Difference Equations (2015),

Vol. 5: Iso-Stochastic Iso-Differential Equations (2015),

Vol. 6: Theory of Iso-Measurable Iso-Functions (2016),

New Edition of Vol. 1: Iso-Differential and Iso-Integral Calculus for Iso- Functions in One Variable (2022). Iso-Mathematics, Lambert Academic Publishing (2022).

Santilli, R. M.: Elements of Hadronic Mechanics, Ukraine Academy of Sci- ences, Kiev, Vol. I (1995), Mathematical Foundations,. www.santilli-foundation.org/docs/Santilli-300.pdf

Santilli, R. M.: Elements of Hadronic Mechanics, Ukraine Academy of Sciences, Kiev, Vol. II (1995), Theoretical Foundations, www.santilli- foundation.org/docs/Santilli-301.pdf

Santilli, R. M.: Elements of Hadronic Mechanics, Ukraine Academy of Sciences, Kiev, Vol. III (2016), Experimental verifications, www.santilli- foundation.org/docs/elements-hadronic-mechanics-iii.compressed.pdf

R. M. Santilli

Bengtsson, I. and Z ̇yczkowski K.: An Introduction to Quantum Entangle- ment, Cambridge University Press, second, revised edition (2006), https://chaos.if.uj.edu.pl/ karol/geometry.htm

Santilli, R. M.: A quantitative representation of particle entanglements via Bohm’s hidden variables according to hadronic mechanics,” Progress in Physics 18, 131-137 (2022) http://www.santilli-foundation.org/docs/pip-entanglement-2022.pdf

Santilli R. M.: Representation of the anomalous magnetic moment of the muons via the novel Einstein-Podolsky-Rosen entanglement. In: Guzman J. C., ed. Scientific Legacy of Professor Zbigniew Oziewicz: Selected Pa- pers from the International Conference ”Applied Category Theory Graph- Operad-Logic”. Word Scientific, in press, //www.santilli-foundation.org/ws-rv961x669.pdf

R. Berkowitz, R.: Macroscopic systems can be controllably entangled and limitlessly measured, Physics Today July issue, p. 16-18 (2021), http://www.santilli-foundation.org/docs/particle-entanglement.pdf

Muktibodh, A.: Santilli’s recovering of Einstein’s determinism, submitted for publication (2024).

Bell, J. S.: On the Einstein Podolsky Rosen paradox Physics 1, 195 (1964), https://cds.cern.ch/record/111654/files/vol1p195-200 001.pdf

Santilli, R. M.: Isorepresentation of the Lie-isotopic SU(2) Algebra with Application to Nuclear Physics and Local Realism, Acta Applicandae Math- ematicae 50, 177-190 (1998), http://www.santilli-foundation.org/docs/Santilli-27.pdf

Fadel, M. et al.: Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates. Science 360, 409–415 (2018), www.santilli-foundation.org/Basel-paper.pdf

Colciaghi, P. et al.: Einstein-Podolsky-Rosen Experiment with Two Bose- Einstein Condensates, Phys. Rev. X 13, 021031-1/021031-10 (2023), https://journals.aps.org/prx/pdf/10.1103/PhysRevX.13.021031

Aspect, A. et al.: Experimental Realization of Einstein-Podolsky-Rosen- Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities, Phys. Rev. Lett. 49, 91-94 (1982), https://ui.adsabs.harvard.edu/abs/1982PhRvL..49...91A

Exact Lie-isotopic representation of the Deuteron data

Santilli, R. M.: Need of subjecting to an experimental verification the validity within a hadron of Einstein special relativity and Pauli ex- clusion principle, Hadronic Journal 1, 574-901 (1978), www.santilli- foundation.org/docs/santilli-73.pdf

Santilli, R. M.: Generalization of Heisenberg’s uncertainty principle for strong interactions, Hadronic Journal 4, 642 (1981), http://www.santilli-foundation.org/docs/generalized-uncertainties-1981.pdf

