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Abstract

In this paper we show that a partition {Pα : α ∈ Λ} of a non-
empty set S, where Λ is an ordered set with the least element α0 and
Pα0 is a singleton set, induces a hyperaddition + such that (S,+) is
a commutative hypermonoid. Also by using a collection of subsets of
S, induced by the partition of the set S, we define hypermultiplication
on S so that (S,+, ·) is a semihyperring.

Key words: hypermonoid, semihyperring, ∗-collection.

MSC 2010: 20N20.

1 Introduction

The theory of hyperstructures has been introduced by the French Math-
ematician Marty [11] in 1934 at the age of 23 during the 8thcongress of Scan-
dinavian Mathematicians held in Stockholm. Since then many researchers
have worked on this new area and developed it.

The theory of hyperstructure has been subsequently developed by Corsini
[4, 5, 6], Mittas [13], Stratigopoulos [16] and various authors. Basic defini-
tions and results about the hyperstructures are found in [5, 6]. Some re-
searchers, namely, Davvaz [7], Massouros [12], Vougiouklis [18] and others
developed the theory of algebraic hyperstructures.

There are different notions of hyperrings (R,+, ·). If the addition + is a
hyperoperation and the multiplication · is a binary operation then we say
the hyperring is an Krasner (additive) hyperring [10]. Rota [15] introduced

3



A. Asokkumar

a multiplicative hyperring, where + is a binary operation and · is a hy-
peroperation. De Salvo [8] introduced a hyperring in which addition and
multiplication are hyperoperations. These hyperrings are studied by Rahna-
mani Barghi [14] and by Asokkumar and Velrajan [1, 2, 17]. Chvalina [3]
and Hoskova [3, 9], studied hν-groups, Hν-rings.

In this paper, by using different partitions of a set, we construct different
semihyperrings (S,+, ·) where both + and · are hyperoperations.

2 Preliminaries

This section explains some basic definitions that have been used in the
sequel.

A hyperoperation ◦ on a non-empty set H is a mapping of H × H into
the family of non-empty subsets of H (i.e., x ◦ y ⊆ H, for every x, y ∈ H). A
hypergroupoid is a non-empty set H equipped with a hyperoperation ◦. For
any two subsets A, B of a hypergroupoid H, the set A◦B means

⋃
a∈A
b∈B

(a◦b).
A hypergroupoid (H, ◦) is called a semihypergroup if x◦(y◦z) = (x◦y)◦z

for all x, y, z ∈ H(the associative axiom). A semihypergroup H is said to
be regular (in the sense of Von Neumann) if a ∈ a ◦H ◦ a for every a ∈ H.
A hypergroupoid (H, ◦) is called a quasihypergroup if x ◦ H = H ◦ x = H
for every x ∈ H(the reproductive axiom). A reproductive semihypergroup
is called a hypergroup(in the sense of Marty).A comprehensive review of the
theory of hypergroups appears in [5].

Definition 2.1. A semihyperring is a non-empty set R with two hyperop-
erations + and · satisfying the following axioms:
(1) (R,+) is a commutative hypermonoid, that is,

(a) (x+ y) + z = x+ (y + z) for all x, y, z ∈ R,
(b) there exists 0 ∈ R, such that x+ 0 = 0 + x = {x} for all x ∈ R,
(c) x+ y = y + x for all x, y ∈ R.

(2) (R, ·) is a semihypergroup, that is, x ·(y ·z) = (x ·y) ·z for all x, y, z ∈ R.
(3) The hyperoperation · is distributive with respect to hyperoperation ’+’,

that is, x · (y + z) = x · y + x · z and (x + y) · z = x · z + y · z for all
x, y, z ∈ R.
(4) There exists element 0 ∈ R, such that x · 0 = 0 · x = 0 for all x ∈ R.

Definition 2.2. Let S be a semihyperring, An element a ∈ S is said to be
regular if there exists an element y ∈ S such that x ∈ xyx. A semihyperring
S is said to be regular if each element of S is regular.
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3 Semihyperring constructed from

a ∗-collection.

In this section, for a given commutative hypermonoid (S,+), we define
hyperoperation · on S suitably so that (S,+, ·) is a regular semihyperring.

Definition 3.1. Let S be a commutative hypermonoid. A collection of non-
empty subsets {Sa : a ∈ S} of S satisfying the following conditions is called a
∗-collection if (i) Sa = {0} if and only if a = 0, (ii) if a 6= 0 then {0, a} ⊆ Sa,
(iii)

⋃
x∈Sa Sx = Sa for every a ∈ S, (iv) Sa + Sa = Sa for every a ∈ S and

(v)
⋃
x∈a+b Sx = Sa + Sb for every a, b ∈ S.

Example 3.2. Consider the set S = {0, a, b}. If we define a hyperoperation
+ on S as in the following table, then (S,+) is a commutative hypermonoid.

+ 0 a b
0 0 a b
a a {a,b} {a,b}
b b {a,b} {a,b}

Now it is easy to see that S0 = {0};Sa = S;Sb = S is a ∗-collection.

Example 3.3. Consider the set S={0,a,b}. If we define a hyperoperation +
on S as in the following table, then (S,+) is a commutative hypermonoid.

+ 0 a b
0 0 a b
a a {a} {a,b}
b b {a,b} {b}

Now it is easy to see that S0 = {0};Sa = S;Sb = S is a ∗-collection. Now
we show that S0 = {0};Sa = {a, 0};Sb = {b, 0} is another ∗-collection.
For each a ∈ S,

⋃
x∈Sa Sx =

⋃
x∈{a,0} Sx = Sa

⋃
S0 = {a, 0}

⋃
{0} = {a, 0} =

Sa. Also S0 + S0 = {0} + {0} = {0} = S0;Sa + Sa = {0, a} + {0, a} =
{0, a} = Sa;Sb + Sb = {0, b}+ {0, b} = {0, b} = Sb. Further, for a, b ∈ S, we
get

⋃
x∈a+b Sx =

⋃
x∈{a,b} Sx = Sa

⋃
Sb = {0, a, b} = Sa + Sb.

Example 3.4. Consider the set S={0,a,b}. If we define a hyperoperation +
on S as in the following table, then (S,+) is a commutative hypermonoid.

+ 0 a b
0 0 a b
a a {0,a} S
b b S {0,b}
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It is easy to show that S0 = {0} ; Sa = S for every a 6= 0 ∈ S, is a ∗-collection
and S0 = {0} ; Sa = {a, 0} for every a 6= 0 ∈ S is another ∗-collection

Example 3.5. Consider the set S={0,a,b,c}. If we define a hyperoperation
+ on S as in the following table, then (S,+) is a commutative hypermonoid.

+ 0 a b c
0 {0} {a} {b} {c}
a {a} {a} {a, b} {a, c}
b {b} {a, b} {b} {b, c}
c {c} {a, c} {b, c} {c}

In this commutative hypermonoid, each one of the following is a ∗-collection.

S0 = {0} ; Sa = {a, 0} for every a 6= 0 ∈ S,
S0 = {0} ; Sa = S for every a 6= 0 ∈ S,
S0 = {0};Sa = {0, a};Sb = {0, b, a};Sc = {0, c, a},
S0 = {0};Sa = {0, a, b};Sb = {0, b};Sc = {0, c, b},
S0 = {0};Sa = {0, a, c};Sb = {0, b, c};Sc = {0, c}.

Theorem 3.6. Let S be a commutative hypermonoid with the additive iden-
tity 0 with the condition that x + y = {0} for x, y ∈ S implies either x = 0
or y = 0. Let {Sa : a ∈ S} be a ∗-collection on S. For a, b ∈ S, if we define a
hypermultiplication on S as

a · b =

{
Sa if a 6= 0, b 6= 0,

0 otherwise

then (S,+, .) is a regular semihyperring.

Proof. From the definition of the hypermultiplication, a · 0 = 0 · a = 0 for all
a ∈ S. Let a, b, c ∈ S. If any one of a, b, c is 0, then a · (b · c) = {0} = (a · b) · c.
If a 6= 0, b 6= 0 and c 6= 0, then a · (b · c) = a ·Sb = Sa. Also, (a · b) · c = Sa · c =⋃
x∈Sa(x · c) =

⋃
x∈Sa Sx = Sa. Thus (a · b) · c = a · (b · c). Therefore, (S, ·) is

a semihypergroup.

Let a, b, c ∈ S. If a = 0 or b = 0 or c = 0, then it is obvious that
a · (b + c) = a · b + a · c. Suppose a 6= 0, b 6= 0 and c 6= 0. If 0 ∈ b + c,
then a · (b + c) = S0 ∪ Sa = Sa = Sa + Sa = a · b + a · c. If 0 /∈ b + c, then
a · (b+ c) = Sa = Sa + Sa = a · b+ a · c. Thus a · (b+ c) = a · b+ a · c.

Now we prove (a + b) · c = a · c + b · c. For, (a + b) · c =
⋃
x∈a+b x.c =⋃

x∈a+b Sx = Sa + Sb = a · c + b · c. Therefore, (a + b) · c = a · c + b · c. Thus
(S,+, ·) is a semihyperring.

Let x 6= 0 ∈ S. Now, for any y 6= 0 ∈ S, we have x ∈ Sx = x · y ⊆ x ·Sy =
x · (y · x). Hence the semihyperring is regular.
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Example 3.7. The semihyperring obtained by using the Theorem 3.1 in the
Example 3.1 is as follows.

+ 0 a b
0 0 a b
a a {a,b} {a,b}
b b {a,b} {a,b}

. 0 a b
0 0 0 0
a 0 S S
b 0 S S

Example 3.8. The semihyperrings obtained by using the Theorem 3.1 in
the Example 3.2 are as follows.

+ 0 a b
0 0 a b
a a {a} {a,b}
b b {a,b} {b}

. 0 a b
0 0 0 0
a 0 S S
b 0 S S

. 0 a b
0 0 0 0
a 0 {0, a} {0,a}
b 0 {0,b} {0,b}

Example 3.9. The semihyperrings obtained by using the Theorem 3.1 in
the Example 3.3 are as follows.

+ 0 a b
0 0 a b
a a {0,a} S
b b S {0,b}

. 0 a b
0 0 0 0
a 0 S S
b 0 S S

. 0 a b
0 0 0 0
a 0 {0, a} {0,a}
b 0 {0,b} {0,b}

Theorem 3.10. Let S be a commutative hypermonoid with the additive iden-
tity 0 with the condition that x + y = 0 for x, y ∈ S implies either x = 0 or
y = 0. Let {Sa : a ∈ S} be a ∗-collection on S. For a, b ∈ S, if we define a
hypermultiplication on S as

a · b =

{
Sb if a 6= 0, b 6= 0,

0 otherwise

then (S,+, .) is a regular semihyperring.

Proof. The proof follows by the same lines as in the Theorem 3.1. Let x 6=
0 ∈ S. Now, for any y 6= 0 ∈ S, we have x ∈ Sx = y · x ⊆ Sy · x = (x · y) · x.
Hence the semihyperring is regular.
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Theorem 3.11. Let S be a commutative hypermonoid with the additive iden-
tity 0 such that x + y = 0 for x, y ∈ S implies either x = 0 or y = 0.
Let {Sa : a ∈ S} be a ∗-collection on S such that Sa ∩ Sb = X for all
a 6= 0, b 6= 0 ∈ S where X is a subset of S such that X + X = X. For
a, b ∈ S, if we define a hypermultiplication on S as

a · b =

{
Sa ∩ Sb = X if a 6= 0, b 6= 0,

0 otherwise

then (S,+, .) is a regular semihyperring.

Proof. Since 0 ∈ Sa and 0 ∈ Sb, we get 0 ∈ Sa∩Sb. This implies that the set X
is non-empty. From the definition of hypermultiplication, a · 0 = 0 · a = 0 for
all a ∈ S. Let a, b, c ∈ S. If any one of a, b, c is 0, then a·(b·c) = {0} = (a·b)·c.
If a 6= 0, b 6= 0 and c 6= 0, then a·(b·c) = X = (a·b)·c. Thus (a·b)·c = a·(b·c).
Therefore, (S, ·) is a semihypergroup.

If a = 0 or b = 0 or c = 0, then it is obvious that a · (b+ c) = a · b+ a · c.
Suppose a 6= 0, b 6= 0 and c 6= 0 then, a · (b+ c) = X = X +X = a · b+ a · c.
Similarly we have (a+b)·c = X = a·c+b·c. Thus (S,+, ·) is a semihyperring.
Let x 6= 0 ∈ S. Since x ∈ Sx, we have x ∈ Sx = x · x ⊆ x · Sx = x · (x · x).
Hence the semihyperring is regular.

Example 3.12. Using the Theorem 3.3 in the commutative hypermonoid
given in the Example 3.4 and by using the following each ∗-collection

S0 = {0};Sa = {0, a};Sb = {0, b, a};Sc = {0, c, a} with X = {0, a},
S0 = {0};Sa = {0, a, b};Sb = {0, b};Sc = {0, c, b} with X = {0, b},
S0 = {0};Sa = {0, a, c};Sb = {0, b, c};Sc = {0, c} with X = {0, c}, we

get three hypermultiplications so that we get three semihyperrings.

4 Semihyperrings induced by a Partition.

In this section we show that a partition of a non-empty set S induces a
hyperaddition + such that, (S,+) is a commutative hypermonoid and also
the partition induces a ∗-collection. Using this ∗-collection,we define hyper-
multiplication · on the set S, so that (S,+, .) a regular semihyperring.

Theorem 4.1. Let S be any non-empty set and {Pα}α∈Λ be a partition of
S, where Λ is an ordered set with the least element α0 ∈ Λ and Pα0 be a
singleton set, say, {0}. Define a hyperaddition ”+” on S as follows: For all
a ∈ S, 0 +a = a+ 0 = {a}. For a 6= 0, b 6= 0 ∈ S, suppose a ∈ Pα and b ∈ Pβ
and γ = max {α, β},

a+ b =

{
Pγ if α 6= β,

Pα = Pβ if α = β

8
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Then (i) (S,+) is a commutative monoid and (ii) the partition {Pα}α∈Λ

induces a ∗-collection.

Proof. It is clear that a + b = b + a for all a, b ∈ S. Let a, b, c ∈ S. Suppose
that a ∈ Pα, b ∈ Pβ and c ∈ Pγ, where α, β, γ ∈ Λ.

Case 1 : Suppose α < β < γ.
Then a+ (b+ c) = a+ Pγ = Pγ. Also, (a+ b) + c = Pβ + c = Pγ. Therefore,
a+ (b+ c) = (a+ b) + c.

Case 2 : Suppose β < α < γ.
Then a+ (b+ c) = a+ Pγ = Pγ. Also, (a+ b) + c = Pα + c = Pγ. Therefore,
a+ (b+ c) = (a+ b) + c.

Case 3 : Suppose α < γ < β.
Then a+ (b+ c) = a+ Pβ = Pβ. Also, (a+ b) + c = Pβ + c = Pβ. Therefore,
a+ (b+ c) = (a+ b) + c.

Case 4 : Suppose γ < α < β.
Then a+ (b+ c) = a+ Pβ = Pβ. Also, (a+ b) + c = Pβ + c = Pβ. Therefore,
a+ (b+ c) = (a+ b) + c.

Case 5 : Suppose γ < β < α.
Then a+ (b+ c) = a+ Pβ = Pα. Also, (a+ b) + c = Pα + c = Pα. Therefore,
a+ (b+ c) = (a+ b) + c.

Case 6 : Suppose β < γ < α.
Then a+ (b+ c) = a+ Pγ = Pα. Also, (a+ b) + c = Pα + c = Pα. Therefore,
a+ (b+ c) = (a+ b) + c.

Case 7 : Suppose α = β < γ.
Then a+ (b+ c) = a+ Pγ = Pγ. Also, (a+ b) + c = Pβ + c = Pγ. Therefore,
a+ (b+ c) = (a+ b) + c.

Case 8 : Suppose γ < α = β.
Then a+ (b+ c) = a+ Pα = Pα. Also, (a+ b) + c = Pα + c = Pα. Therefore,
a+ (b+ c) = (a+ b) + c.

Case 9 : Suppose α = γ < β.
Then a+ (b+ c) = a+ Pβ = Pβ. Also, (a+ b) + c = Pβ + c = Pβ. Therefore,
a+ (b+ c) = (a+ b) + c.

Case 10 : Suppose β < α = γ.
Then a+ (b+ c) = a+ Pα = Pα Also, (a+ b) + c = Pα + c = Pα. Therefore,
a+ (b+ c) = (a+ b) + c.

Case 11 : Suppose β = γ < α.
Then a+ (b+ c) = a+ Pγ = Pα. Also, (a+ b) + c = Pα + c = Pα. Therefore,
a+ (b+ c) = (a+ b) + c.

Case 12 : Suppose α < β = γ.
Then a+ (b+ c) = a+ Pγ = Pγ. Also, (a+ b) + c = Pβ + c = Pγ. Therefore,
a+ (b+ c) = (a+ b) + c.

9
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Case 13 : Suppose α = β = γ.
Then a+(b+c) = Pα = Pβ = Pγ = (a+b)+c. Therefore, a+(b+c) = (a+b)+c.

Thus the hyperoperation + is associative. So, (S,+) is a commutative
hypermonoid. Let S0 = Pα0 = {0}. For a 6= 0 ∈ S, then Sa =

⋃
α0≤t≤α Pt

where a ∈ Pα. It is clear that Sa =
⋃
x∈Sa Sx. For a 6= 0 ∈ S, and a ∈ Pα,

then Sa + Sa =
⋃
α0≤t≤α Pt +

⋃
α0≤t≤α Pt =

⋃
α0≤t≤α Pt = Sa. Also S0 + S0 =

{0} + {0} = {0} = S0. If either a = 0 or b = 0, then
⋃
x∈a+b Sx = Sa + Sb.

