The incompleteness of the Schroedinger equation
Abstract
The Schrodinger equation with the nonlinear term is derived in the framework of the Dirac heuristics. The particle behaves classically in case its mass is infinite. The nonlinear term is crucial and involves a new physical constant b which can be measured via the same meth- ods used for the Casimir effect and accurate experimental procedures. New experiments, different from the Zeilinger ones, are proposed with Faraday simplicity for the determination of the new very small value of the constant b.
Keywords
Full Text:
PDFReferences
Spaarnay, M. J.: Measurements of attractive forces between flat plates, Phys- ica 24, 751 (1958).
Tabor, D. and Winterton, R. M. S.: The direct measurement of normal and retarded van der Waals forces, Proc. Roy. Soc. A 312, 435 (1969).
Pardy, M.: To the nonlinear quantum mechanics, Fac. Sci. Nat. Univ. Masaryk, Brun. 23, Physics 114 (1993).
Pardy, M.: Possible Tests of Nonlinear Quantum Mechanics in: Waves and Particles in Light and Matter (Ed. by Alwyn van der Merwe and Augusto Garuccio, Plenum Press New York). 419-422 (1994).
Pardy, M.: To the nonlinear quantum mechanics, quant-ph/0111105 (2001).
Einstein, A., Podolsky, B. and Rosen, N.: Can Quantum Mechanical Descrip- tion of Physical Reality Be Considered Complete?, Physical Review 47, 777-780 (1935).
Schnabel, R.: The solution to the Einstein-Podolsky-Rosen paradox, arXiv: 2208.13831v3 [quant-ph] 26 Oct (2022).
Broglie de, L.: Non-linear Wave Mechanics, Elsevier, Amsterdam. (1960). [9] Bialynicky-Birula, I. and Mycielski, J.: Nonlinear Wave Mechanics, Ann. Phys. (N.Y.) 100, 62 (1976).
Shimony, A.: Proposed neutron interferometer test of some nonlinear variants of wave mechanics, Phys. Rev. A 20, No. 2, 394 (1979).
Shull, C. G., Atwood, D. K., Arthur, J. and Horne, M. A.: Search for a Non- linear Variant of the Schro ̈dinger Equation by Neutron Interferometry, Phys. Rev. Lett. 44, 765 (1980).
Ga ̈hler, R., Klein, A. G. and Zeilinger, A.: Neutron optical tests of nonlinear wave mechanics Phys. Rev. A 23, 1611 (1981).
Pais, A.: Playing with Equation, the Dirac Way, preprint RU/86/150, Rocke- feller University New York, quant-ph/0111105 (1986).
Madelung, E.: Quantum Theory in Hydrodynamical Form, Z. Physik 40, 322 (1926).
Bohm, D. and Vigier, J.: Model of the Causal Interpretation of Quantum The- ory in Terms of a Fluid with Irregular Fluctuations, Phys. Rev. 96, 208 (1954).
Wilhelm, E.: Hydrodynamic Model of Quantum Mechanics, Phys. Rev. D 1, 2278. (1970).
Rosen, N.: A classical picture of quantum mechanics, Nuovo Cimento 19 B, No. 1, 90 (1974).
Lemos, N. A.: Stochastic derivation of the Birula-Mycielski nonlinear wave equation Phys. Lett. 94A (1), 20 (1983).
Glauber, R. J.: Amplifiers, Attenuators and the Quantum Theory of Measure- ment, preprint of the Harvard Univ., Lyman Lab. of Physics. (1986).
Mo ̈ssbauer, R. L.: Kernresonanzfluoreszenz von Gammastrahlung in Ir191, Z. Phys. 151, 124 (1958).
Barut, A. O.: Quantum Theory of Single Events: Localized de Broglie wavelets, Schro ̈dinger Waves and Classical Trajectories, preprint ICTP Trieste IC/90/99, (1990).
Kamesberger,J.andZeilinger,A.:NumericalsolutionofanonlinearSchro ̈dinger equation for neutron optics experiments, Physica B + C, 151, 193 (1988).
DOI: http://dx.doi.org/10.23755/rm.v52i0.1606
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 M. Pardy
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.