Santilli,R.M.:IsotopicliftingofHeisenberg’suncertaintiesforgravitational singularities, Communications in Theoretical Physics 3, 47-66 (1994), https://santilli-foundation.org/docs/santilli-511.pdf

Santilli, R. M.: Studies on the classical determinism predicted by A. Ein- stein, B. Podolsky and N. Rosen, Ratio Mathematica 37, 5-23 (2019), http://www.eprdebates.org/docs/epr-paper-ii.pdf

Reiter, E. S.: The trouble with quantum mechanics is the quantum, (2023) http://www.thresholdmodel.com

Bohm, D.: A Suggested Interpretation of the Quantum Theory in Terms of ’Hidden Variables,’ Phys. Rev. 85, 166-182 (1952), journals.aps.org/pr/abstract/10.1103/PhysRev.85.166

Bohm, D.: Quantum Theory, Prentice-Hall, New York (1951).

Santilli, R. M.: Nonlocal-Integral Isotopies of Differential Calculus, Me- chanics and Geometries, Rendiconti Circolo Matematico Palermo, Suppl. 42, 7-82 (1996),

http://www.santilli-foundation.org/docs/Santilli-37.pdf

Santilli, R. M.: Iso-Representation of the Deuteron Spin and Magnetic Mo- ment via Bohm’s Hidden Variables, Progress in Physics, 18, 74-81 (2022), https://www.santilli-foundation.org/docs/pip-3.pdf

Santilli R. M. and Sobczyk G.: Representation of nuclear magnetic moments via a Clifford algebra formulation of Bohm’s hidden variables, Scientific Re- ports 12, 1-10 (2022), http://www.santilli-foundation.org/Santilli-Sobczyk.pdf

Fermi, E. Nuclear Physics, University of Chicago Press (1949).

Blatt, J. M. and Weisskopf, V. F.: Theoretical Nuclear Physics, Wiley and Sons (1952).

R. M. Santilli

Obertelli,A.andSagawa,H.:ModernNuclearPhysics:FromFundamentals

to Frontiers, Springer (2021).

Rutherford, E.: Bakerian Lecture: Nuclear Constitution of Atoms, Proc. Roy. Soc. A97, 374-382 (1920), royalsocietypublishing.org/doi/10.1098/rspa.1920.0040

Hall, B. C.: Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Springer (2015).

Aringazin, A. K.: Studies on the Lie-Santilli IsoTheory with Unit of general Form, Algebras, Groups and Geometries 28, 299-325 (2011), http://www.santilli-foundation.org/docs/Aringazin-2012.pdf

Kadeisvili, J. V.: An introduction to the Lie-Santilli isotopic theory, Mathe- matical Methods in Applied Sciences 19, 134-172 (1996), http://www.santilli-foundation.org/docs/Santilli-30.pdf

Muktibodh, A. S. and Santilli, R. M.: Studies of the Regular and Irregular Isorepresentations of the Lie-Santilli Isotheory, Journal of Generalized Lie Theories 11, 1-7 (2007), http://www.santilli-foundation.org/docs/isorep-Lie-Santilli-2017.pdf

Santilli, R. M.: Isonumbers and Genonumbers of Dimensions 1, 2, 4, 8, their Isoduals and Pseudoduals, and ’Hidden Numbers,’ of Dimension 3, 5, 6, 7, Algebras, Groups and Geometries 10, 273-295 (1993), http://www.santilli-foundation.org/docs/Santilli-34.pdf

Corda, C.: Introduction to Santilli’s IsoNumbers, AIP Conf. Proceed. 1479, 1013-1020 (2012),

http://www.santilli-foundation.org/docs/Corda-2012.pdf

Wade, M. I. and Gill, T. L.: Isonumbers and RGB Image Encryption, Alge- bras, Groups and Geometries 37, 103-119 (2021), www.santilli-foundation.org/docs/wade-gill-2021.pdf

Kadeisvili, J. V.: Elements of functional isoanalysis, Algebras, Groups and Geometries 9, 283-295 (1992).

Kadeisvili, J. V.: Elements of the Fourier-Santilli isotransforms, Algebras, Groups and Geometries 9, 319 -352 (1992).