Let a 6= 0, b 6= 0 ∈ S. Then a ∈ Pα and b ∈ Pβ for some α, β ∈ Λ.

Case 1 : Suppose α 6= β, say α < β, then a + b = Pβ. Now x ∈ a + b
implies x ∈ Pβ. Therefore, Sx =

⋃
α0≤t≤β Pt. Hence⋃

x∈a+b

Sx =
⋃

x∈a+b

(
⋃

α0≤t≤β

Pt) =
⋃

α0≤t≤α

Pt =
⋃

α0≤t≤α

Pt +
⋃

α0≤t≤β

Pt = Sa + Sb.

Case 2 : Suppose α = β then a + b = Pα. Therefore,
⋃
x∈a+b Sx =⋃

x∈Pα Sx = Sa + Sb. Therefore,
⋃
x∈a+b Sx = Sa + Sb. Thus {Sa : a ∈ S} is a

∗-collection.

Remark 4.2. Let S be any non-empty set and x0 ∈ S. Let P0 = {x0}
and {P1, P2, P3, · · ·, Pn, · · ·} be a partition of S \ {x0}. Then the partition
{P0, P1, P2, ···, Pn, ···} of S induces a hyperoperation + on S so that (S,+) is a
commutative hypermonoid and {P0, P1, P2, · · ·, Pn, · · ·} induces a ∗-collection.

Theorem 4.3. Let S be any non-empty set and {Pα}α∈Λ be a partition of
S, where Λ is an ordered set with the least element α0 and Pα0 is a singleton
set.Then the partition induces a semihyperring.

Proof. By the Theorem 4.1, the partition induces a hyperaddition + such
that (S,+) is a commutative hypermonoid and it also induces a ∗-collection.
Hence by the Theorem 3.1, we get a regular semihyperring.

Example 4.4. We illustrate the construction of semihyperrings from the
following examples. Let S = {0, a, b}. Consider a partition P1 = {0}, P2 =
{a}, P3 = {b} of S. Here, the indexing set is Λ = {1, 2, 3} which is an ordered
set. The commutative hypermonoid induced by this partition is given by the
following Caley table.

+ 0 a b
0 0 a b
a a {a} {b}
b b {b} {b}

10
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The ∗-collection induced by this partition is S0 = {0}, Sa = {0, a}, Sb =
{0, a, b} and the hypermultiplication induced by the ∗-collection is given in
the Caley table.

. 0 a b
0 0 0 0
a 0 {0,a} {0,a}
b 0 {0,a,b} {0,a,b}

Example 4.5. Let S = {0, a, b}. Consider a partition P1 = {0}, P2 =
{b}, P3 = {a} of S. Here, the indexing set is Λ = {1, 2, 3} which is an ordered
set. The commutative hypermonoid induced by this partition is given by the
following Caley table.

+ 0 a b
0 0 a b
a a {a} {a}
b b {a} {b}

The ∗-collection induced by this partition is S0 = {0}, Sa = {0, a, b}, Sb =
{0, b} and the hypermultiplication induced by the ∗-collection is given in the
Caley table.

. 0 a b
0 0 0 0
a 0 {0,a,b} {0,a,b}
b 0 {0,b} {0,b}

Example 4.6. Let S = {0, a, b}. Consider a partition P1 = {0}, P2 = {a, b}
of S. Here, the indexing set is Λ = {1, 2} which is an ordered set. The
commutative hypermonoid induced by this partition is given by the following
Caley table.

+ 0 a b
0 0 a b
a a {a,b} {a,b}
b b {a,b} {a,b}

The ∗-collection induced by this partition is S0 = {0}, Sa = {0, a, b}, Sb =
{0, a, b} and the hypermultiplication induced by the ∗-collection is given in
the Caley table.

. 0 a b
0 0 0 0
a 0 {0,a,b} {0,a,b}
b 0 {0,a,b} {0,a,b}

Thus we have a regular semihyperring.

11
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Conclusion : In the section 3 of this paper, for the given commutative
hypermonoid, given ∗-collection, we construct three semihyperrings. In the
section 4, by the Theorem 4.1, a partition of a set S induces a hyperaddition
+ such that (S,+) is a commutative hypermonoid and it also induces a ∗-
collection. Hence by the Theorem 3.1, we get a semihyperring. Thus we get
semihyperrings depending on the partitions of the set satisfies the conditions
of the Theorem 4.2. All the semihyperrings so constructed are regular.
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Abstract

In this paper, we investigated the number of hyper MV -algebras
of order 3. In fact, we prove that there are 33 hyper MV -algebras of
order 3, up to isomorphism.
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1 Introduction

The concept of MV -algebras was introduced by Chang in [1] in order to
show Lukasiewicz logic to be standard complete, i.e. complete with respect
to evaluations of propositional variables in the real unit interval [0, 1]. In
[6], Mundici showed that any MV -algebra is an interval of an Abelian lat-
tice ordered group with a strong unit. Also, he introduced the concept of
state on MV -algebra. Georgescu and Iorgulescu [2] introduced a new non-
commutative algebraic structures, which were called pseudo MV -algebras.
It can be obtained by dropping commutative axioms in MV -algebras, which
are a generalization of MV -algebras. The hyper structure theory was intro-
duced by F. Marty [5] at the 8th congress of Scandinavian Mathematicians
in 1934. Since then many researches have worked in these areas. Recently in
[4], Sh. Ghorbani, A. Hasankhni and E. Eslami applied the hyper structure
to MV -algebras and introduced the concept of a hyper MV -algebra which
is a generalization of an MV -algebra and investigated some related results.
Now, in this paper we find all hyper MV -algebras of order 3.
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2 Preliminary

Definition 2.1. [1] An MV -algebra (X,⊕,∗ , 0) is a set X equipped with
a binary operation ⊕, a unary operation ∗ and a constant 0 satisfying the
following equations:

(MV1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z,

(MV2) x⊕ y = y ⊕ x,

(MV3) x⊕ 0 = x,

(MV4) (x∗)∗ = x,

(MV5) x⊕ 0∗ = 0∗,

(MV6) (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x,

for all x, y, z ∈ X.

Definition 2.2. [3]
A hyperalgebra (M,⊕,∗ , 0) with a hyperoperation ⊕ : M × M −→

P∗(M), a unary operation ∗ : M −→ M and a constant 0, is said to be
a hyper MV -algebra if and only if satisfies the following axioms, for all
x, y, z ∈M :

(HMV1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z,
(HMV2) x⊕ y = y ⊕ x,
(HMV3) (x∗)∗ = x,
(HMV4) 0∗ ∈ x⊕ 0∗,
(HMV5) (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x,
(HMV6) 0∗ ∈ x⊕ x∗,
(HMV7) If x 6 y and y 6 x, then x = y,
where x 6 y is defined by 0∗ ∈ x∗ ⊕ y. For every X, Y ⊆ M , X 6 Y if

there exist x ∈ X and y ∈ Y such that x 6 y. We define 1 = 0∗

Theorem 2.3. [3] Let (M,⊕,∗ , 0) be a hyper-MV algebra. Then for all
x, y, z ∈ M and for all non-empty subsets A, B and C of M the following
hold:

(i) (A⊕B)⊕ C = A⊕ (B ⊕ C),
(ii) 0 6 x 6 1, x 6 x and A 6 A,
(iii) If x 6 y then y∗ 6 x∗ and A 6 B implies B∗ 6 A∗,
(iv) If x 6 0 or 1 6 x, then x = 0 or x = 1, respectively,
(v) 0⊕ 0 = {0},
(vi) x ∈ x⊕ 0,
(vii) If x⊕ 0 = y ⊕ 0, then x = y.
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3 Classification of hyper MV -algebras of or-

der 3

In this section we try to find all hyper MV -algebras of order 3, up to
isomorphism.

Theorem 3.1. Let M be a hyper MV -algebra and x be an element of M
such that 0⊕ x = {x} and x∗ = x. Then the following statements hold:

(i) (1⊕ x)∗ ⊕ x = {x},
(ii) (1⊕ x)∗ ⊕ 1 = x⊕ x,
(iii) x 6∈ 1⊕ x and 0 6∈ 1⊕ x.

Proof. Since 0∗ = 1, then by hypothesis and (HMV 5);

(1⊕x)∗⊕x = (0∗⊕x)∗⊕x = (x∗⊕0)∗⊕0 = (x⊕0)∗⊕0 = x∗⊕0 = x⊕0 = {x}

(1⊕ x)∗ ⊕ 1 = (x⊕ 1)∗ ⊕ 1 = ((x∗)∗ ⊕ 1)∗ ⊕ 1 =

= (1∗ ⊕ x∗)∗ ⊕ x∗ = (0⊕ x)∗ ⊕ x∗ = x∗ ⊕ x∗ = x⊕ x

and so (i) and (ii) hold.
(iii) If x ∈ 1⊕x, then x = x∗ ∈ (1⊕x)∗ and so x⊕x = x∗⊕x ⊆ (1⊕x)∗⊕x.

By (i), x⊕ x ⊆ {x}. Hence x⊕ x = {x}. Now, since by (HMV6), 1 = 0∗ ∈
x ⊕ x∗ = x ⊕ x = {x}, then x = 1 and so 0 = 1∗ = x∗ = x = 1, which is a
contradiction. Hence x /∈ 1⊕ x. Now, let 0 ∈ 1⊕ x. Then 1 = 0∗ ∈ (1⊕ x)∗

and so 1⊕ x ⊆ (1⊕ x)∗ ⊕ x. By (i), 1⊕ x ⊆ {x}. Thus 1⊕ x = {x}, which
is a contradiction. Hence 0 /∈ 1⊕ x.

Note. From now one in this paper, we let M = {0, a, 1} be a hyper
MV -algebra of order 3.

Theorem 3.2. (i) 1 ≤ 1, 0 ≤ 0, a ≤ a, 0 ≤ 1 and 0 ≤ a,
(ii) a 6≤ 0,
(iii) a∗ = a,
(iv) 1 ∈ 1⊕ a.

Proof. (i). By Theorem 2.3(ii), the proof is clear.
(ii). By Theorem 2.3(iv), the proof is clear.
(iii). By Definition 2.2, 0∗ = 1 and by (HMV3), 0 = (0∗)∗ = 1∗. Now, if

a∗ = 1, then 0 = 1∗ = (a∗)∗ = a, which is a contradiction. By similar way, if
a∗ = 0, then 1 = 0∗ = (a∗)∗ = a, which is a contradiction. Hence, a∗ = a.

(iv). By (HMV4), 1 = 0∗ ∈ 0∗ ⊕ a = 1⊕ a.

Theorem 3.3. If 0⊕ a = {a} or 1⊕ a = {1}, then M is an MV -algebra.
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Proof. Let 0 ⊕ a = {a}. Since a∗ = a, then by Theorem 3.1(iii), a 6∈ 1 ⊕ a
and 0 6∈ 1⊕ a and so 1⊕ a = {1}.

Moreover, By Theorem 3.1(iii) and (i), 0 6∈ 1⊕ 0 and (1⊕ 0)∗⊕ 0 = {0}.
Since 0 6∈ {a} = 0⊕ a and 0 6∈ 1⊕ 0, then (1⊕ 0)∗ = {0} and so 1⊕ 0 = {1}.
By Theorem 3.1(i) and (ii), 0 ⊕ 1 = {1} = (1 ⊕ a)∗ ⊕ 1 = a ⊕ a. Hence
a⊕ a = {1}. Now, by (HMV1),

1⊕ 1 = (a⊕ a)⊕ 1 = a⊕ (1⊕ a) = a⊕ 1 = {1}.

Therefore, x⊕y is singleton for all x, y ∈M and so M is an MV -algebra.

Now, if 1⊕a = {1}, then {0} = {1∗} = (1⊕a)∗ and so 0⊕a = (1⊕a)∗⊕a.
By (HMV5),

0⊕ a = (1⊕ a)∗ ⊕ a = 0⊕ (0⊕ a)∗.

By Theorem 3.2, a 6< 0, 1 6∈ 0⊕ a. If 0 ∈ 0⊕ a, then 0⊕ a = {0, a} and

{0, a} = 0⊕ a = 0⊕ (0⊕ a)∗ = 0⊕ {0, a}∗ =

= 0⊕ {1, a} = (0⊕ 1) ∪ (0⊕ a) = (0⊕ 1) ∪ {0, a}.

Hence 0 ⊕ 1 ⊆ {0, a}. By (HMV 4), 1 ∈ 0 ⊕ 1. Thus 1 ∈ {0, a}, which is a
contradiction. Thus 0 6∈ 0 ⊕ a and so 0 ⊕ a = {a}. Therefore, M is a same
MV -algebra, which is as follows:

⊕1 0 a 1

0 {0} {a} {1}
a {a} {1} {1}
1 {1} {1} {1}

Definition 3.4. We call a hyper MV -algebra is proper, if it is not an MV -
algebra.

Lemma 3.5. Let M = {0, a, 1} be a proper hyper MV -algebra of order 3.
Then

(i) 0⊕ a = {0, a},
(ii) 0⊕ 1 = {1}, {0, 1} or M ,

(iii) a⊕ a = {1}, {0, 1}, {1, a} or M ,

(iv) 1⊕ a = {0, 1}, {1, a} or M ,

(v) 1⊕ 1 = {1}, {0, 1} {1, a} or M ,

(vi) If a⊕ a = {1}, then 0⊕ 1 = M .
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Proof. (i). Since a 6< 0, then 1 6∈ 0⊕a. By Theorem 2.3 (vi), a ∈ 0⊕a.
Thus 0⊕ a = {a} or {0, a}. If 0⊕ a = {a}, then by Theorem 3.3, M is not
proper. Thus 0⊕ a = {0, a}

(ii). Since 0 ≤ 0, then 1 = 0∗ ∈ 0∗ ⊕ 0 = 1 ⊕ 0 = 0 ⊕ 1. Hence it is
sufficient to show that 0 ⊕ 1 6= {1, a}. Let 0 ⊕ 1 = {1, a}, by the contrary.
Then by (HMV1),

{1, a} = 0⊕ 1 = (0⊕ 0)⊕ 1 = (0⊕ 1)⊕ 0 = {1, a} ⊕ 0 = {0, a, 1},

which is impossible. Therefore, 0⊕ 1 6= {1, a} and so 0⊕ 1 = {1}, {0, 1} or
M .

(iii), (v). Since a ≤ a and 0 ≤ 1, then 1 ∈ a⊕ a and 1 ∈ 1⊕ 1 and so (v)
and (iii) are hold.

(iv). Since 0 ≤ a, then 1 ∈ 1⊕ a. By Theorem 3.3, if a⊕ 1 = {1}, then
M is an MV algebra which is impossible. Hence 1 ⊕ a = {0, 1}, {1, a} or
M .

(vi). Let a⊕ a = {1}. Then by (HMV1),

0⊕ 1 = 0⊕ (a⊕ a) = (0⊕ a)⊕ a = {0, a} ⊕ a = (0⊕ a) ∪ (a⊕ a) = M.

By Lemma 3.5 (ii), we know that 0 ⊕ 1 = {1}, {0, 1} or M . So, for the
classification of all hyper MV -algebras of order 3, we consider the following
three cases.

Case 1: 0⊕ 1 = {1}

Lemma 3.6. Let M = {0, a, 1} be a proper hyper MV -algebra of order 3
and 0⊕ 1 = {1}. Then

(i) a⊕ a = {1, a} or M ,
(ii) 1⊕ 1 = {1},
(iii) 1⊕ a = M .

Proof. (i). By Lemma 3.5 (i) and (iii), 0⊕a = {0, a} and 1 ∈ a⊕a. Hence

(0⊕ a)⊕ a = {0, a} ⊕ a = (0⊕ a) ∪ (a⊕ a) = {0, a} ∪ (a⊕ a) = M.

Since by (HMV1), (0 ⊕ a) ⊕ a = 0 ⊕ (a ⊕ a), then 0 ⊕ (a ⊕ a) = M . By
Lemma 3.5(iii), a ⊕ a = {1}, {0, 1}, {1, a} or M . If a ⊕ a = {1}, then
0⊕ (a⊕ a) = 0⊕ 1 = {1}, which is a contradiction.

If a ⊕ a = {0, 1}, then by Theorem 2.3(v), 0 ⊕ (a ⊕ a) = 0 ⊕ {0, 1} =
(0 ⊕ 0) ∪ (0 ⊕ 1) = {0, 1}, which is a contradiction. Hence, a ⊕ a = {1, a}
or M .
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(ii). By (HMV5), and Theorem 2.3(v),

(1⊕ 1)∗ ⊕ 1 = (0∗ ⊕ 1)∗ ⊕ 1 = (1∗ ⊕ 0)∗ ⊕ 0 = (0⊕ 0)∗ ⊕ 0 = 1⊕ 0 = {1}.

If 0 ∈ 1 ⊕ 1, then 1 ⊕ 1 ⊆ (1 ⊕ 1)∗ ⊕ 1 = {1} and so 0 /∈ 1 ⊕ 1, which is a
contradiction. If a ∈ 1⊕1, then a⊕1 ⊆ (1⊕1)∗⊕1 = {1}. Thus a⊕1 = {1}
and so by Theorem 3.3, M is an MV -algebra, which is a contradiction.
Hence, 1⊕ 1 = {1}.

(iii). By Lemma 3.5, 1 ⊕ a = {0, 1}, {1, a} or M . If 1 ⊕ a = {0, 1},
since by (HMV1), 1⊕ (1⊕ a) = (1⊕ 1)⊕ a = 1⊕ a, then 1⊕ (1⊕ a) = {1},
which is a contradiction. If 1⊕ a = {1, a}, since by (HMV1), 0⊕ (1⊕ a) =
(0 ⊕ 1) ⊕ a = 1 ⊕ a, then 0 ⊕ (1 ⊕ a) = (0 ⊕ 1) ∪ (0 ⊕ a) = M , which is a
contradiction. Hence, 1⊕ a = M .

