Bal Kishan Dass, Gangmei Sobha


Lower and upper bounds for the existence of linear codes which correct burst of length b (fixed) and whose weight lies between certain limits have been presented.


Error detecting codes; error correcting codes; burst errors; moderate-density burst; lower and upper bounds

Full Text:



CHIEN, R.T. and D.T. TANG (1965) : On definition of a Burst, IBM J. Research & Develop., 9(4), 292-293.

DASS, B.K. (1975) : A sufficient Bound for Codes Correcting Bursts with Weight Constraints, Journal of the Association for Computing Machinery (J. ACM), Vol.22, No.4, 501-503.

DASS, B.K. (1980) : On a Burst-Error Correcting Linear Codes, J. Infor. & Opt. Sciences, Vol.1, No.3, 291-295.

DASS, B.K. (1983) : Low Density Burst-Error Correcting Linear Codes, Adv. in Mngt. Studies, Vol.2, pp.375-385.

DASS, B.K. and G. SOBHA (2000) : High-Density Burst Error Correcting Linear Codes, unpublished.

HAMMING, R.W. (1950) : Error Detecting and Error Correcting Codes, Bell System Tec. J., 29, 147-160.

PETERSON, W.W. and E.J. WELDON, Jr. (1972) : Error-Correcting Codes, Cambridge, Mass : The M.I.T. Press.

SHARMA, B.D. and S.N. GUPTA (1975) : On the existence of Moderate-Density Burst Codes, Journal of Mathematical Sciences, Vol.10, 8-12.


  • There are currently no refbacks.

Copyright (c) 2003 Bal Kishan Dass, Gangmei Sobha

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.