Aringazin, A. K., Kirukhin, D. A. and Santilli, R. M.: Isotopic Generaliza- tion of the Legendre, Jacobi and Bessel Functions, Algebras, Groups and Geometries 12, 255-285 (1995).

Exact Lie-isotopic representation of the Deuteron data

Georgiev, S.: Introduction to Iso- Euclidean Geometry, Eliva Press SRL,

Republic of Moldova.

Santilli, R. M.: Isominkowskian Geometry for the Gravitational Treatment of Matter and its Isodual for Antimatter, Intern. J. Modern Phys. D7, 351- 407 (1998),

www.santilli-foundation.org/docs/Santilli-35.pdf

Santilli,R.M.:Isotopicquantizationofgravityanditsuniversalisopoincare’ symmetry, in the Proceedings of The Seventh Marcel Grossmann Meeting on Gravitation, SLAC, 1992, Jantzen, R. T., Keiser, G. M. and Ruffini, R., Editors, World Scientific Publishers, p. 500-505 (1994), www.santilli-foundation.org/docs/Santilli-120.pdf

Santilli, R. M.: Unification of gravitation and electroweak interactions, in the Proceedings of the Eight Marcel Grossmann Meeting on Gravitation, Israel, 1997, T. Piran, T. and Ruffini, R. Editors, World Scientific, p. 473-475 (1999),

www.santilli-foundation.org/docs/Santilli-137.pdf

Santilli, R. M.: Isodual Theory of Antimatter with Application to Antigravity, Grand Unification and the Spacetime Machine, Springer Nature (2001), http://www.santilli-foundation.org/docs/santilli-79.pdf

Santilli, R. M.: Isotopic Generalizations of Galilei and Einstein Relativities, International Academic Press (1991), Vol. I Mathematical Foundations, http://www.santilli-foundation.org/docs/Santilli-01.pdf

Santilli, R. M.: Isotopic Generalizations of Galilei and Einstein Relativities, International Academic Press (1991), Vol. II: Classical Formulations, www.santilli-foundation.org/docs/Santilli-61.pdf

Santilli,R.M.:’IsotopiesofLieSymmetries,I:Basictheory,HadronicJour- nal 8, 8-35 (1985),

www.santilli-foundation.org/docs/santilli-65.pdf

Santilli, R. M.: ’Isotopies of Lie Symmetries, II: Isotopies of the rotational symmetry, Hadronic Journal 8, 36-52 (1985), www.santilli-foundation.org/docs/santilli-65.pdf

Santilli, R. M.: Rotational isotopic symmetries, ICTP communication No. IC-91-261 (1991),

www.santilli-foundation.org/docs/Santilli-148.pdf

R. M. Santilli

Santilli, R. M.: Isotopic Lifting of the SU(2) Symmetry with Applications to Nuclear Physics, JINR Rapid Comm. 6. 24-38 (1993), http://www.santilli-foundation.org/docs/Santilli-19.pdf

Santilli, R. M.: Lie-isotopic Lifting of Special Relativity for Extended De- formable Particles, Lettere Nuovo Cimento 37, 545-555 (1983), www.santilli-foundation.org/docs/Santilli-50.pdf

Santilli, R. M.: Lie-isotopic Lifting of Unitary Symmetries and of Wigner’s Theorem for Extended and Deformable Particles,Lettere Nuovo Cimento 38, 509-521 (1983),

www.santilli-foundation.org/docs/Santilli-51.pdf

Santilli, R. M.: Lie-isotopic generalization of the Poincare’ symmetry, clas- sical formulation, ICTP communication No. IC/91/45 (1991), www.santilli-foundation.org/docs/Santilli-140.pdf

Santilli, R. M.: Nonlinear, Nonlocal and Noncanonical Isotopies of the Poincare’ Symmetry, Moscow Phys. Soc. 3, 255-239 (1993), http://www.santilli-foundation.org/docs/Santilli-40.pdf

Santilli, R. M.: Isotopies of the spinorial covering of the Poincare ́ symmetry, Chinese J. System Eng. and Electr. 6, 177-199 (1995), www.santilli-foundation.org/docs/Santilli-18.pdf