Theorem 3.7. There are two non-isomorphic proper hyper MV -algebras of
order 3 such that 0⊕ 1 = {1}.

Proof. According Theorem 3.6, if M is a proper hyper MV -algebra
of order 3 and 0 ⊕ 1 = {1}, then we must investigate two following tables,
which both of them are non-isomorphic hyper MV -algebras.

⊕2 0 a 1

0 {0} {0, a} {1}
a {0, a} {1, a} {0, a, 1}
1 {1} {0, a, 1} {1}

⊕3 0 a 1

0 {0} {0, a} {1}
a {0, a} {0, a, 1} {0, a, 1}
1 {1} {0, a, 1} {1}

Case 2: 0⊕ 1 = {0, 1}

Lemma 3.8. Let M = {0, a, 1} be a proper hyper MV -algebra of order 3
and 0⊕ 1 = {0, 1}. Then

(i) (a⊕ a) ∪ (1⊕ a) = M ,
(ii) a⊕ 1 = {a, 1} or M ,
(iii) a⊕ a = {a, 1} or M ,
(iv) 1⊕ 1 = {0, 1} or {1}.

Proof. (i). Let 0⊕ 1 = {0, 1}. By Theorem 3.5(iv), since 1 ∈ 1⊕ a, by
(HMV1),

(0⊕a)⊕1 = (0⊕1)⊕a = {0, 1}⊕a = (0⊕a)∪(1⊕a) = {0, a}∪(1⊕a) = M.

On the other hands

(0⊕ a)⊕ 1 = {0, a} ⊕ 1 = (0⊕ 1) ∪ (a⊕ 1) = {0, 1} ∪ (a⊕ 1).
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Thus {0, 1} ∪ (a ⊕ 1) = M and so a ∈ a ⊕ 1. New, we consider two cases
0 ∈ a ⊕ 1 or 0 6= a ⊕ 1. If 0 ∈ a ⊕ 1, since by Theorem 3.5, 1 ∈ a ⊕ 1, then
a⊕1 = M and so (a⊕a)∪ (1⊕a) = M . Now, if 0 6= a⊕1, then by Theorem
3.5, a ∈ a⊕ 1. Hence by Theorem 3.2(iv), {1, a} ⊆ a⊕ 1. Thus

M = (0⊕ 1) ∪ (a⊕ 1) = {0, a} ⊕ 1 = {1, a}∗ ⊕ 1 ⊆ (a⊕ 1)∗ ⊕ 1 ⊆M

and so (a ⊕ 1)∗ ⊕ 1 = M . On the other hands, by (HMV5), (a ⊕ 1)∗ ⊕ 1 =
(0⊕ a)∗ ⊕ a. Hence (0⊕ a)∗ ⊕ a = M . Since 0⊕ a = {0, a}, then

M = (0⊕ a)∗ ⊕ a = {1, a} ⊕ a = (1⊕ a) ∪ (a⊕ a).

(ii). By Lemma 3.5(iv), it is enough to show that 1 ⊕ a = {0, 1}. Let
0 ∈ a ⊕ 1, by the contrary. Since by Lemma 3.5(iv) and (i), 0 ⊕ a = {0, a}
and 1 ∈ 1⊕ a, then

(0⊕ 1)⊕ a = {0, 1} ⊕ a = (0⊕ a) ∪ (1⊕ a) = M.

Thus by (HMV1),

M = (0⊕ 1)⊕ a = (0⊕ a)⊕ 1 = {0, 1} ∪ (1⊕ a).

and so a ∈ 1⊕a. Hence a⊕1 6= {0, 1} and so by lemma 3.5(iv), a⊕1 = {a, 1}
or M .

(iii). By Lemma 3.5(i), 0⊕ a = {0, a}. Now, since 1 ∈ a⊕ a, then

(0⊕ a)⊕ a = {0, a} ⊕ a = (0⊕ a) ∪ (a⊕ a) = M.

Hence, by (HMV1), 0 ⊕ (a ⊕ a) = (0 ⊕ a) ⊕ a = M . Since a 6∈ 0 ⊕ 0 and
a 6∈ 0⊕ 1, then a ∈ a⊕ a. Hence a⊕ a = {a, 1} or M .

(iv). Let a ∈ 1⊕ 1. By (HMV5),

a⊕ 1 = a∗ ⊕ 1 ⊆ (1⊕ 1)∗ ⊕ 1 = (0⊕ 0)∗ ⊕ 0 = {0, 1}.

which is a contradiction by (i). Hence a 6∈ 1 ⊕ 1 and so by Lemma 3.5(v),
1⊕ 1 = {0, 1} or {1}.

Theorem 3.9. There are 6 non-isomorphic proper hyper MV -algebras of
order 3 such that 0⊕ 1 = {0, 1}.

Proof. By Lemma 3.8 (iii), a⊕a = {a, 1} or M . If a⊕a = {a, 1}, then
by Lemma 3.8 (ii), a⊕1 = {a, 1} or M . By Lemma 3.8 (i), if a⊕a = {a, 1},
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then a⊕1 6= {a, 1}. Hence we must investigate 2 following tables which both
of them are hyper MV -algebras.

⊕4 0 a 1

0 {0} {0, a} {0, 1}
a {0, a} {a, 1} {0, a, 1}
1 {0, 1} {0, a, 1} {1}

⊕5 0 a 1

0 {0} {0, a} {0, 1}
a {0, a} {a, 1} {0, a, 1}
1 {1} {0, a, 1} {0, 1}

Now, if a⊕a = M , then by Lemma 3.8 (ii) and (iv), a⊕1 = {a, 1} or M and
1⊕ 1 = {0, 1} or {1}. Thus we must investigate 4 following tables, which all
of them are hyper MV -algebras.

⊕6 0 a 1

0 {0} {0, a} {0, 1}
a {0, a} {0, a, 1} {a, 1}
1 {0, 1} {a, 1} {1}

⊕7 0 a 1

0 {0} {0, a} {0, 1}
a {0, a} {0, a, 1} {a, 1}
1 {1} {a, 1} {0, 1}

⊕8 0 a 1

0 {0} {0, a} {0, 1}
a {0, a} {0, a, 1} {0, a, 1}
1 {0, 1} {0, a, 1} {1}

⊕9 0 a 1

0 {0} {0, a} {0, 1}
a {0, a} {0, a, 1} {0, a, 1}
1 {0, 1} {0, a, 1} {0, 1}

Case 3: 0⊕ 1 = M

Lemma 3.10. Let M = {0, a, 1} be a proper hyper MV -algebra of order 3
such that 0⊕ 1 = M . Then

(i) (a⊕ a) ∪ (1⊕ a) = M ,
(ii) If a⊕ a = {1}, then a⊕ 1 = 1⊕ 1 = M ,
(iii) If a ⊕ a = {0, 1}, then a ⊕ 1 = {a, 1} or M and if a ⊕ 1 = {a, 1},

then 1⊕ 1 = {1}, {0, 1} or M ,
(iv) If a ⊕ a = {a, 1}, then a ⊕ 1 = {0, 1} or M and if a ⊕ 1 = {0, 1},

then 1⊕ 1 = {a, 1} or M ,
(v) If a⊕ a = M and a⊕ 1 = {1, a}, then 1⊕ 1 = {1}, {0, 1} or M ,
(vi) If a⊕ a = M and a⊕ 1 = {0, 1}, then 1⊕ 1 = {0, 1}, {a, 1} or M .

Proof.
(i). Since by Lemma 3.5(iv), 1 ∈ 1 ⊕ a, then M = 0 ⊕ 1 = 1∗ ⊕ 1 ⊆

(a ⊕ 1)∗ ⊕ 1 and so (a ⊕ 1)∗ ⊕ 1 = M . Hence by (HMV5), (0 ⊕ a)∗ ⊕ a =
(a⊕ 1)∗ ⊕ 1 = M and so by Lemma 3.5(i),

M = (0⊕ a)∗ ⊕ a = {0, a}∗ ⊕ a = {1, a} ⊕ a = (1⊕ a) ∪ a⊕ a.
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(ii). Let a ⊕ a = {1}. Since 1 ∈ 1 ⊕ a, then by (HMV5) and Lemma
3.5(i),

1⊕ a = (1⊕ a) ∪ (a⊕ a) = {1, a} ⊕ a = {0, a}∗ ⊕ a = (0⊕ a)∗ ⊕ a

= (a⊕ 0)∗ ⊕ 0 = {1, a} ⊕ 0 = (1⊕ 0) ∪ (a⊕ 0)

= M

Now, since a⊕ a = {1} and 1⊕ a = M , then by (HMV1),

1⊕ 1 = (a⊕ a)⊕ (a⊕ a) = a⊕ (a⊕ (a⊕ a))

= a⊕ (a⊕ 1) = a⊕M = (a⊕ 1) ∪ (a⊕ a) ∪ (a⊕ 0) = M.

(iii). If a⊕ a = {0, 1}, then by (i) and Lemma 3.5(iv), a⊕ 1 = {a, 1} or
M . Let a⊕ 1 = {a, 1}. If 1⊕ 1 = {a, 1}, then by (HMV1) and (i),

M = (a⊕ a) ∪ (1⊕ a) = {a, 1} ⊕ a = (1⊕ 1)⊕ a

= 1⊕ (1⊕ a) = 1⊕ {1, a} = (1⊕ 1) ∪ (1⊕ a)

= (1⊕ 1) ∪ {1, a}

Hence 0 ∈ 1⊕ 1 = {a, 1}, which is a contradiction. Thus 1⊕ 1 6= {a, 1} and
so by Lemma 3.5(v), 1⊕ 1 = {1}, {0, 1} or M .

(iv). By (i), if a⊕ a = {a, 1}, then a⊕ 1 = {0, 1} or M .
If a⊕ 1 = {0, 1}, then by (HMV1),

M = {0, a} ∪ (1⊕ a) = {0, 1} ⊕ a = (1⊕ a)⊕ a

= 1⊕ (a⊕ a) = 1⊕ {a, 1} = (1⊕ a) ∪ (1⊕ 1)

= {0, 1} ∪ (1⊕ 1)

Hence a ∈ 1⊕ 1. By Lemma 3.5(v), 1⊕ 1 = {1, a} or M .
(v). Let a⊕a = M and 1⊕a = {1, a}. If 1⊕1 = {a, 1}, then by (HMV1),

M = (a⊕ a) ∪ (1⊕ a) = {1, a} ⊕ a = (1⊕ 1)⊕ a = 1⊕ (1⊕ a)

= 1⊕ {1, a} = (1⊕ 1) ∪ (1⊕ a)

= (1⊕ 1) ∪ {1, a}

Hence 0 ∈ 1 ⊕ 1 = {a, 1}, which is impossible. Thus 1 ⊕ 1 6= {1, a} and so
by Lemma 3.5(v), 1⊕ 1 = {1}, {0, 1} or M .

(vi). Let a⊕ a = M and 1⊕ a = {0, 1}. Then by (HMV1),

(1⊕ 1)⊕ a = 1⊕ (1⊕ a) = 1⊕ {0, 1} = (0⊕ 1) ∪ (1⊕ 1) = M.

Now, if 1⊕ 1 = {1}, then 1⊕ a = (1⊕ 1)⊕ a = M , which is a contradiction.
Hence 1⊕ 1 6= {1} and so by Theorem 3.5(v), 1⊕ 1 = {0, 1}, {a, 1} or M
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Theorem 3.11. There are 24 non-isomorphic proper hyper MV -algebras of
order 3 such that 0⊕ 1 = M .

Proof. By Lemma 3.5 (iii), a ⊕ a = {1}, {0, 1}, {1, a} or M . If
a⊕ a = {1} , then by Lemma 3.10 (ii), a⊕ 1 = 1⊕ 1 = M and so we must
investigate the following table, which is a hyper MV -algebra.

⊕10 0 a 1

0 {0} {0, a} {0, a, 1}
a {0, a} {1} {0, a, 1}
1 {0, a, 1} {0, a, 1} {0, a, 1}

If a ⊕ a = {0, 1}, then by Lemma 3.10 (iii), a ⊕ 1 = {a, 1} or M and if
a ⊕ 1 = {a, 1}, then 1 ⊕ 1 = {1}, {0, 1} or M . Thus we must investigate
the following 3 cases which all of them are hyper MV -algebras.

⊕11 0 a 1

0 {0} {0, a} {0, a, 1}
a {0, a} {0, 1} {a, 1}
1 {0, a, 1} {a, 1} {1}

⊕12 0 a 1

0 {0} {0, a} {0, a, 1}
a {0, a} {0, 1} {a, 1}
1 {0, a, 1} {a, 1} {0, 1}

⊕13 0 a 1

0 {0} {0, a} {0, a, 1}
a {0, a} {0, 1} {a, 1}
1 {0, a, 1} {a, 1} {0, a, 1}

If a ⊕ 1 = M , then by Lemma 3.5 (v), 1 ⊕ 1 = {1}, {0, 1}, {1, a} or M .
Hence we must investigate the following 4 cases which all of them are hyper
MV -algebras.

⊕14 0 a 1

0 {0} {0, a} {0, a, 1}
a {0, a} {0, 1} {0, a, 1}
1 {0, a, 1} {0, a, 1} {1}

⊕15 0 a 1

0 {0} {0, a} {0, a, 1}
a {0, a} {0, 1} {0, a, 1}
1 {0, a, 1} {0, a, 1} {0, 1}

⊕16 0 a 1

0 {0} {0, a} {0, a, 1}
a {0, a} {0, 1} {0, a, 1}
1 {0, a, 1} {0, a, 1} {a, 1}

⊕17 0 a 1

0 {0} {0, a} {0, a, 1}
a {0, a} {0, 1} {0, a, 1}
1 {0, a, 1} {0, a, 1} {0, a, 1}
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Now, if a ⊕ a = {a, 1}, then by Lemma 3.10 (iv), a ⊕ 1 = {0, 1} or M and
if a ⊕ 1 = {0, 1}, then 1 ⊕ 1 = {a, 1} or M . Hence we must investigate the
following 2 cases which both of them are hyper MV -algebras.

⊕18 0 a 1

0 {0} {0, a} {0, a, 1}
a {0, a} {a, 1} {0, 1}
1 {0, a, 1} {0, 1} {a, 1}

⊕19 0 a 1

0 {0} {0, a} {0, a, 1}
a {0, a} {a, 1} {0, 1}
1 {0, a, 1} {0, 1} {0, a, 1}

If a ⊕ 1 = M , then by Lemma 3.5 (v), 1 ⊕ 1 = {1}, {0, 1}, {a, 1} or M
and so we must investigate the following 4 cases which all of them are hyper
MV -algebras.

⊕20 0 a 1

0 {0} {0, a} {0, a, 1}
a {0, a} {a, 1} {0, a, 1}
1 {0, a, 1} {0, a, 1} {1}

⊕21 0 a 1

0 {0} {0, a} {0, a, 1}
a {0, a} {a, 1} {0, a, 1}
1 {0, a, 1} {0, a, 1} {0, 1}

⊕22 0 a 1

0 {0} {0, a} {0, a, 1}
a {0, a} {a, 1} {0, a, 1}
1 {0, a, 1} {0, a, 1} {a, 1}

⊕23 0 a 1

0 {0} {0, a} {0, a, 1}
a {0, a} {a, 1} {0, a, 1}
1 {0, a, 1} {0, a, 1} {0, a, 1}

Now, let a⊕ a = M . Then by Lemma 3.10 (v), a⊕ 1 = {1, a}, {0, 1} or M .
If a ⊕ 1 = {1, a}, then 1 ⊕ 1 = {1}, {0, 1} or M . Thus we must investigate
the following 3 cases which all of them are hyper MV -algebras.

⊕24 0 a 1

0 {0} {0, a} {0, a, 1}
a {0, a} {0, a, 1} {a, 1}
1 {0, a, 1} {a, 1} {1}

⊕25 0 a 1

0 {0} {0, a} {0, a, 1}
a {0, a} {0, a, 1} {a, 1}
1 {0, a, 1} {a, 1} {0, 1}

⊕26 0 a 1

0 {0} {0, a} {0, a, 1}
a {0, a} {0, a, 1} {a, 1}
1 {0, a, 1} {a, 1} {0, a, 1}

Also by Lemma 3.10 (v), if a⊕ 1 = {0, 1}, then 1⊕ 1 = {0, 1}, {a, 1} or M .
Hence we must investigate the following 3 cases which all of them are hyper
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MV -algebras.

⊕27 0 a 1

0 {0} {0, a} {0, a, 1}
a {0, a} {0, a, 1} {0, 1}
1 {0, a, 1} {0, 1} {0, 1}

⊕28 0 a 1

0 {0} {0, a} {0, a, 1}
a {0, a} {0, a, 1} {0, 1}
1 {0, a, 1} {0, 1} {a, 1}

⊕29 0 a 1

0 {0} {0, a} {0, a, 1}
a {0, a} {0, a, 1} {0, 1}
1 {0, a, 1} {0, 1} {0, a, 1}

Finally, if a⊕1 = M , then by Lemma 3.5 (v), 1⊕1 = {1}, {0, 1}, {a, 1} or M .
Hence we must investigate the following 4 cases which all of them are hyper
MV -algebras.

⊕30 0 a 1

0 {0} {0, a} {0, a, 1}
a {0, a} {0, a, 1} {0, a, 1}
1 {0, a, 1} {0, a, 1} {1}

⊕31 0 a 1

0 {0} {0, a} {0, a, 1}
a {0, a} {0, a, 1} {0, a, 1}
1 {0, a, 1} {0, a, 1} {0, 1}

⊕32 0 a 1

0 {0} {0, a} {0, a, 1}
a {0, a} {0, a, 1} {0, a, 1}
1 {0, a, 1} {0, a, 1} {a, 1}

⊕33 0 a 1

0 {0} {0, a} {0, a, 1}
a {0, a} {0, a, 1} {0, a, 1}
1 {0, a, 1} {0, a, 1} {0, a, 1}

Corolary 3.12. There are 33 non-isomorphic hyper MV -algebras of order 3.

