Forms of Crossed and Simple Polygons
Abstract
In this paper the author presents a new form of hexagon and the solution of the open problem of classifying plane hexagons. In particular are illustrated the forms of crossed and simple n-gons for n = 3, 4, 5, 6 and also the forms of simple ones for n = 7, 8, 9. A graphic way to construct new forms of polygons is illustrated.
Keywords
Full Text:
PDFReferences
Brusotti, L. (1936). “Poligoni e poliedri”. Enciclopedia delle matematiche elementari, II, 259-320.
Fitzpatrick, R. (2008). Euclid’s Elements of Geometry. http://farside.ph.utexas.edu/Books/Euclid/Elements.pdf ; last access: 2018-07-05.
Girard, A. (1626). Tables de sinus, tangentes & secantes. A la Haye: Ed. Iacob Elzevir.
Grünbaum, B. (1975). “Polygons”. Lecture Notes in Mathematics - The Geometry of Metric and Linear Spaces, 490, 147-184.
Grünbaum, B. (2012). “Polygons: Meister was right and Poinsot was wrong but prevailed”. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 53, 57–71.
Sloane, N.J.A., editor (2018), The On-Line Encyclopedia of Integer Sequences, https://oeis.org; last access: 2019-06-28.
Steinitz, E. (1916). “Polyeder und Raumeinteilungen”. Encyklopädie der mathematischen Wissenschaften, Band III, 12, 3-14.
Togliani, L. (1978). “Morfologia degli esagoni piani”. Archimede, 30 (4), 201-210.
Togliani, L. (2001). “Nodi di un poligono piano”. Lettera Matematica Pristem, 39-40, 73-77.
DOI: http://dx.doi.org/10.23756/sp.v7i2.473
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Luigi Togliani
This work is licensed under a Creative Commons Attribution 4.0 International License.
Science & Philosophy - Journal of Epistemology, Science and Philosophy. ISSN 2282-7757; eISSN 2282-7765.