Santilli, R. M.: Can strong interactions accelerate particles faster than the speed of light? Lettere Nuovo Cimento 33, 145 (1982), www.santilli-foundation.org/docs/Santilli-102.pdf

Aringazin, A. K. and K. Aringazin, M.: Universality of Santilli’s iso- Minkowskian geometry in Frontiers of Fundamental Physics, M. Barone and F. Selleri, Editors, Plenum (1995), http://www.santilli-foundation.org/docs/Santilli-29.pdf

Santilli, R. M.: Universality of special isorelativity for the invariant descrip- tion of arbitrary speeds of light,” arXiv physics/9812052 (1997), arxiv.org/pdf/physics/9812052.pdf

Santilli, R. M.: Compatibility of Arbitrary Speeds with Special Relativ- ity Axioms for Interior Dynamical Problems, American Journal of Modern Physics, 5, 143 (2016), www.santilli-foundation.org/docs/ArbitrarySpeeds.pdf

Exact Lie-isotopic representation of the Deuteron data

Santilli, R. M.: The notion of non-relativistic isoparticle, ICTP release IC/91/265 (1991),

www.santilli-foundation.org/docs/Santilli-145.pdf

Santilli, R. M.: Nonlocal formulation of the Bose-Einstein correlation within the context of hadronic mechanics, Hadronic J. 5, 1–50 and 15, 81–133 (1992),

www.santilli-foundation.org/docs/Santilli-116.pdf

Cardone, F. and Mignani, R.: Nonlocal approach to the Bose-Einstein corre- lation, JETP 83, 435 (1996), www.santilli-foundation.org/docs/Santilli-130.pdf

Miller, J. P., de Rafael, E. and Roberts, B. L.: Muon (g2): experiment and theory, Rep. Prog. Phys. 70, 795–881 (2007), news.fnal.gov/2021/04/first-results-from-fermilabs-muon-g-2-experiment- strengthen-evidence-of-new-physics

Santilli, R. M.: Representation of the anomalous magnetic moment of the muons via the Einstein-Podolsky-Rosen completion of quantum into hadronic mechanics, Progress in Physics 17, 210–215 (2021), //www.santilli-foundation.org/muon-anomaly-pp.pdf

Santilli, R. M.: Apparent Unsettled Value of the Recently Measured Muon Magnetic Moment. Progress in Physics 18, 15–18 (2022), //www.santilli-foundation.org/docs/muon-meanlife-2022.pdf

Cardone, F., Mignani R. and Santilli, R. M.: On a possible energy- dependence of the K0 lifetime. Part I J. Phys. G: Part. Phys. 18, L141-L144 (1992),

//www.santilli-foundation.org/docs/Santilli-32.pdf

Cardone, F., Mignani, R. and Santilli, R. M.: On a possible energy- dependence of the K0 lifetime. Part II J. Phys. G: Part. Phys., 18, L61-L65 (1992),

//www.santilli-foundation.org/docs/Santilli-32.pdf

Arestov, Yu., Santilli, R. M. and Solovianov, V.: Experimental evidence on the isominkowskian character of the hadronic structure, Foundation of Physics Letters 11, 483 (1998), http://www.santilli-foundation.org/docs/Santilli-52.pdf

Santilli, R. M.: Studies on A. Einstein, B. Podolsky and N. Rosen prediction that quantum mechanics is not a complete theory, III: Illustrative examples

R. M. Santilli

and applications, Ratio Mathematica 38, 139-222 (2020),

eprdebates.org/docs/epr-review-iii.pdf

Santilli, R. M.: Reduction of Matter in the Universe to Protons and Electrons via the Lie-isotopic Branch of Hadronic Mechanics, Progress in Physics, 19, 73-99 (2023),

https://www.ptep-online.com/2023/PP-65-09.PDF

Norman, R. et al.: Experimental Confirmation of the Synthesis of Neutrons and Neutroids from a Hydrogen Gas, American Journal of Modern Physics 6, 85-104 (2017), www.santilli-foundation.org/docs/confirmation-neutron-synthesis-2017.pdf

Santilli, R. M.: Invariant Lie-isotopic and Lie-admissible formulation of quantum deformations, Found. Phys. 27, 1159-1177 (1997), http://www.santilli-foundation.org/docs/Santilli-06.pdf

Biedenharn, L.: Angular momentum in quantrum physics, Cambridge Uni- versity Press (2009).