Proof. By Theorems 3.3, 3.7, 3.9 and 3.11, we have 33 non-isomorphic hyper
MV -algebras of order 3.
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Abstract

In this paper, we use market segmentation approach in multi-

product inventory - production system with deteriorating items. The

objective is to make use of optimal control theory to solve the pro-

duction inventory problem and develop an optimal production policy

that maximize the total profit associated with inventory and produc-

tion rate in segmented market. First, we consider a single production

and inventory problem with multi-destination demand that vary from

segment to segment. Further, we described a single source production

multi destination inventory and demand problem under the assump-

tion that firm may choose independently the inventory directed to

each segment. This problem has been discussed using numerical ex-

ample.

Key words: Market Segmentation, Production-Inventory System,

Optimal Control Problem

MSC2010: 97U99.

1 Introduction

Market segmentation is an essential element of marketing in industrialized
countries. Goods can no longer be produced and sold without considering
customer needs and recognizing the heterogeneity of these needs [1]. Earlier
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in this century, industrial development in various sectors of economy induced
strategies of mass production and marketing. Those strategies were manu-
facturing oriented, focusing on reduction of production costs rather than
satisfaction of customers. But as production processes become more flexible,
and customer’s affluence led to the diversification of demand, firms that iden-
tified the specific needs of groups of customers were able to develop the right
offer for one or more submarkets and thus obtained a competitive advantage.
Segmentation has emerged as a key planning tool and the foundation for
effective strategy formulation. Nevertheless, market segmentation is not well
known in mathematical inventory-production models. Only a few papers on
inventory-production models deal with market segmentation [2, 3]. Optimal
control theory, a modern extension of the calculus of variations, is a math-
ematical optimization tool for deriving control policies. It has been used
in inventory-production [4, 6] to derive the theoretical structure of optimal
policies. Apart from inventory-production, it has been successfully applied
to many areas of operational research such as Finance [7, 8], Economics
[9, 10, 11], Marketing [12, 13, 14, 15], Maintenance [16] and the Consump-
tion of Natural Resources [17, 18, 19] etc. The application of optimal control
theory in inventory-production control analysis is possible due to its dynamic
behaviour. Continuous optimal control models provide a powerful tool for
understanding the behaviour of production-inventory system where dynamic
aspect plays an important role. Several papers have been written on the
application of optimal control theory in Production-Inventory system with
deteriorating items [20, 21, 22, 23].

In this paper, we assume that firm has defined its target market in a
segmented consumer population and that it develop a production-inventory
plan to attack each segment with the objective of maximizing profit. In ad-
dition, we shed some light on the problem in the control of a single firm
with a finite production capacity (producing a multi-product at a time) that
serves as a supplier of a multi product to multiple market segments. Seg-
mented customers place demand continuously over time with rates that vary
from segment to segment. In response to segmented customer demand, the
firm must decide on how much inventory to stock and when to replenish
this stock by producing. We apply optimal control theory to solve the prob-
lem and find the optimal production and inventory policies. The rest of
the paper is organized as follows. Following this introduction, all the nota-
tions and assumptions needed in the sequel is stated in Section 2. In section
3, we described the single source production-inventory problem with multi-
destination demand that vary from segment to segment and developed the
optimal control theory problem and its solution. In section 4 of this paper
we introduce optimal control formulation of a single source production- multi
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destination demand and inventory problem and discussion of solution. Nu-
merical illustration is presented in the section 5 and finally conclusions are
drawn in section 6 with some future research directions.

2 Notations and Assumptions

Here we begin the analysis by stating the model with as few notations
as possible. Let us consider a manufacturing firm producing m product in
segmented market environment. We introduce the notation that is used in
the development of the model:

Notations:

T : Length of planning period,

Pj(t) : Production rate for jth product,

Ij(t) : Inventory level for jth product,

Iij(t) : Inventory level for jth product in ith segment,

Dij(t) : Demand rate for jth product in ith segment,

hj(Ij(t)) : Holding cost rate for jth product, (single source inventory)

hij(Iij(t)) : Holding cost rate for jth product in ith segment, (multi
destination)

cj : The unit production cost rate for jth product,

θj(t, Ij(t)) : Deterioration rate for jth product, (single source inventory)

θij(t, Iij(t)) : The deterioration rate for jth product in ith segment, (multi
destination)

Kj(Pj(t)) : cost rate corresponding to the production rate for jth

product,

rij : The revenue rate per unit sale for jth product in ith segment,

ρ : Constant non-negative discount rate.

The model is based on the following assumptions: We assume that the
time horizon is finite. The model is developed for multi-product in segmented
market. The production, demand, and deterioration rates are function of
time. The holding cost rate is function of inventory level & production cost
rate depends on the production rate. The functions hij(Iij(t)) (in case of
single source hj(Ij(t)) and θij(t, Iij(t)) (in case of single source θj(t, Ij(t)))
are convex. All functions are assumed to be non negative, continuous and
differentiable functions. This allows us to derive the most general and robust
conclusions. Further, we will consider more specific cases for which we obtain
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some important results.

3 Single Source Production and Inventory-

Multi-Destination Demand Problem

Many manufacturing enterprises use a production-inventory system to
manage fluctuations in consumers demand for the product. Such a system
consists of a manufacturing plant and a finished goods warehouse to store
those products which manufactured but not immediately sold. Here, we
assume that once a product is made and put inventory into single warehouse,
and demand for all products comes from each segment. Let there be m
products and n segments. (i.e., j = 1, . . . , m and i = 1, . . . , n).

Therefore, the inventory evolution in segmented market is described by
the following differential equation:

d

dt
Ij(t) = Pj(t) −

n
∑

i=1

Dij(t) − θj(t, Ij(t)), ∀j = 1, . . . , m. (1)

So far, firm want to maximize the total Profit during planning period in
segmented market. Therefore, the objective functional for all segments is
defined as

max
Pj(t)≥

Pm
i=1

Dij(t)+θj (t,Ij(t))
J =

∫ T

0

e−ρt

m
∑

j=1

[ n
∑

i=1

rijDij(t) − Kj(Pj(t)) − hj(Ij(t))

]

dt

+

∫ T

0

e−ρt

m
∑

j=1

[

cj

( n
∑

i=1

Dij(t) − Pj(t)

)]

dt (2)

Subject to the equation (1).This is the optimal control problem with m-
control variable (rate of production) with m-state variable (inventory states).
Since total demand occurs at rate

∑n

i=1 Dij(t) and production occurs at
controllable rate Pj(t) for jth, it follows that Ij(t) evolves according to the
above state equation (1). The constraints Pj(t) ≥

∑m

i=1 Dij(t) − θj(t, Ij(t))
and Ij(0) = Ij0 ≥ 0 ensure that shortage are not allowed.
Using the maximum principle [10], the necessary conditions for (P ∗

j , I∗
j ) to be

an optimal solution of above problem are that there should exist a piecewise
continuously differentiable function λ and piecewise continuous function µ ,
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called the adjoint and Lagrange multiplier function, respectively such that

H(t, I∗, P ∗, λ) ≥ H(t, I∗, P, λ), for all Pj(t) ≥

n
∑

i=1

Dij(t) − θj(t, Ij(t) (3)

d

dt
λj(t) = −

∂

∂Ij

L(t, Ij , Pj, λj, µj) (4)

Ij(0) = Ij0, λj(T ) = 0 (5)

∂

∂Pj

L(t, Ij , Pj, λj, µj) = 0 (6)

Pj(t) −

n
∑

i=1

Dij(t) − θj(t, Ij(t)) ≥ 0, µj(t) ≥ 0,

µj(t)

[

Pj(t) −
n

∑

i=1

Dij(t) − θj(t, Ij(t))

]

= 0

(7)

Where, H(t, I, P, λ) and L(t, I, P, λ, µ) are Hamiltonian function and La-
grangian function respectively. In the present problem Hamiltonian function
and Lagrangian function are defined as

H =

m
∑

j=1

[ n
∑

i=1

rijDij(t) + cj

( n
∑

i=1

Dij(t) − Pj(t)

)

− Kj(Pj(t)) − hj(Ij(t))

]

+
m

∑

j=1

[

λj(t)

(

Pj(t) −
n

∑

i=1

Dij(t) − θj(t, Ij(t))

)]

(8)

L =
m

∑

j=1

[ n
∑

i=1

rijDij(t) + cj

( n
∑

i=1

Dij(t) − Pj(t)

)

− Kj(Pj(t)) − hj(Ij(t))

]

+

m
∑

j=1

[

(λj(t) + µj(t))

(

Pj(t) −

n
∑

i=1

Dij(t) − θj(t, Ij(t))

)]

(9)

A simple interpretation of the Hamiltonian is that it represents the overall
profit of the various policy decisions with both the immediate and the future
effects taken into account and the value of λj(t) at time t describes the future
effect on profits upon making a small change in Ij(t) . Let the Hamiltonian H
for all segments is strictly concave in Pj(t) and according to the Mangasarian
sufficiency theorem [4, 10]; there exists a unique Production rate.
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From equation (4) and (6), we have following equations respectively

d

dt
λj(t) = ρλj(t) −

{

−
∂hj(Ij(t))

∂Ij

− (λj(t) + µj(t))
∂θj(t, Ij(t))

∂Ij

}

, (10)

for all j = 1, · · · , m

λj(t) + µj(t) = cj +
d

dPj

Kj(Pj(t)). (11)

Now, consider equation (7). Then for any t, we have either

Pj(t) −
n

∑

i=1

Dij(t) − θj(t, Ij(t)) = 0 or

Pj(t) −
n

∑

i=1

Dij(t) − θj(t, Ij(t)) > 0 ∀ j = 1, · · · , m.

3.1 Case 1:

Let S is a subset of planning period [0, T ], when Pj(t) −
∑n

i=1 Dij(t) −
θj(t, Ij(t)) = 0. Then d

dt
Ij(t) = 0 on S, in this case I∗(t) is obviously constant

on S and the optimal production rate is given by the following equation

P ∗
j (t) =

n
∑

i=1

Dij(t) − θj(t, I
∗
j (t)), for all t ∈ S (12)

By equation (10) and (11), we have

d

dt
λj(t) = ρλj(t) −

{

−
∂hj(Ij(t))

∂Ij

−

(

cj +
d

dPj

Kj(Pj(t))

)

∂θj(t, Ij(t))

∂Ij

}

(13)

After solving the above equation, we get a explicit from of the adjoint func-
tion λj(t). From the equation (10)), we can obtain the value 0f Lagrange
multiplier µj(t).

3.2 Case 2:

Pj(t) −
∑n

i=1 Dij(t) − θj(t, Ij(t)) > 0, for t ∈ [0, T ]\S. Then µj(t) = 0 on
t ∈ [0, T ]\S. In this case the equation (10) and (11) becomes

d

dt
λj(t) = ρλj(t) −

{

−
∂hj(Ij(t))

∂Ij

− λj(t)
∂θj(t, Ij(t))

∂Ij

}

, ∀ j = 1, · · · , m

(14)

λj(t) = cj +
d

dPj

Kj(Pj(t)) (15)
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Cobining these equation with the state equation, we have the following second
order differential equation:

d

dt
Pj(t)

d2

dP 2
j

Kj(Pj) −

[

ρ +
∂θj(t, Ij(t))

∂Ij

]

d

dPj

Kj(Pj) =cj

(

ρ +
∂θj(t, Ij(t))

∂Ij

)

+
∂hj(t, Ij(t))

∂Ij

(16)

and Ij(0) = Ij0, cj+
d

dPj
Kj(Pj(T )) = 0. For illustration purpose, let us assume

the following forms the exogenous functions Kj(Pj) = kjP
2
j /2, hj(t, Ij(t)) =

hjIj(t) and θj(t, Ij(t)) = θjIj(t), where kj hj θj are positive constants for all
j = 1, · · · , m.
For these functions the necessary conditions for (P ∗

j , I∗
j ) to be optimal solu-

tion of problem (2) with equation (1) becomes

d2

dt2
Ij(t) − ρ

d

dt
Ij(t) − (ρ + θj)θ1jIj(t) = ηj(t) (17)

with Ij(0) = Ij0, cj + d
dPj

Kj(Pj(T )) = 0.

Where, ηj(t) = −
∑n

i=1

(

d
dt

Dij(t)

)

+ (ρ + θ1j)

(

∑n

i=1 Dij(t)

)

+
(cj(ρ+θ1j)+hj)

kj
.

This problem is a two point boundary value problem.

Proposition 3.1. The optimal solution of (P ∗
j , I∗

j ) to the problem is given
by

I∗
j (t) = a1je

m1j t + a2je
m2j t + Qj(t), (18)

and the corresponding P ∗
j is given by

P ∗
j (t) =a1j(m1j + θ1j)e

m1jt + a2j(m2j + θj)e
m2j t +

d

dt
Qj(t) + θ1jQj(t)

+

n
∑

i=1

Dij. (19)

The values of the constant a1j , a2j , m1j , m2j are given in the proof, and
Qj(t) is a particular solution of the equation (17).

Proof. The solution of the two point boundary value problem (17) is given
by standard method. Its characteristic equation m2

j − ρmj − (ρ + θj)θ1j = 0,
has two real roots of opposite sign, given by

m1j =
1

2

(

ρ −
√

ρ2 + 4(ρ + θ1j)θ1j

)

< 0,

m2j =
1

2

(

ρ +
√

ρ2 + 4(ρ + θ1j)θ1j

)

> 0,
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and therefore I∗
j (t) is given by (18), where Qj(t) is the particular solution.

Then initial and terminal condition used to determineed the values of con-
stant a1j and a2j as follows

a1j + a2j + Qj(0) = Ij0,

a1j(m1j + θ1j)e
m1jT + a2j(m1j + θ1j)e

m2jT

+

(

cj

kj

+
d

dt
Qj(T ) + θ1jQj(T ) +

n
∑

i=1

Dij(T )

)

= 0.

By putting b1j = Ij0 − Qj(0) and b2j = −(
cj

kj
+ d

dt
Qj(T ) + θ1jQj(T ) +

∑n

i=1 Dij(T )), we obtain the following system of two linear equation with
two unknowns

a1j + a2j = b1j

a1j(m1j + θ1j)e
m1jT + a2j(m1j + θ1j)e

m2jT = b2j

(20)

The value of P ∗
j is deduced using the values of I∗

j and the state equation.

4 Single Source Production- Multi Destina-

tion Demand and Inventory Problem

We assume the single source production and multi destination demand-
inventory system. Hence, the inventory evolution in each segmented is de-
scribed by the following differential equation:

d

dt
Iij(t) = γijPj(t) − Dij(t) − θij(t, Iij(t)), ∀ j = 1, · · · , m; i = 1, · · · , n.

(21)

Here, γij > 0,
∑n

i=1 γij = 1, ∀ j = 1, · · ·m with the conditions Iij(0) = I0
ij

and γijPj(t) ≥ Dij(t) − θij(t, Iij(t)). We called γij > 0 the segment produc-
tion spectrum and γijPj(t) define the relative segment production rate of jth

product towards ith segment. We develop a marketing-production model in
which firm seeks to maximize its all profit by properly choosing production
and market segmentation. Therefore, we defined the profit maximization
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objective function as follows:

max
γijPj(t)≥Dij (t)−θij (t,Iij(t))

J =

=

∫ T

0

e−ρt

m
∑

j=1

[ n
∑

i=1

rijDij(t) + cj

( n
∑

i=1

(Dij(t) − γijPj(t))

)]

dt

−

∫ T

0

e−ρt

m
∑

j=1

[ n
∑

i=1

hij(Iij(t)) − Kj(Pj(t))

]

dt (22)

subject to the equation (21). This is the optimal control problem (production
rate) with m control variable with mn state variable (stock of inventory).
To solve the optimal control problem expressed in equation (21) and (22),
the following Hamiltonian and Lagrangian are defined as

H =

m
∑

j=1

[ n
∑

i=1

rijDij(t) + cj

( n
∑

i=1

(Dij(t) − γijPj(t))

)]

−
m

∑

j=1

[ n
∑

i=1

hij(Iij(t)) + Kj(Pj(t))

]

+

m
∑

j=1

n
∑

i=1

λij(t)[γiPj(t) − Dij(t) − θij(t, Iij(t))] (23)

L =

m
∑

j=1

[ n
∑

i=1

rijDij(t) + cj

( n
∑

i=1

(Dij(t) − γijPj(t))

)]

−
m

∑

j=1

[ n
∑

i=1

hij(Iij(t)) + Kj(Pj(t))

]

+

m
∑

j=1

n
∑

i=1

(λij + µij(t))[γiPj(t) − Dij(t) − θij(t, Iij(t))] (24)

Equation (4), (6) and (21) yield

d

dt
λij(t) = ρλij(t) −

{

−
∂hij(Iij(t))

∂Iij

− λij(t)
∂θij(t, Iij(t))

∂Iij

}

, (25)

for all i = 1, · · · , n, j = 1, · · · , m
n

∑

i=1

(λij(t) + µij(t))γi = cj +
d

dPj

Kj(Pj(t)) (26)

In the next section of the paper, we consider only case when

γijPj(t) − Dij(t) − θij(t, Iij(t)) > 0, ∀ i, j.
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4.1 Case 2:

γijPj(t)−Dij(t)−θij(t, Iij(t)) > 0 ∀ i, j, for t ∈ [0, T ]\S. Then µij(t) = 0
on t ∈ [0, T ]\S. In this case, the equation (25) and (26) becomes

d

dt
λij(t) = ρλij(t) −

{

−
∂hij(Iij(t))

∂Iij

− λij(t)
∂θij(t, Iij(t))

∂Iij

}

(27)

n
∑

i=1

γijλij(t) = cj +
d

dPj

Kj(Pj(t)) (28)

Cobining these equation with the state equation, we have the following second
order differential equation:

d

dt
Pj(t)

d2

dP 2
j

Kj(Pj) −
1

n

n
∑

i=1

(

ρ +
∂θi(t, Iij(t))

∂Iij

)

d

dPj

Kj(Pj)

=
n

∑

i=1

cjγi

(

ρ +
∂θij(t, Iij(t))

∂Iij

)

+
n

∑

i=1

γi

∂hij(t, Iij(t))

∂Iij

(29)

with Ij(0) = I0
ij ,

∑n

i=1 γijλij(T ) = 0 → λij(T ) = 0 ∀ i and j, cj +
d

dPj
Kj(Pj(T )) = 0. For illustration, let us assume the following forms the ex-

ogenous functions Kj(Pj) = kjP
2
j /2, hij(t, Iij(t)) = hijIij(t) and θij(t, Iij(t)) =

θijIij(t), where kj hij θij are positive constants.
For these functions the necessary conditions for (P ∗

j , I∗
ij) to be optimal solu-

tion of problem (19) with equation (18) becomes

d2Iij(t)

dt2
+ (θij − A)

dIij(t)

dt
− AθiIij(t) = ηij(t) (30)

with Iij(0) = I0
ij , λij(T ) = 0 ∀ i, cj + d

dPj
Kj(Pj(T )) = 0.

Where, ηij(t) = −Dij(t)A +
γj

kj

[

∑n

i=1 γi(hij + cj(ρ + θij))

]

+
dDij(t)

dt
, A =

∑n

i=1
(ρ+θij)

n
. This problem is a two point boundary value problem.

The above system of two point boundary value problem (29) is solved by
same method that we used in to solve (17).

5 Numerical Illustration

In order to demonstrate the numerical results of the above problem, the
discounted continuous optimal problem (2) is transferred into equivalent dis-
crete problem [24] that is solved to present numerical solution. The discrete
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optimal control can be written as follows:

J =
T

∑

k=1

( m
∑

j=1

[ n
∑

i=1

(rij(k − 1)Dij(k − 1))

])(

1

(1 + ρ)k−2

)

+

T
∑

k=1

( m
∑

j=1

cj

( n
∑

i=1

Dij(k − 1) − Pj(k − 1)

))(

1

(1 + ρ)k−2

)

−

T
∑

k=1

( m
∑

j=1

[Kj(Pj(k − 1) + hj(Ij(k − 1)))]

)(

1

(1 + ρ)k−2

)

such that

Ij(k) = Ij(k − 1) + pj(k − 1) −

n
∑

i=1

Dij(k − 1) − θj(k − 1, Ij(k − 1))

for all j = 1, · · · , m.

Similar discrete optimal control problem can be written for single source
production multi destination and inventory control problem. These discrete
optimal control problems are solved by using Lingo11. We assume that the
duration of all the time periods are equal and demand are equal from segment
for each product. The number of market segmentsis 4 and the number of
products is 3. The value of parameters are ri1 = 2.55, 2.53, 2.53, 2.54;

Table 1: The Optimal production and inventory rate in segment market

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

P1 100 86 80 73 64 53 39 21 5 0
P2 110 81 76 70 62 52 38 21 5 0
P3 140 79 75 69 61 51 38 21 5 0
I1 20 98 154 199 232 254 262 255 231 193
I2 20 107 156 194 222 238 241 231 205 166
I3 20 137 179 211 233 244 244 231 203 161

ri2 = 2.52, 2.53, 2.54, 2.53; ri3 = 2.51, 2.54, 2.54, 2.52 for segments
i = 1 to 4; cj = 1; kj = 2; θj = 0.10, 0.12, 0.13; hj = 1; for all the three
products. The optimal production rate and inventory for every product for
each segment is shown in Table 1 and their corresponding total profit is
$177402.70.
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The optimal trajectories of production and inventory rate for every product
for each segment are shown in Fig1, Fig2 and Fig3 respectively (Appendix).
In case of single source production-multi destination demand and inventory,
the number of market segments M is 4 and the number of products is 3. The
values of additional parameters are each segment is shown in Table 2.

Table 2: The values of parameter of deteriorating rate and holding cost rate
constant

Segment θi1 θi2 θi3 hi1 hi2 hi3

M1 0.10 0.11 0.11 1.0 1.1 1.0
M2 0.11 0.12 0.12 1.1 1.2 1.1
M3 0.13 0.11 0.11 1.2 1.1 1.2
M4 0.11 0.13 0.11 1.1 1.0 1.3

Table 3: Values of the parameter for single source production-multi destina-
tion demand and inventory problem in each segment

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

P1 100 85 79 73 65 54 41 23 5 0
P2 110 82 77 70 62 52 38 21 5 0
P3 140 83 77 71 63 52 38 21 5 0
I11 20 98 153 197 231 254 263 258 236 197
I12 20 97 152 195 227 247 255 248 225 185
I13 20 97 150 192 223 242 247 239 214 173
I14 20 97 149 190 218 236 240 230 204 162
I21 20 108 158 198 227 245 250 242 217 178
I22 20 107 157 195 222 238 242 232 206 167
I23 20 108 158 198 227 245 250 242 217 178
I24 20 107 156 192 218 232 235 223 196 156
I31 20 138 186 223 250 265 268 258 231 191
I32 20 138 184 220 244 258 260 248 219 178
I33 20 138 185 223 250 265 268 258 231 191
I34 20 138 186 223 250 265 268 258 231 191

The optimal production rate and inventory for every product for each
segment is shown in Table 3 with production spectrum γ11 = 0.10, γ12 =
0.10, γ13 = 0.77, γ14 = 0.03; γ21 = 0.12, γ22 = 0.12, γ23 = 0.75, γ24 =
0.01; γ31 = 0.14, γ32 = 0.14, γ33 = 0.72, γ34 = 0.04. The optimal value of
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total profit for all products is $185876.90. In case of single source production-
multi destination demand and inventory, The optimal trajectories of produc-
tion and inventory rate for every product for each segment are shown in Fig4,
Fig5, Fig6 and Fig7 respectively (Appendix).

6 Conclusion

In this paper, we have introduced market segmentation concept in the
production inventory system for multi product and its optimal control for-
mulation. We have used maximum principle to determine the optimal pro-
duction rate policy that maximizes the total profit associated with inventory
and production rate. The resulting analytical solution yield good insight
on how production planning task can be carried out in segmented market
environment. In order to show the numerical results of the above problem,
the discounted continuous optimal problem is transferred into equivalent dis-
crete problem [24] that is solved using Lingo 11 to present numerical solution.
In the present paper, we have assumption that the segmented demand for
each product is a function of time only. A natural extension to the analysis
developed here is the consideration of segmented demand that is a general
functional of time and amount of onhand stock (inventory).
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Abstract

In the set N of the Natural Numbers we define two hyperoperations
based on the divisors of the addition and multiplication of two num-
bers. Then, the properties of these two hyperoperations are studied
together with the resulting hyperstructures. Furthermore, from the
coexistence of these two hyperoperations in N∗, an Hv-ring is result-
ing which is dual.
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1 Introduction

In 1934, F. Marty introduced the definitions of the hyperoperation and of
the hypergroup as a generalization of the operation and the group respectively.

Let H be a set and ◦ : H ×H → P′(H) be a hyperoperation, [2], [3], [5],
[6], [8]:
The hyperoperation (◦) in H is called associative , if

(x ◦ y) ◦ z = x ◦ (y ◦ z),∀x, y, z ∈ H.

The hyperoperation (◦) in H is called commutative , if

x ◦ y = y ◦ x, ∀x, y ∈ H.

An algebraic hyperstructure (H, ◦), i.e. a set H equipped with the hyper-
operation (◦), is called hypergroupoid . If this hyperoperation is associative,
then the hyperstructure is called semihypergroup. The semihypergroup
(H, ◦), is called hypergroup if it satisfies the reproduction axiom:
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x ◦H = H ◦ x,∀x ∈ H.

One of the topics of great interest, in the last years, is the HV -structures,
which was introduced by T. Vougiouklis in 1990 [7]. The class of HV -
structures is the largest class of algebraic hyperstructures. These structures
satisfy weak axioms, where the non-empty intersection replaces the equality,
as bellow [8]:

i) The (◦) in H is called weak associative , we write WASS , if

(x ◦ y) ◦ z ∩ x ◦ (y ◦ z) 6= ∅,∀x, y, z ∈ H.

ii) The (◦) is called weak commutative , we write COW , if

(x ◦ y) ∩ (y ◦ x) 6= ∅,∀x, y ∈ H.

iii) If H is equipped with two hyperoperations (◦) and (∗), then (∗) is
called weak distributive with respect to (◦), if

[x ∗ (y ◦ z)] ∩ [(x ∗ y) ◦ (x ∗ z)] 6= ∅, ∀x, y, z ∈ H.

The hyperstructure (H, ◦) is called H v-semigroup if it is WASS and it
is called H v-group if it is a reproductive (i.e. x ◦H = H ◦ x = H,∀x ∈ H)
Hv-semigroup. It is called commutative H v-group if (◦) is commutative
and it is called H v- commutative group if (◦) is weak commutative. The
hyperstructure (H, ◦, ∗) is called H v-ring if both hyperstructures (◦) and (∗)
are WASS, the reproduction axiom is valid for (◦), and (∗) is weak distributive
with respect to (◦).

It is denoted [4] by E∗ the set of the unit elements with respect to (∗)
and by I∗(x, e) the set of the inverse elements of x associated with the unit e,
with respect to (∗).

An Hv-ring (R,+, ·) is called Dual H v-ring, if (R, ·,+) is an Hv-ring,
too [4].

Let (H, ·) be a hypergroupoid. An element e ∈ H is called right unit
element if a ∈ a · e, ∀a ∈ H and is called left unit element if a ∈ e ·a,∀a ∈ H.
The element e ∈ H is called unit element if a ∈ a · e ∩ e · a,∀a ∈ H.

Let (H, ·) be a hypergroupoid endowed with at least one unit element.
An element a′ ∈ H is called an inverse element of the element a ∈H, if there
exists a unit element e ∈ H such that e ∈ a′ · a ∩ a · a′.

Moreover, let us define here: If x ∈ x · y(resp.x ∈ y · x)∀y ∈ H, then, x
is called left absorbing-like element (resp. right absorbing-like element). An
element a ∈ H is called idempotent element if a2 = a. The nth power of an
element h, denoted hs, is defined to be the union of all expressions of n times

48



The Divisors’ Hyperoperations

of h, in which the parentheses are put in all possible ways. An Hv-group
(H,·) is called cyclic with finite period with respect to h ∈ H, if there exists
a positive integer s, such that H = h1 ∪ h2 . . . ∪ hs. The minimum such
s is called period of the generator h. If all generators have the same period,
then H is cyclic with period. If there exists h ∈ H and s positive integer,
the minimum one, such that H = hs, then H is called single-power cyclic
and h is a generator with single-power period s. The cyclicity in the infinite
case is defined similarly. Thus, for example, the Hv-group (H, ·) is called
single-power cyclic with infinite period with generator h if every element of
H belongs to a power of h and there exists s0 ≥ 1, such that ∀s ≥ s0 we
have:

h1 ∪ h2 ∪ · · · ∪ hs−1 ⊂ hs.

2 The divisors’ hyperoperation due to addi-

tion in N

Let N be the set of the Natural Numbers. Let us define the hyperoperation
(�) in N as follows:

Definition 2.1. For every x, y ∈ N

� : N× N→ P(N)− {∅} : (x, y) 7→ x� y ⊂ N

such that
x� y = {z ∈ N : x+ y = z · λ, λ ∈ N}

where (+) and (·) are the usual operations of the addition and multiplication
in N, respectively.
We call the above hyperoperation, divisors’ hyperoperation due to addition.

Some properties of the divisors’ hyperoperation due to addition

1. x� y = y � x,∀x, y ∈ N

2. 0� 0 = N

3. 0� 1 = 1� 0 = 1

4. {1, x+ y} ⊂ x� y,∀x, y ∈ N

5. If x+ y = κ · ν ⇒ {1, κ, ν, κ · ν} ⊂ x� y, x, y, κ, ν ∈ N.
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Remark 2.2. If x + y = p, where p ∈ N is a prime number, then x � y =
{1, p}, x, y ∈ N.

Proposition 2.3. The number 0 is a unit element of the divisors’ hyperop-
eration due to addition.

Proof. Indeed, for x ∈ N

x� 0 = {z ∈ N : x+ 0 = z · λ, λ ∈ N} = {z ∈ N : x = z · λ, λ ∈ N} 3 x.

Then,
x ∈ (x� 0) ∩ (0� x),∀x ∈ N.

Remark 2.4. Since, there is no x′ ∈ N such that 0 ∈ (x � x′) ∩ (x′ � x)
when x 6= 0, the number 0 is the only one in N having an inverse element
(and that is 0) associated with the unique unit element 0 of the divisors’
hyperoperation due to addition, i.e. 0 ∈ 0� 0.

Proposition 2.5. The number 1 is an absorbing-like element of the divisors’
hyperoperation due to addition.

Proof. Indeed,

1 ∈ x� y,∀x, y ∈ N⇒ 1 ∈ 1� y,∀y ∈ N⇒ 1 ∈ (1� y)∩ (y� 1),∀y ∈ N.

Proposition 2.6. If y = n · x, x, n ∈ N then {1, x, 1 + n, x(1 + n)} ⊂ x� y.

Proof. Let y = n · x, x, n ∈ N then

x� y = {z ∈ N : x+ y = z · λ, λ ∈ N} = {z ∈ N : x+ nx = z · λ, λ ∈ N}
= {z ∈ N : x(1 + n) = z · λ, λ ∈ N} ⊃ {1, x, 1 + n, x(1 + n)}.

Proposition 2.7. If x ∈ N is a prime number then x2 = {1, 2, x, 2x}.

Proof. Let x ∈ N, be a prime number then

x2 = x� x = {z ∈ N : x+ x = z · λ, λ ∈ N} = {z ∈ N : 2x = z · λ, λ ∈ N}.

According to property 5, {1, 2, x, 2x} ⊂ x2, but since x is prime, x2 =
{1, 2, x, 2x}.

Proposition 2.8. x� N∗ = N∗ � x = N∗,∀x ∈ N∗.

Proof. Let x ∈ N∗, then

x� N∗ ⊃ x� (nx) 3 n+ 1, n ∈ N∗, according to Proposition 2.6.
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So, we proved that n+ 1 ∈ x�N∗,∀x, n ∈ N∗ and since 1 ∈ x�N∗,∀x ∈ N∗,
we get

x� N∗ = N∗ � x = N∗,∀x ∈ N∗.

Remark 2.9. Notice that, for x ∈ N∗

x� N =
⋃
n∈IN

(x� n) =
⋃
n∈IN

{z ∈ N : x+ n = z · λ, λ ∈ N∗} ⊇

⊇
⋃
n∈IN

{z ∈ N : x+ nx = z · λ, λ ∈ N∗} =
⋃
n∈IN

(x� nx).

But from Proposition 2.6,⋃
n∈IN

(x� nx) ⊃
⋃
n∈IN

{1, x, n+ 1, x(n+ 1)} ⊃
⋃
n∈IN

{n+ 1} = N∗.

So,
x�N = N � x = N∗,∀x ∈ N∗.

Proposition 2.10. The divisors’ hyperoperation due to addition is a weak
associative one in N∗.

Proof. For x, y, z ∈ N∗

(x� y)� z = {w ∈ N∗ : x+ y = w · λ, λ ∈ N∗} � z =
⋃

w∈IN∗

(w � z) =

=
⋃

w∈IN∗

{w′ ∈ N∗ : w + z = w′ · λ′, λ′ ∈ N∗}

⊃ {w′ ∈ N∗ : x+ y + z = w′ · λ′, λ′ ∈ N∗} (I)

On the other hand

x� (y � z) = x� {v ∈ N∗ : y + z = v · ρ, ρ ∈ N∗} =
⋃

v∈IN∗

(x� v) =

=
⋃

v∈IN∗

{v′ ∈ N∗ : x+ v = v′ · ρ′, ρ′ ∈ N∗}

⊃ {v′ ∈ N∗ : x+ y + z = v′ · ρ′, ρ′ ∈ N∗} (II)

From (I) and (II) we get:

(x�y)�z∩x�(y�z) = {n ∈ N∗ : x+y+z = n·µ, µ ∈ N∗} 6= ∅,∀x, y, z ∈ N∗.

Since the divisors’ hyperoperation due to addition is commutative, ac-
cording to Propositions 2.8 and 2.10, we get the following:
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Proposition 2.11. The hyperstructure (N∗,�) is a commutative Hv-group.

Proposition 2.12. For (x, y, z) ∈ N∗×N∗×N∗, if x = z, then the divisors’
hyperoperation due to addition is strong associative.

Proof. Let (x, y, z) ∈ N∗ × N∗ ×N∗ such that x = z, then due to commuta-
tivity we get:

(x� y)� z = (x� y)� x = x� (x� y) = x� (y � x) = x� (y � z).

Proposition 2.13. The (N∗,�), is a single-power cyclic Hv-group with in-
finite period where every x ∈ N∗ is a generator.