Santilli, R. M.: Lie-admissible invariant representation of irreversibility for matter and antimatter at the classical and operator levels, Nuovo Cimento B121, 443 - 485 (2006), http://www.santilli-foundation.org/docs//Lie-admiss-NCB-I.pdf

Cardone, F. and Mignani, M.: Energy and geometry, an introduction to deformed special relativity, World Scientific Publishing (2004).

Cardone, F. and Mignani, M.: Deformed spacetime, Springer (2007).

Mignani, R.: Quasars redshift in isominkowski space, Physics Essay 5, 531 (1992),

http://www.santilli-foundation.org/docs/Santilli-31.pdf

Animalu, A. O. E. and Santilli, R. M.: Hadronic Mechanics and Nonpoten- tial Interactions, M. Mijatovic, Editor, Nova Science, New York, p. 19-22 (1990).

Myung, H. C. and Santilli, R. M.: Modular-isotopic Hilbert space formula- tion of the exterior strong problem, Hadronic Journal 5, 1277-1366 (1982), www.santilli-foundation.org/docs/Santilli-201.pdf

Santilli, R. M.: Relativistic hadronic mechanics: nonunitary, axiom- preserving completion of relativistic quantum mechanics, Found. Phys. 27,

Exact Lie-isotopic representation of the Deuteron data

-655 (1997), www.santilli-foundation.org/docs/Santilli-15.pdf

Santilli, R. M.: Recent theoretical and experimental evidence on the syn- thesis of the neutron, Communication of the JINR, Dubna, Russia, No. E4- 93-252 (1993).

Nishioka, M.: Extenuation of the Dirac-Myung-Santilli isodelta functions to field theory, Lettere Nuovo Cimento 39, 369-372 (1984), www.santilli-foundation.org/docs/Santilli-202.pdf

Nishioka, M.: An introduction to gauge fields by the Lie-isotopic lifting of the Hilbert space, Lettere Nuovo Cimento 40, 309-312 (1984).

Nishioka, M.: Extension of the Dirac-Myung-Santilli delta function to field theory, Lettere Nuovo Cimento 39, 369-372 (1984).

Nishioka, M.: Remarks on the Lie algebras appearing in the Lie-isotopic lifting of gauge theories, Nuovo Cimento 85, 331-336 (1985).

Santilli,R.M.StudiesonA.Einstein,B.PodolskyandN.Rosenprediction that quantum mechanics is not a complete theory, II: Apparent proof of the EPR argument, Ratio Mathematica 38, 71-138 (2020), http://eprdebates.org/docs/epr-review-ii.pdf

Liang, S-D., Lake, M. J. and Harko, T., Editors: Generalized uncertainty relations: Existing paradigms and new approaches, Special Issue of Fron- tiers in Astronomy and Space Sciences (2023), https://www.frontiersin.org/research-topics/25805/generalized-uncertainty- relations-existing-paradigms-and-new-approaches

Li, J-L, and Qiao, C-F., The Generalized Uncertainty Principle, Annalen der Physik 533, 2000335 (2021), https://ui.adsabs.harvard.edu/abs/2021AnP...53300335L/abstract

Herdegen, A. and Ziobro, P., Generalized uncertainty relations, Letters in Mathematical Physics 107, 659–671 (2017), https://link.springer.com/article/10.1007/s11005-016-0916-9

Mignani, R.: Lettere Nuovo Cimento 43, 355-369 (1985).

Mignani, M.: Studies on the scattering theory of hadronic mechanics, Hadronic Journal 9, 103-133 (1986).