Proof. For x ∈ N∗, notice that

x1 = {x}
x2 = x� x = {z ∈ N∗ : 2x = z · λ, λ ∈ N∗} ⊃ {1, 2}

x3 = x2 � x = {z ∈ N∗ : 2x = z · λ, λ ∈ N∗} � x =
⋃

z∈IN∗

(z � x)

=
⋃

z∈IN∗

{w ∈ N∗ : z + x = w · ρ, ρ ∈ N∗} ⊃

⊃ {w′ ∈ N∗ : 2x+ x = w′ · ρ′, ρ′ ∈ N∗}∪
∪ {w′′ ∈ N∗ : x+ x = w′′ · ρ′′, ρ′′ ∈ N∗} ⊃
⊃ {1, 3} ∪ {1, 2} = {1, 2, 3}.

We shall prove that xn ⊃ {1, 2, 3, . . . , n}, ∀x ∈ N∗, n ∈ N∗, n ≥ 2, by
induction.

Suppose that for n = k, k ∈ N∗, k ≥ 2 :

xk ⊃ {1, 2, 3, . . ., k}

We shall prove that the above is valid for n = k + 1, i.e.

xk+1 ⊃ {1, 2, 3, . . ., k, k + 1}.

Indeed,

xk+1 = (xk � x) ∪ (xk−1 � x2) ∪ . . . ∪ (x� xk).

Then

xk+1 ⊃ (xk−1 � x2) ⊃ {1, 2, 3, . . . , k − 1} � {1, 2} ⊃
⊂ {1, 2, 3, . . . , k} ∪ {k + 1} = {1, 2, 3, . . . , k, k + 1}.

Therefore every element of N∗ belongs to a special power of x, thus, is a
generator of the single-power cyclic Hv-group.
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3 The divisors’ hyperoperation due to multi-

plication in N

Now, let us define the hyperoperation (⊗) in N as follows:

Definition 3.1. For every x, y ∈ IN

⊗ : N× N→ P (N)− {∅} : (x, y) 7→ x⊗ y ⊂ N

such that
x� y = {z ∈ N : x · y = z · λ, λ ∈ N}

where (·) is the usual operation of the multiplication in N.
We call the above hyperoperation, divisors’ hyperoperation due to multi-

plication.

Some properties of the divisors’ hyperoperation due to multi-
plication

1. x⊗ y = y ⊗ x,∀x, y ∈ N

2. 0⊗ x = x⊗ 0 = N, ∀x ∈ N

3. 1⊗ 1 = 1, i.e 1 is an idempotent element

4. {1, x, y, xy} ⊂ x⊗ y,∀x, y ∈ N

Remark 3.2. If x is a prime number, then 1⊗ x = x⊗ 1 = {1, x}.

Proposition 3.3. E⊗ = N.

Proof. For x, e ∈ N, x⊗ e = {z ∈ N : x · e = z · λ, λ ∈ N} 3 x. So, according
to property 1, we get

x ∈ (x⊗ e) ∩ (e⊗ x),∀x, e ∈ N

That means that the set of the unit elements with respect to (⊗) is the
set N, i.e. E⊗ = N.

Proposition 3.4. i) I⊗(x, 0) = {0}, y ∈ N ii) I⊗(x, 1) = N.

Proof. i) Straightforward from property 2.
ii) Take the unit element 1, then from property 4, we get

1 ∈ (x⊗ y) ∩ (y ⊗ x),∀x, y ∈ N

which means that I⊗(x, 1) = N.

53



Achilles Dramalidis

Proposition 3.5. If a unit element p is a prime number, then

I⊗(x, p) =

{
N, x = np, n ∈ N
pN, x 6= np, n ∈ N.

Proof. Let p ∈ N be a unit element and p = prime number. Then p has no
other divisors than 1 and itself. So, let x = np, n ∈ N, then for x′ ∈ N

x⊗ x′ = {z ∈ N : x · x′ = z · λ, λ ∈ N} =

= {z ∈ N : (np) · x′ = z · λ, λ ∈ N} 3 p,∀x′ ∈ N.

That means that I⊗(x, p) = N. Let x 6= np, n ∈ N, then p ∈ {z ∈ N :
x · x′ = z · λ, λ ∈ N} ⇔ x′ = pn, n ∈ N⇔ I⊗(x, p) = pN.

Seems to be particularly interesting, one to study cases where the unit
element is not a prime number. The following two examples study the cases
where the unit element is 6 and 9.

Example 3.6. Let 6 be the unit element. Assume that x = 6n, n ∈ N, then

x⊗ x′ = {z ∈ N : (6n) · x′ = z · λ, λ ∈ N} 3 6,∀x′ ∈ N.

Then, I⊗(x, 6) = N.
Assume that x = 3m 6= 6n, n,m ∈ N, then

6 ∈ x⊗ x′ = {z ∈ N : (3m) · x′ = z · λ, λ ∈ N} ⇔ x′ = 2n, n ∈ N
⇔ I⊗(x, 6) = 2N.

Assume that x = 2m 6= 6n, n,m ∈ N, then

6 ∈ x⊗ x′ = {z ∈ N : (2m) · x′ = z · λ, λ ∈ N} ⇔ x′ = 3n, n ∈ N
⇔ I⊗(x, 6) = 3N.

Assume that x = 2m+ 1 6= 3n, n,m ∈ N, then

6 ∈ x⊗ x′ = {z ∈ N : (2m+ 1) · x′ = z · λ, λ ∈ N}
⇔ x′ = 6n, n ∈ N⇔ I⊗(x, 6) = 6N.

Example 3.7. Let 9 be the unit element. Assume that x = 9n, n ∈ N, then

x⊗ x′ = {z ∈ N : (9n) · x′ = z · λ, λ ∈ N} 3 9,∀x′ ∈ N.

Then, I⊗(x, 9) = N. Assume that x = 3m 6= 9n, n,m ∈ N, then

9 ∈ x⊗ x′ = {z ∈ N : (3m) · x′ = z · λ, λ ∈ N}
⇔ x′ = 3n, n ∈ N⇔ I⊗(x, 9) = 3N.

Assume that x 6= 3m, m ∈ N, then

9 ∈ x⊗x′ = {z ∈ N : x·x′ = z ·λ, λ ∈ N} ⇔ x′ = 9n, n ∈ N⇔ I⊗(x, 9) = 9N.
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Proposition 3.8. Every element x ∈ N is an absorbing-like element of the
divisors’ hyperoperation due to multiplication.

Proof. According to property 4, x ∈ x ⊗ y, ∀x, y ∈ N, which means, that
for every x∈ N, x ∈ x ⊗ y, ∀y ∈ N and due to property 1, ∀x ∈ N, x ∈
(x ⊗ y) ∩ (y ⊗ x),∀y ∈ N. Then, every natural number is an absorbing-like
element of the divisors’ hyperoperation due to multiplication.

Proposition 3.9. The divisors’ hyperoperation due to multiplication is a
strong associative one in N.

Proof. For x, y, z ∈ N

(x⊗ y)⊗ z = {w ∈ N : x · y = w · λ, λ ∈ N} ⊗ z =
⋃
w∈IN

(w ⊗ z) =

=
⋃
w∈IN

{w′ ∈ N : w · z = w′ · λ′, λ′ ∈ N} =

=
⋃
λ∈IN

{w′ ∈ N :
[1

λ
(xy)

]
z = w′ · λ′, λ′ ∈ N} =

=
⋃
λ∈IN

{w′ ∈ N : x
[1

λ
(yz)

]
= w′ · λ′, λ′ ∈ N} =

=
⋃
v∈IN

{w′ ∈ N : x · v = w′ · λ′, λ′ ∈ N} =

=
⋃
v∈IN

(x⊗ v) = x⊗ {v ∈ N : y · z = v · λ, λ ∈ N} = x⊗ (y ⊗ z).

So, (x⊗ y)⊗ z = x⊗ (y ⊗ z),∀x, y, z ∈ N.

Proposition 3.10. The hyperstructure (N,⊗) is a commutative hypergroup.

Proof. Indeed, for x ∈ N,

x⊗ N = (x⊗ 0) ∪ [
⋃

n∈IN∗

(x⊗ n)] = N ∪
[ ⋃
n∈IN∗

(x⊗ n)
]

= N.

So, x⊗ N = N⊗ x = N, ∀x ∈ N.
Also, according to property 1 and Proposition 3.9 we get that (N,⊗) is a

commutative hypergroup.

Remark 3.11. For x ∈ N∗,

x⊗N∗ =
⋃

n∈IN∗

(x⊗n) =
⋃

n∈IN∗

{z ∈ N : x·n = z ·λ, λ ∈ N∗} ⊃
⋃

n∈IN∗

{n} = N∗.
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So, x⊗ N∗ = N∗ ⊗ x = N∗,∀x ∈ N∗.

Proposition 3.12. For every x ∈ N, xn−1 ⊆ xn, n ∈ N, n ≥ 2.

Proof. For x ∈ N and n ∈ N, n ≥ 2

xn = (xn−1 ⊗ x) ∪ (xn−2 ⊗ x2) ∪ . . . ∪ (xn−p ⊗ xp)

where p =
[
n
2

]
the integer part of n

2
, [1]. Then,

xn ⊇ xn−1 ⊗ x ⊇ xn−1 ⊗ 1 ⊇ xn−1.

4 On a dual Hv-ring in N∗

Proposition 4.1. (x⊗ y)� (x⊗ z) ⊃ x⊗ (y � z),∀x, y, z ∈ N∗.

Proof. For x, y, z ∈ N∗, we get

x⊗ (y � z) = x⊗ {w ∈ N∗ : y + z = w · λ, λ ∈ N∗} =
⋃

w∈IN∗

(x⊗ w) =

=
⋃

w∈IN∗

{w′ ∈ N∗ : x · w = w′ · λ′, λ′ ∈ N∗} =

=
⋃

λ∈IN∗

{w′ ∈ N∗ : x · y + z

λ
= w′ · λ′, λ′ ∈ N∗}.

On the other hand,

(x⊗ y)� (x⊗ z) =

= {v ∈ N∗ : x · y = v · ρ, ρ ∈ N∗} � {v′ ∈ N∗ : x · z = v′ · ρ′, ρ′ ∈ N∗}

=
⋃

v,v′∈IN∗

(v � v′) =
⋃

v,v′∈IN∗

{k ∈ N∗ : v + v′ = k · µ, µ ∈ N∗} =

=
⋃

ρ,ρ′∈IN∗

{κ ∈ N∗ :
xy

ρ
+
xz

ρ′
= κ · µ, µ ∈ N∗} ⊃

⊃
⋃

µ′∈IN∗

{κ′ ∈ N∗ : x · y + z

µ′
= κ′ · τ ′, τ ′ ∈ N∗} = x⊗ (y � z).

So, (x⊗ y)� (x⊗ z) ⊃ x⊗ (y � z) and then,

x⊗ (y � z) ∩ (x⊗ y)� (x⊗ z) 6= ∅,∀x, y, z ∈ N∗.

Proposition 4.2. The divisors’ hyperoperation due to addition is weak dis-
tributive with respect to the divisors’ hyperoperation due to multiplication
in N∗.
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Proof. For x, y, z ∈ N∗, we get

x� (y ⊗ z) = x� {w ∈ N∗ : y · z = w · λ, λ ∈ N∗} =
⋃

w∈IN∗

(x� w) =

=
⋃

w∈IN∗

{w′ ∈ N∗ : x+ w = w′ · λ′, λ′ ∈ N∗} ⊃

⊃ {w′′ ∈ N∗ : x+ y = w′′ · λ′′, λ′′ ∈ N∗}.

On the other hand,

(x� y)⊗ (x� z) =

= {v ∈ N∗ : x+ y = v · ρ, ρ ∈ N∗} ⊗ {v′ ∈ N∗ : x+ z = v′ · ρ′, ρ′ ∈ N∗} =

=
⋃

v,v′∈IN∗

(v ⊗ v′) =
⋃

v,v′∈IN∗

{v′′ ∈ N∗ : v · v′ = v′′ · ρ′′, ρ′′ ∈ N∗} ⊃

⊃ {κ ∈ N∗ : (x+ y) · (x+ z) = κ · µ, µ ∈ N∗} ⊃
⊃ {κ′ ∈ N∗ : x+ y = κ′ · µ′, µ′ ∈ N∗}.

So, x� (y⊗ z)∩ (x� y)⊗ (x� z) ⊃ {τ ∈ N∗ : x+ y = τ ·σ, σ ∈ N∗} and then

x� (y ⊗ z) ∩ (x� y)⊗ (x� z) 6= ∅,∀x, y, z ∈ N∗.

Proposition 4.3. The hyperstructure (N∗,�,⊗) is a commutative dual Hv-
ring.

Proof. Indeed, according to Propositions 2.11 and 3.10 the hyperstructures
(N∗,�) and (N∗,⊗) are commutative Hv-group and commutative hypergroup
respectively. From Propositions 4.1 and 4.2 we get that (⊗) is weak distribu-
tive with respect to (�) and (�) is weak distributive with respect to (⊗),
respectively.
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Abstract
The largest class of hyperstructures is the one which satisfy the

weak properties and they are called Hv-structures introduced in 1990.
The Hv-structures have a partial order (poset) on which gradations
can be defined. We introduce the LV-construction based on the Levels
Variable.
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1 Fundamental Definitions

In a set H is called hyperoperation (abbreviation hyperoperation=hope)
in a set H, is called any map · : H ×H → P(H)− {∅}.
Definition 1.1 (Marty 1934). A hyperstructure (H, ·) is a hypergroup if (·)
is an associative hyperoperation for which the reproduction axiom: hH =
Hh = H,∀x ∈ H, is valid.

Definition 1.2 (Vougiouklis 1990). In a set H with a hope we abbreviate by
WASS the weak associativity : (xy)z ∩ x(yz) 6= ∅, ∀x, y, z ∈ H and by COW
the weak commutativity : xy∩yx 6= ∅,∀x, y ∈ H. The hyperstructure (H, ·) is
called Hv-semigroup if it is WASS, it is called Hv-group if it is reproductive
Hv-semigroup, i.e. xH = Hx = H,∀x ∈ H. The hyperstructure (R,+, ·) is
called Hv-ring if both (+) and (·) are WASS, the reproduction axiom is valid
for (+) and (·) is weak distributive with respect to

(+) : x(y + z) ∩ (xy + xz) 6= ∅, (x+ y)z ∩ (xz + yz) 6= ∅,∀x, y, z ∈ R

.
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Definition 1.3 (Santilly-Vougiouklis). A hyperstructure (H, ·) which con-
tain a unique scalar unit e, is called e-hyperstructure. A hyperstructure
(F,+, ·), where (+) is an operation and (·) is a hyperoperation, is called
e-hyperfield if the following axioms are valid:

1. (F,+) is an abelian group with the additive unit 0,

2. (·) is WASS,

3. (·) is weak distributive with respect to (+),

4. 0 is absorbing element: 0 · x = x · 0 = 0,∀x ∈ F ,

5. there exists a multiplicative scalar unit 1, i.e. 1 · x = x · 1 = x, ∀x ∈ F ,

6. for every x ∈ F there exists a unique inverse x−1, such that

1 ∈ x · x−1 ∩ x−1 · x.

The elements of an e-hyperfield are called e-hypernumbers. In the case
that the relation: 1 = x · x−1 = x−1 · x, is valid, then we say that we have a
strong e-hyperfield.

Construction 1.4. The Main e-Construction. Given a group (G, ·), where
e is the unit, then we define in G, a large number of hyperoperations (⊗) as
follows:

x⊗ y = {xy, g1, g2, . . .},∀x, y ∈ G− {e}, and g1, g2, . . . ∈ G− {e}

g1, g2, . . . are not necessarily the same for each pair (x, y). Then (G,⊗)
becomes an Hv-group, in fact is Hb-group which contains the (G, ·). The
Hv-group (G,⊗) is an e-hypergroup. Moreover, if for each x, y such that
xy = e, so we have x⊗ y = xy, then (G,⊗) becomes a strong e-hypergroup.

For more definitions and applications on Hv-structures, see the books and
papers [1-20].

The main tool to study hyperstructures are the fundamental relations β∗,
γ∗ and ε∗, which are defined, in Hv-groups, Hv-rings and Hv-vector spaces,
resp., as the smallest equivalences so that the quotient would be group, ring
and vector space, resp. Fundamental relations are used for general defini-
tions. Thus, an Hv-ring (R,+, ·) is called Hv-field if R/γ∗ is a field.

Definition 1.5. Let (H, ·), (H, ∗) be Hv-semigroups defined on the same set
H. Then (·) is called smaller than (∗), and (∗) greater than (·), iff there
exists an f ∈ Aut(H, ∗) such that xy ⊂ f(x ∗ y),∀x, y ∈ H. Then we write
· ≤ ∗ and we say that (H, ∗) contains (H, ·). If (H, ·) is a structure then it
is called basic structure and (H, ∗) is called Hb-structure.
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Theorem 1.6 (The Little Theorem). Greater hopes than the ones which are
WASS or COW, are also WASS or COW, respectively.

This Theorem leads to a partial order on Hv-structures, thus we have
posets. The determination of all Hv-groups and Hv-rings is very interesting.
To compare classes we can see the small sets. The problem of enumeration of
classes of Hv-structures was started very early but recently we have results
by using computers. The partial order in Hv-structures restricts the problem
in finding the minimals.

2 Enumeration Theorems

Theorem 2.1 (Chung-Choi). There exists up to isomorphism, 13 minimal
Hv-groups of order 3 with scalar unit, i.e. minimal e-hyperstructures of or-
der 3.

Theorem 2.2 (Bayon-Lygeros).

• There exist, up to isomorphism, 20 Hv-groups of order 2.

• There exist, up to isomorphism, 292 Hv-groups of order 3 with scalar
unit, i.e. e-hyperstructures of order 3.

• There exist, up to isomorphism, 6494 minimal Hv-groups of order 3.

• There exist, up to isomorphism, 1026462 Hv-groups of order 3.

Theorem 2.3 (Bayon-Lygeros).

• There exist, up to isomorphism, 631609 Hv-groups of order 4 with scalar
unit, i.e. e-hyperstructures of order 4.

• There exist, up to isomorphism, 8.028.299.905 abelian Hv-groups of
order 4.

Theorem 2.4 (Bayon-Lygeros).

• The number of abelian Hv-groups of order 4 with scalar unit (i.e. abelian
e-hyperstructures) in respect with their automorphism group are the fol-
lowing
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|Aut (Hv)| 1 2 3 4 6 8 12 24

— — — 32 — 46 5510 626021

• There are 63 isomorphism classes of hyperrings of order 2.

• There are 875 isomorphism classes of Hv-rings of order 2.

• There are 33277642 isomorphism classes of hyperrings of order 3.

In all the above results we construct the poset of hyperstructures of order
2 and 3 in the sense of inclusion for hyperproducts. We compute the Betti
numbers of the poset of Hv-groups of order 2 and we have the following re-
sults: (1, 5), (2, 4), (3, 6), (4, 4), (5, 1). We also compute the Betti numbers
of the poset of hypergroups of order 3 and we have the following results:
(1, 59), (2, 168), (3, 294), (4, 438), (5, 568), (6, 585), (7, 536), (8, 480), (9, 358),
(10, 245), (11, 160), (12, 66), (13, 29), (14, 10), (15, 2), (16, 1).

We explicitly compute the Cayley subtables of the minimal e-hyperstruc-
tures with H = {e, a, b} and we have for the products (aa, ab, ba, bb) the
following results: (b; e; e; a), (eb; a; a; e), (e; ab; ab; e), (a; eb; eb; a), (ab;
ea; ea; e), (H; eb; a; ea), (H; a; eb; ea), (a; H; H; e), (b; H; H; e), (a; H; H;
b), (H; b; a; H), (H; a; b; H), (H; e; ab; H).

3 Construction Theorems

There are several ways to organize such posets using hyperstructure the-
ory. We present now a new construction on posets and we name this LV-
construction since it is based on gradations where the Levels are used as
Variable. Thus LV means Level Variable.

Theorem 3.1. The LV-Construction I
Consider the set Pn of all Hv-groups defined on a set of n elements. Take

the following gradation on Pn based on posets:
Level 0 (or grade 0), denoted by g0, is the set of all minimals of Pn. Level

(grade) 1, denoted by g1, is the set of all Hv-groups obtained from minimals
by adding one only element to anyone of the results of the products of two
elements on the minimals of Pn, i.e. of g0. Level 2 (or grade 2), denoted
by g2, is the set of all Hv-groups obtained from minimals by adding only
two elements to anyone of the results of the products of two elements of the
minimals g0. Then inductively the Level k is defined, denoted by gk. In the
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case that an Hv-group is obtained by adding k1 elements of one minimal and
by adding k2 elements of another minimal then we consider that it belongs to
the Level min(k1, k2).

Denote by r the cardinality of the minimals, |g0| = r, and by s the number
of levels. Take any Hv-group with r elements corresponding to the r elements
of g0, so we have an Hv-group (g0, ∗). Then we define a hope on

Pn = g0 ∪ g1∪, . . . ,∪gs−1,

as follows

x⊗ y =

{
x ∗ y, ∀x, y ∈ g0

gκ+λ, ∀x ∈ gκ, y ∈ gλ, where (κ, λ) 6= (0, 0)

Then the hyperstructure (Pn,⊗) is an Hv-group where its fundamental
group is isomorphic to Zs, thus we have

Pn/β
∗ ≈ Zs.

Proof. Let us correspond, numbered, the levels with the elements of Zs :
gi → i, i = 0, . . . , s− 1.

From the definition of (⊗) any hyperproduct of elements from several
levels, apart of g0, equals to only one special set of Hv-groups that constitute
one level. Moreover we have

x⊗ y = g0,∀x ∈ gκ, y ∈ g−κ, for any κ 6= 0.

That means that the elements of g0are β*-equivalent. Therefore all elements
of each level are β∗-equivalent and there are no β∗-equivalent elements from
different levels. That proves that

Pn/β
∗ ≈ Zs.

The above is a construction similar to the one from the book [15, p.27]
A generalization of the above construction is the following:

Theorem 3.2. The LV-Construction II
Consider a graded finite poset with n elements: Pn = g0∪g1∪, . . . ,∪gs−1,

with s levels (grades) g0,g1, . . . ,gs−1, such that

s−1∑
i=0

|gi| = n.
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Denoting |g0| = r, we consider two Hv-groups (E, ·) and (S, ∗) such that
|E| = r, |S| = s and moreover S has a unit single element e. Then we
take 1:1 maps from E onto g0 and from S onto {g0,g1, . . . ,gs−1}, so we
obtain two Hv-groups: (g0, ·) and

(
G = {g0,g1, . . . ,gs−1}, ∗

)
where E = g0

corresponds to the single element e. We define a hope on Pn as follows:

x⊗ y =

{
x · y, ∀x, y ∈ g0

gκ ∗ gλ, ∀gκ,gλ ∈ G, where (κ, λ) 6= (0, 0)

Then the hyperstructure (Pn,⊗) is an Hv-group where its fundamental group
is isomorphic to the fundamental group of (S, ∗), therefore we have

(Pn,⊗)/β∗ ≈ (S, ∗)/β∗.

Proof. From the reproductivity of (G, ∗), for each gκ, κ 6= 0, there exists a
gλ such that g0 ∈ gκ ∗ gλ. But g0 is a single element of (S, ∗), therefore we
have g0 = gκ ∗ gλ. Then, by the definition, for any x ∈ gκ, y ∈ gλ we have,
x⊗ y = g0. Therefore, all the elements of g0 are β∗-equivalent. On the other
side, from the definition, all elements of each level are β*-equivalent and
they are β∗-equivalent elements with different levels if and only if they are
β∗-equivalent in (G, ∗). In other wards they follow exactly the β∗-equivalence
of (G, ∗).

That proves that
(Pn,⊗)/β∗ ≈ (S, ∗)/β∗.

With this LV-construction we can define the poset for Hv-groups of order
2. So we get a non-connected poset with Betti numbers for the two subposets
(1,4), (2,4), (3,1) and (1,1), (2, 4), (3,6).
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Abstract

The structure of the hypergroup is much more complicated than
that of the group. Thus there exist various kinds of subhypergroups.
This paper deals with some of these subhypergroups and presents
certain properties of the closed, invertible and ultra-closed subhyper-
groups.
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1 Introduction

In 1934 F. Marty, in order to study problems in non-commutative algebra,
such as cosets determined by non-invariant subgroups, generalized the notion
of the group, thus defining the hypergroup [11]. An operation or composition
in a non-void set H is a function from H ×H to H, while a hyperoperation
or hypercomposition is a function from H × H to the powerset P(H ) of H.
An algebraic structure that satisfies the axioms:

i. a · (b · c) = (a · b) · c for every a, b, c ∈ H (associative axiom) and
ii. a ·H = H · a = H for every a ∈ H (reproductive axiom).

is called group if · is a composition [16] and hypergroup if · is a hypercomposi-
tion [11]. When there is no likelihood of confusion · can be omitted. If A and
B are subsets of H, then AB signifies the union

⋃
(a,b)∈A×B ab, in particular if

A=∅ or B=∅ then AB=∅. Ab and aB have the same meaning as A {b} and
{a}B. In general, the singleton {a} is identified with its member a.
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Proposition 1.1. If a non-void set H is endowed with a composition which
satisfies the associative and the reproductive axioms, then H has a bilateral
neutral element and any element in H has a bilateral symmetric.

Proof. Let x ∈ H. Per reproductive axiom x ∈ xH. Therefore there exists
e ∈ H such that xe = x. Next, let y be an arbitrary element in H. Per
reproductive axiom there exists z ∈ H such that y = zx. Consequently
ye = (zx) e = z (xe) = zx = y. Hence e is a right neutral element. In
an analogous way there exists a left neutral element e′. Then the equality
e = e′e = e′ is valid. Therefore e is the bilateral neutral element of H. Now,
per reproductive axiom e ∈ xH. Thus there exists x′ ∈ H, such that e = xx′.
Hence any element in H has a right symmetric. Similarly any element in H
has a left symmetric and it is easy to prove that these two symmetric elements
coincide.

Remark 1.2. An analogous Proposition to Proposition 1.1 is not valid when
H is endowed with a hypercomposition. In hypergroups there exist different
types of neutral elements [15] (e.g. scalar [4], strong [8,17] ect). There also
exist special types of hypergroups which have a neutral element and each
one of their elements has one or more symmetric. Such hypergroups are for
example the canonical hypergroups [21], the quasicanonical hypergroups [12],
the fortified join hypergroups [17], the fortified transposition hypergroups [8],
the transposition polysymmetrical hypergroups [19], the canonical polysym-
metrical hypergroups [14], etc.

Proposition 1.3. If H is a hypergroup, then ab 6= ∅ is valid for all the
elements a, b of H.

Proof. Suppose that ab = ∅ for some a, b ∈ H. Per reproductive axiom,
aH = H and bH = H. Hence, H = aH = a (bH) = (ab) H = ∅H = ∅ ,
which is absurd.

In [11], F. Marty also defined the two induced hypercompositions (right
and left division) that result from the hypercomposition of the hypergroup,
i.e.

a
| b = {x ∈ H|a ∈ xb} and a

b | = {x ∈ H|a ∈ bx}.

It is obvious that the two induced hypercompositions coincide, if the hyper-
group is commutative. For the sake of notational simplicity, a/b or a : b is
used for right division and b\a or a..b for left division [7, 13].

Proposition 1.4. If H is a hypergroup, then a/b 6= ∅ and b\a 6= ∅ for all
the elements a, b of H.
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Proof. Per reproductive axiom, Hb = H for all b ∈ H . Hence, for every
a ∈ Hthere exists x ∈ H, such that a ∈ xb . Thus, x ∈ a/b and, therefore,
a/b 6= ∅ . Dually, b\a 6= ∅ .

In Proposition 2.3 of [13] the following properties were proved for any
hypergroup H (see also Proposition 1 in [7])

Proposition 1.5. i) (a/b) /c = a/(cb) and c\(b\a) = (bc)\a, for all
a, b, c ∈ H.

ii) b ∈ (a/b) \a and b ∈ a/ (b\a), for all a, b ∈ H.

In [7] and then in [8] a principle of duality is established in the theory of
hypergroups and in the theory of transposition hypergroups as follows:
Given a theorem, the dual statement which results from the interchanging of
the order of the hypercomposition . (and necessarily interchanging of the left
and the right division), is also a theorem.
This principle is used throughout this paper.

2 Closed, invertible and ultra-closed subhy-

pergoups

The structure of the hypergroup is much more complicated than that of
the group. There are various kinds of subhypergroups. In particular a non-
empty subset K of H is called semi-subhypergroup when it is stable under
the hypercomposition, i.e. it has the property xy ⊆ K for all x, y ∈ K. K is
a subhypergroup of H if it satisfies the reproductive axiom, i.e. if the equality
xK = Kx = K is valid for all x ∈ K(for the fuzzy case see e.g [3]). This
means that when K is a subhypergroup and a, b ∈ K, the relations a ∈ bx
and a ∈ yb always have solutions in K. Although the non-void intersection of
two subhypergroups is stable under the hypercomposition, it usually is not a
subhypergroup since the reproductive axiom fails to be valid for it. This led,
from the very early steps of hypergroup theory, to the consideration of more
special types of subhypergroups. One of them is the closed subhypergroup
(e.g. see [5], [9]). A subhypergroup K of H is called left closed with respect
to H if for any two elements a and b in K, all the solutions of the relation
a ∈ yb lie in K. This means that K is left closed if and only if a/b ⊆ K,
for all a, b ∈ K (see [13]). Similarly K is right closed when all the solutions
of the relation a ∈ bx lie in K or equivalently if b\a ⊆ K, for all a, b ∈ K
[13]. Finally K is closed when it is both right and left closed. In the case of
the closed subhypergroups, the non-void intersection of any family of closed
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subhypergroups is a closed subhypergroup. It must be mentioned though
that a hypergroup may have subhypergroups, but no proper closed ones. For
example if Q is a quasi-order hypergroup [6], a2 is a subhypergroup of Q, for
each a ∈ Q, but a/a = a\a = Q for all a ∈ Q. Also fortified transposition
hypergroups [8, 17] consisting only of attractive elements have no proper
closed subhypergroups [18].

Proposition 2.1. If K is a subset of a hypergroup H such that a/b ⊆ K
and b\a ⊆ K, for all a, b ∈ K, then K is a subhypergroup of H.

Proof. Let a be an element of K. It must be shown that aK = Ka = K.
Suppose that x ∈ K. Then a\x ⊆ K, therefore x ∈ aK, hence K ⊆ aK.
For the reverse inclusion now suppose that y ∈ aK. Then K/y ⊆ K/aK.
So K ∩ (K/aK) y 6= ∅. Thus, y ∈ (K/aK) \K. Per Proposition 1.4 (i) the
equality K/aK = (K/K) /a is valid. Thus (K/aK) \K = ((K/K) /a) \K ⊆
(K/a) \K ⊆ (K/K) \K ⊆ K\K ⊆ K. Hence y ∈ K and so aK ⊆ K.
Therefore aK = K. The equality Ka = K follows by duality.

In [13] it is also proved that the equalities

K = K/a = a/K = a\K = K\a

are valid for every element a of a closed subhypergroup K.

Next some properties of these subhypergroups will be presented.

Proposition 2.2. If K is a subhypergroup of H, then H −K ⊆ (H −K) s
and H −K ⊆ s (H −K), for all s ∈ K.

Proof. Let r be an element in H −K which does not belong to (H −K) s.
Because of the reproductive axiom, r ∈ Hs and since r /∈ (H −K) s, r must
be a member of Ks. Thus, r ∈ Ks ⊆ KK = K. This contradicts the
assumption and so H − K ⊆ (H −K) s. The second inclusion follows by
duality.

Proposition 2.3. (i) A subhypergroup K of H is left closed in H, if and
only if (H −K) s = H −K for all s ∈ K.

(ii) A subhypergroup K of H is right closed in H, if and only if

s (H −K) = H −K for all s ∈ K.

(iii) A subhypergroup K of H is closed in H, if and only if

s (H −K) = (H −K) s = H −K for all s ∈ K.
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Proof. (i) Let K be left closed in H. Suppose that z lies in H−K and assume
that zs ∩K 6= ∅. Then, there exists an element y in K such that y ∈ zs, or
equivalently, z ∈ y/s. Therefore z ∈ K, which is absurd. Hence (H −K) s ⊆
H −K. Next, because of Proposition 1, H −K ⊆ (H −K) s and therefore
H − K = (H −K) s. Conversely now. Suppose that (H −K) s = H − K
for all s ∈ K. Then (H −K) s ∩ K = ∅ for all s ∈ K. Hence x /∈ rs and
so r /∈ x/s for all x, s ∈ K and r ∈ H −K. Therefore x/s ∩ (H −K) = ∅
which implies that x/s ⊆ K. Thus K is closed in H. (ii) follows by duality
and (iii) is an obvious consequence of (i) and (ii).

Corolary 2.4. (i) If K is a left closed subhypergroup in H, then xK∩K = ∅,
for all x ∈ H −K.
(ii) If K is a right closed subhypergroup in H, then Kx ∩ K = ∅, for all
x ∈ H −K.
(iii) If K is a closed subhypergroup in H, then xK ∩K = ∅ and Kx∩K = ∅,
for all x ∈ H −K.

Proposition 2.5. If K is a subhypergroup of H, A ⊆ K and B ⊆ H, then
(i) A (B ∩K) ⊆ AB ∩K and (ii) (B ∩K) A ⊆ BA ∩K.

Proof. Let t ∈ A (B ∩K). Then t ∈ ax, with a ∈ A and x ∈ B ∩K. Since
x lies in B ∩ K, it derives that x ∈ B and x ∈ K. Hence ax ⊆ aB and
ax ⊆ aK = K. Thus ax ⊆ AB ∩K and therefore t ∈ AB ∩K. Duality gives
(ii) and so the Proposition.

Proposition 2.6. (i) If K is a left closed subhypergroup in H, A ⊆ K and
B ⊆ H, then (B ∩K) A = BA ∩K.

(ii) If K is a right closed subhypergroup in H, A ⊆ K and B ⊆ H, then
A (B ∩K) = AB ∩K.

Proof. (i) Let t ∈ BA ∩ K. Since K is right closed, for any element y in
B −K, it is valid that yA ∩K ⊆ yK ∩K = ∅. Hence t ∈ (B ∩K) A ∩K.
But (B ∩K) A ⊆ KK = K. Thus t ∈ (B ∩K) A. Therefore BA ∩ K ⊆
(B ∩K) A. Next the inclusion becomes equality because of Proposition 2.5.
(ii) derives from the duality.

Proposition 2.7. (i) If K is a left closed subhypergroup in H, A ⊆ K and
B ⊆ H, then (B ∩K) /A = (B/A) ∩K.

(ii) If K is a right closed subhypergroup in H, A ⊆ K and B ⊆ H, then
(B ∩K) \A = B\A ∩K.

Proof. (i) Since B ∩ K ⊆ B, it derives that (B ∩K) /A ⊆ B/A. Moreover
A ⊆ K and B ∩ K ⊆ K, thus (B ∩K) /A ⊆ K. Hence (B ∩K) /A ⊆
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(B/A)∩K. For the reverse inclusion now suppose that x ∈ (B/A)∩K. Then,
there exist a ∈ A, b ∈ B such that x ∈ b/a or equivalently b ∈ ax. Since
ax ⊆ K it derives that b ∈ K and so b ∈ B∩K. Therefore b/a ⊆ (B ∩K) /A.
Thus x ∈ (B ∩K) /A. Hence (B/A)∩K ⊆ (B ∩K) /A, QED. Duality gives
(ii) and so the Proposition.