R. M. Santilli

Aringazin, A. K., Kirukhin, D. A. and Santilli, R. M.: Nonpotential elastic scattering of spinning particles, Hadronic Journal 18, 257-271 (1995), www.santilli-foundation.org/docs/Santilli-502.pdf

Animalu, A. O. E. and Santilli, R. M.: Nonunitary Lie-isotopic and Lie- admissible scattering theories of hadronic mechanics, in the Proceedings of the Third International Conference on the Lie-Admissible Treatment of Irre- versible Processes, Kathmandu University, papers I to V, p. 165 on (2011): www.santilli-foundation.org/docs/Isoscattering-I.pdf www.santilli-foundation.org/docs/Isoscattering-II.pdf www.santilli-foundation.org/docs/Isoscattering-III.pdf www.santilli-foundation.org/docs/Isoscattering-IV.pdf www.santilli-foundation.org/docs/Isoscattering-V.pdf

Davies, E. B.: Non-unitary scattering theory and capture, I: Hilbert space theory, Comm. Math. Phys. 71, 277-288 (1980), https://link.springer.com/article/10.1007/BF01197295

Mei, F.-X.: On the Birkhoffian mechanics, International Journal of Non-Linear Mechanics 36, 817-834 (2001), https://www.sciencedirect.com/science/article/abs/pii/S0020746200000494

Aringazin, A. K.: Supersymmetric properties of Birkhoffian mechanics, Hadronic Journal 16, 385-409 (1993),

http://www.i-b-r.org/docs/birk.pdf

Nadjafikha, M. and Mirala, M.: On Birkhoffian systems with Poisson bracket, Punjab university Journal of Mathematics 5, 83-91 (2019), https://figshare.com/articles/journal-contribution/On-Birkhoffian-systems- with-Poisson-bracket/12016911/1

Zhang, L.-J. and Zhang, Y.: Non-standard Birkhoffian dynamics and its

Noether’s theorems, Communications in Nonlinear Science and Numerical

Simulation 91, 105-129 (2020), https://www.sciencedirect.com/science/article/abs/pii/S1007570420302665?via%3Dihub

Luo, S.-K. and Xu, Y.-L.: Fractional Birkhoffian mechanics, Acta Mechan- ica 226, 829–844 (2015), https://link.springer.com/article/10.1007/s00707-014-1230-1

R. M. Santilli, A quantitative isotopic representation of the Deuteron magnetic moment, in Proceedings of the International Symposium Dubna Deuteron-3e, Joint Institute for Nuclear Research, Dubna, Russia (1994), http://www.santilli-foundation.org/docs/Santilli-134.pdf

Exact Lie-isotopic representation of the Deuteron data

Santilli, R. M.: The Physics of New Clean Energies and Fuels According to Hadronic Mechanics, Special issue of the Journal of New Energy (1998), http://www.santilli-foundation.org/docs/Santilli-114.pdf

Dhondge, S. S.: Studies on Santilli Three-Body Model of the Deuteron According to Hadronic Mechanics, American Journal of Modern Physics 5, 46-58 (2016),

www.santilli-foundation.org/docs/deuteron-2018.pdf

Muktibodh, A. S.: Studies on Santilli Three-Body Model of the Deuteron According to Hadronic Mechanics, American Journal of Modern Physics 5, 17-36 (2016),

/www.santilli-foundation.org/docs/pdf4.pdf

Dhondge, S. S.: Santilli’s Hadronic Mechanics Formation for the Deuteron,” AIP Conference Proceedings 648, 510009 (2015), http://www.santilli-foundation.org/docs/1.4912714(SS-Dhondge).pdf

Santilli, R. M., Apparent Resolution of the Coulomb Barrier for Nuclear Fusions Via the Irreversible Lie-admissible Branch of Hadronic Mechanics,” Progress in Physics 18, 138-163 (2022), https://www.santilli-foundation.org/hyperfusion-2022.pdf

Sangtilli, R. M.: Third hadronic reactor for nuclear fusions, video, http://www.world-lecture-series.org/dragon-iii




DOI: http://dx.doi.org/10.23755/rm.v52i0.1608

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Ruggero Santilli

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.