Krasner generalized the notion of the closed subhypergroups, consider-
ing closed subhypergroups in other subhypergroups [9]. Let us define the
restriction of the right and left division in subset A of a hypergroup H as
follows:

a/Ab = {x ∈ A|a ∈ xb} and b\Aa = {x ∈ A|a ∈ bx}

Thus, if K is a subhypergroup of H and K ⊆ A, then K is right closed in A,
if b\Aa ⊆ K for all a, b ∈ K and K is left closed in A, if a/Ab ⊆ K for all
a, b ∈ K.

Proposition 2.8. Let K, M be two subhypergroups of a hypergroup H, such
that K ⊆ M . If K is left (or right) closed in M and M is left (or right)
closed in H, then K is left (or right) closed in H.

Proof. Since K is left closed in M , the inclusion a/Mb ⊆ K is valid, for all
a, b ∈ K. This means that if x is an element of M such that a ∈ xb, then
x ∈ K. Next if there exists y ∈ H −M such that a ∈ yb, then a/b will not
be a subset of M . Hence M will not be left closed in H. This contradicts
the assumption, and so the Proposition.

Corolary 2.9. Let K, M be two subhypergroups of a hypergroup H, such
that K ⊆ M . If K is closed in M and M is closed in H, then K is closed
in H.

Proposition 2.10. Let K, M be two subhypergroups of a hypergroup Hand
suppose that K is left (or right) closed in H. Then K ∩M is left (or right)
closed in M .

Proof. Let a, b ∈ K ∩ M . Then a/b = {x ∈ H|a ∈ xb} ⊆ K. Hence
{x ∈M |a ∈ xb} ⊆ K ∩ M . Therefore a/Mb ⊆ K ∩ M . Thus K ∩ M is
left closed in M .

Corolary 2.11. Let K, M be two subhypergroups of a hypergroup Hand
suppose that K is closed in H. Then K ∩M is closed in M .

Proposition 2.12. If two subhypergroups K, Mof a hypergroup Hare left
(or right) closed in Hand their intersection is not void, then K ∩M is left
(or right) closed in M .
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Proof. Let a, b ∈ K ∩M . Since K, M are left closed in H,
a/b = {x ∈ H|a ∈ xb} is a subset of both K and M . Hence a/b ⊆ K ∩M
and so the Proposition.

Corolary 2.13. The non-void intersection of two closed subhypergroups is a
closed subhypergroup.

The next type of hypergroups was introduced by Dresher and Ore in [5]
and immediately after that, M. Krasner used them in [9]. In both [5] and [9]
they are named reversible subhypergoups. In our days these subhypergroups
are called invertible. The Definition that follows was given by Jantosciak
in [7].

Definition 2.14. A subhypergroup K of a hypergroup H is right invertible
if a/b ∩K 6= ∅, implies that b/a ∩K 6= ∅, a, b ∈ H. K is left invertible if
b\a ∩K 6= ∅, implies that a\b ∩K 6= ∅, a, b ∈ H. If K is both right and left
invertible, then it is called invertible.

Theorem 4 in [1] gives an interesting example of an invertible subhyper-
group in a join hypergroup of partial differential operators. Moreover the
closed subhypergroups of the quasicanonical or of the canonical hypergroups
are invertible [21].

Direct consequences of the above definition are the following propositions:

Proposition 2.15. (i) K is right invertible in H, if and only if the following
implication is valid: b ∈ Ka⇒ a ∈ Kb, a, b ∈ H.

(ii) K is left invertible in H, if and only if the following implication is
valid: b ∈ aK ⇒ a ∈ bK, a, b ∈ H.

Proposition 2.16. (i) K is right invertible in H, if and only if the following
implication is valid: Ka 6= Kb⇒ Ka ∩Kb = ∅, a, b ∈ H.

(ii) K is left invertible in H, if and only if the following implication is
valid: aK 6= bK ⇒ aK ∩ bK = ∅, a, b ∈ H.

Proposition 2.17. If K is right (left) invertible in H, then K is right (left)
closed in H.

In [2] one can find examples of closed hypegroups that are not invertible.

Definition 2.18. A subhypergroup K of a hypergroup H is right ultra-
closed if it is right closed and a/a ⊆ K for each a ∈ H. K is left ultra-
closed if it is left closed and a\a ⊆ K for each a ∈ H. If K is both right
and left ultra-closed, then it is called ultra-closed.
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Proposition 2.19. (i) If K is right ultra-closed in H, then either a/b ⊆ K
or a/b ∩K = ∅, for all a, b ∈ H. Moreover if a/b ⊆ K, then b/a ⊆ K.

(ii) If K is left ultra-closed in H, then either b\a ⊆ K or b\a ∩K = ∅,
for all a, b ∈ H. Moreover if b\a ⊆ K, then a\b ⊆ K.

Proof. Suppose that a/b ∩K 6= ∅, a, b ∈ H. Then a ∈ kb, for some k ∈ K.
Next assume that b/a ∩ (H −K) 6= ∅. Then b ∈ ra, r ∈ H − K. Thus
a ∈ k (ra) = (kr) a. Since K is right closed, per Proposition 2.3, kr ⊆ H−K.
So a ∈ va, for some v ∈ H − K. Therefore a/a ∩ (H −K) 6= ∅, which is
absurd. Hence b/a ⊆ K. Now let there be x in K such that b ∈ xa. If
a/b ∩ (H −K) 6= ∅, there exists y ∈ H − K such that a ∈ yb. Therefore
b ∈ x (yb) = (xy) b. Since K is right closed, per Proposition 2.3, xy ⊆ H−K.
So b ∈ zb, for some z ∈ H−K. Therefore b/b∩(H −K) 6= ∅, which is absurd.
Hence a/b ⊆ K. Duality gives (ii).

Corolary 2.20. If K is right (left) ultra-closed in H, then K is right (left)
invertible in H.

Ultra-closed subhypergroups were introduced by Y. Sureau [22] (see also
[2, 20]). The following Proposition proves that the above given definition is
equivalent to the definition used by Sureau:

Proposition 2.21. (i) K is right ultra-closed in H, if and only if

Ka ∩ (H −K) a = ∅ for all a ∈ H.

(ii) K is left ultra-closed in H, if and only if aK ∩ a (H −K) = ∅ for all
a ∈ H.

Proof. Suppose that K is right ultra-closed in H. Then a/a ⊆ K for all
a ∈ H. Since K is right closed, (a/a) /k ⊆ K is valid, or equivalently
a/ (ak) ⊆ K for all k ∈ K. Proposition 2.19 yields (ak) /a ⊆ K for all
k ∈ K. If Ka ∩ (H −K) a 6= ∅ , then there exist k ∈ K and v ∈ H − K,
such that ka ∩ va 6= ∅, which implies that v ∈ ak/a. But (ak) /a ⊆ K,
hence v ∈ K which is absurd. Conversely now: Let Ka ∩ (H −K) a = ∅
for all a ∈ H. If a ∈ K, then K ∩ (H −K) a = ∅. Therefore k /∈ ra,
for each k ∈ K and r ∈ H − K. Equivalently k/a ∩ (H −K) = ∅, for
all k ∈ K. Hence k/a ⊆ K for all k ∈ K and a ∈ K. So K is right
closed. Next suppose that a/a ∩ (H −K) 6= ∅ for some a ∈ H. Then
a ∈ (H −K) a, or Ka ⊆ K (H −K) a. Since K is closed, per Proposition
2.3, K (H −K) ⊆ H−K is valid. Thus Ka ⊆ (H −K) a, which contradicts
the assumption. Duality gives (ii).
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Abstract

In this paper we extend a very specific class of hypervector spaces
called Krasner hypervector spaces in order to obtain a hypermatrix.
For reaching to this goal, we will define dependent and independent
vectors in this kind of hypervector space and define basis and dimen-
sion for it. Also, by using multivalued linear transformations, we ex-
amine the possibility of existing a free object here. Finally, we study
the fundamental relation on Krasner hypervector spaces and we define
a functor.

Key words: Hypermatrix, Hypervector spaces, Basis of a hyper-
vector space, Multivalued linear transformations.

MSC2010: 15A33.

1 Introduction

The notion of a hypergroup was introduced by F. Marty in 1934 [5].
Since then many researchers have worked on hyperalgebraic structures and
developed this theory (for more details see [2],[3]). Using hyperstructures

∗ Corresponding Author
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theory, mathematicians have defined and studied variety of algebraic struc-
tures. Among them the notion of hypervector spaces has been studied mainly
by Vougiuklis [8, 9], Tallini [6, 7] and Krasner [3].(see also [1]). There are
differences mainley about operation or a hyperoperation in these three type
of hypervector spaces. Vougiuklis has studied HV vector spaces which deals
with a very weak condition regarding intersections. Tallini defined a hyper-
vector spaces considering a crisp sum and using a hyperexternal operation
which assigns to the production every element of a field and every element
of the abelian geroup (V,+), a non empty subset of V , while Krasner in
the definition of a hypervector space used a hypersum to make a canonical
hypergroup and by using a singlevalued operation he defined the Krasner
hypervector space with some definitions.
In this paper we have chosen the definition of Krasner and we defined the
generalized subset of it. Also, to make a correct logical relation between defi-
nitions we had to define the notion of a multivalued linear transformation and
by using this notion we could talk about basis and dimension of a Krasner
hypervector space. In the sequel, considering the multivalued functions, we
have constructed a kind of matrix whith hyperarrays with coefficients taken
from the hyperfield of Krasner and elements of the basis. Also, we studied
the notion of singular and nonsingular transformations. Finally, we stud-
ied the category of Krasner hypervector spaces and defines the fundamental
relation on it. In the last part we have defines a functor.

2 Preliminaries

In this section we present definitions and properties of hypervector spaces
and subsets, that we need for developing our paper.

A mapping ◦ : H × H −→ P ∗(H) is called a hyperoperation (or a join
operation), where P ∗(H) is the set of all non-empty subsets of H. The join
operation is extended to subsets of H in natural way, so that A ◦B is given
by

A ◦B =
⋃
{a ◦ b : a ∈ A and b ∈ B}

The notations a ◦A and A ◦ a are used for {a} ◦A and A ◦ {a}, respectively.
Generally, the singleton {a} is identified by its element a.

A hypergroupoid (H, ◦), which is associative, i. e, x◦ (y ◦ z) = (x◦y)◦ z ,
∀x, y, z ∈ H is called a semihypergroup. A hypergroup is a semihypergroup
such that for all x ∈ H, we have x ◦ H = H = H ◦ x, which is called
reproduction axiom.
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Definition 2.1. [3] A semihypergroup (H,+) is called a canonical hyper-
group if the following conditions are satisfied:
(i)x+ y = y + x, ∀x, y ∈ R;
(ii)∃0 ∈ R(unique) such that for every x ∈ R, x ∈ 0 + x = x;
(iii) for every x ∈ R , there exists a unique element, say x́ such that
0 ∈ x+ x́.(we denote x́ by -x);
(iv) for every x, y, z ∈ R, z ∈ x+ y ⇐⇒ x ∈ z − y ⇐⇒ y ∈ z − x.
from the definition it can be easily verified that −(−x) = x and −(x+ y) =
−x− y.

Definition 2.2. [3] A Krasner hyperring is a hyperstructure (R,⊕, ?) where
(i) (A,⊕) is a canonical hypergroup;
(ii) (A, ?) is a semigroup endowed with a two-sided absorbing element 0;
(iii) the product distributes from both sides over the sum.

A hyperfield is a Krasner hyperring (K,⊕, ?), such that (K −{0}, ?) is a
group.

Definition 2.3. [3] Let (K,⊕, ?) be a hyperskewfield and (V,⊕) be a canon-
ical hypergroup. We define a Krasner hypervector space over K to be the
quadrupled (V,⊕, ·, K), where ” · ” is a single-valued operation

· : K × V −→ V,

such that for all a ∈ K and x ∈ V we have a · x ∈ V , and for all a, b ∈ K
and x, y ∈ V the following conditions hold:

(H1) a · (x⊕ y) = a · x⊕ a · y;

(H2) (a⊕ b) · x = a · x⊕ b · x;

(H3) a · (b · x) = (a ? b) · x;

(H4) 0 · x = 0;

(H5) 1 · x = x.
We say that (V,⊕, ·, K) is anti-left distributive if for all a, b ∈ K, x ∈
V, (a + b) · x ⊇ a · x + b · x, and strongly left distributive, if for all a, b ∈
K, x ∈ V, (a⊕ b) · x = a · x⊕ b · x,
In a similar way we define the anti-right distributive and strongly right dis-
tributive hypervector spaces, respectively. V is called strongly distributive if
it is both strongly left and strongly right distributive.

In the sequel by a hypervector space we mean a Krasner hypervector
space.
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3 Krasner Subhypervector Space

Here we study some basic results of Krasner hypervector spaces and after
defining the category of Krasner hypervector spaces, we continue to find a
free object in the category of Krasner hypervector spaces.

Definition 3.1. A nonempty subset S of V is a subhyperspace if (S,⊕) is a
canonical subhypergroup of V and for all a ∈ K, x ∈ S, we have a · x ∈ S.

Here we present example of a Krasner hypervector spaces.

Example 3.2. Let F be a field , V be a vector space and F ∗ be a multi-
plicative subgroup of F . For all x, y ∈ V we define the equivalence relation
∼ on V as follows:

x ∼ y ⇐⇒ x = ty t ∈ F ∗
Now, let V̄ be the set of all classes of V modulo ∼. V̄ together with the
hypersum ⊕, construct a canonical hypergroup:

x̄⊕ ȳ = {v̄ ∈ V̄ | v̄ ⊆ x̄⊕ ȳ}
Here we consider the external composition

· : f̄ × V̄ −→ V̄
ā · v̄ 7−→ āv

Now, (V̄ ,⊕, ·, F ) is a hypervector space.

Lemma 3.3. Let Vi be a hypervector space, for all i ∈ I, then
⋂
Vi is also a

hypervector space.

Definition 3.4. Let V be a hypervector spaces and S a nonempty subset
of it, then the smallest subhypervector space of V containing S is called
linear space generated by S and is denoted by < S >. Moreover, < S >=⋂
S⊆W≤V W .

Theorem 3.5. Let V be a hypervector space and S a nonempty subset of it,
then

< S > = {t ∈ V |t ∈
n∑
i=1

ai · si, ai ∈ K, si ∈ S, n ∈ N} =

= {t1 ⊕ ...⊕ tn|ti = ai · si}.

Proof. Let A = {t ∈ V |t ∈
∑n

i=1 ai · si, ai ∈ K, si ∈ S, n ∈ N}. We claim
that (A,⊕, ·, K) is the smallest hypervector space generated by S.
First we show that (A,⊕) is a canonical hypergroup. Commutativity is ob-
vious.
For all x ∈ A, we have x ∈

∑n
i=1 ai · si. Suppose there exists a scalar identity
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0A ∈ A such that 0A ∈
∑n

i=1 bi · ri, for bi ∈ K and ri ∈ S, we should have
x⊕ 0A =

∑n
i=1 ai · si ⊕

∑n
i=1 bi · ri =

∑n
i=1 ai · si 3 x.

Since for all si ∈ A, we have si ∈ S ⊆ V , and (V,⊕) is a canonical hyper-
group, then there exists a scalar identity in V called 0V such that si⊕0V = si.
Hence in the above equation it is enough to choose bi = ai and ri = 0V , we
obtain

x⊕0A =
∑n

i=1 ai·si⊕
∑n

i=1 ai·0V =
∑n

i=1 ai·(si⊕0V ) =
∑n

i=1 ai·si 3 x.
Now for all x ∈ A we define −x =

∑n
i=1 ai · (−si), then we have

0S =
∑n

i=1 ai ·0V ∈
∑n

i=1 ai ·si⊕
∑n

i=1 ai ·(−s)i =
∑n

i=1 ai ·(si⊕(−si))
Hence every element in (A,⊕) has a unique identity. Moreover, every ele-
ment in (A,⊕) is reversible, because suppose for all x, y, z ∈ A, we have
x =

∑n
i=1 ai · si, y =

∑n
i=1 ái · śi, z =

∑n
i=1

´́ai · ´́si. Since for si, śi, ´́si ∈ S ⊆ V ,

if ´́si ∈ si⊕śi we have śi ∈ ´́si⊕(−si), then it is sufficient to choose ´́ai = ái = ai.
Therefore (A,⊕) is a canonical subhypergroup.
Now for all t ∈ A, k ∈ K, we have

k · t ⊆ k ·
n∑
i=1

ai · si =
n∑
i=1

(k ? ai) · si ⊆ A.

Then (A,⊕, ·, K) is a subhypervector space of V .
Let W be another subhypervector space of V containg S. let t ∈ A, then
t ∈

∑n
i=1 ai · si, for ai ∈ K, si ∈ S, n ∈ N . Since W is a subhypervector space

of V containing S, then
∑n

i=1 ai · si ⊆ W and A ⊆ W . So, A is the smallest
subhypervector space of V . Also, for all s ∈ S, we have s = 1 · s, then s ∈ A,
therefore S ⊆ A.

Definition 3.6. Let (V,⊕, ·), (W,⊕, ·) be two hypervector spaces over a hy-
perskewfield K, then the mapping T : V −→ P ∗(W ) is called

(i) multivalued linear transformation if
T (x⊕ y) ⊆ T (x)⊕ T (y) and T (a · x) = a · T (x).

(ii) multivalued good linear transformation if
T (x⊕ y) = T (x)⊕ T (y) and T (a · x) = a · T (x).

where, P ∗(W ) is the nonempty power set of W .

From now on, by mv- linear transformation we mean a multivalued linear
transformation.

Remark 3.7. We define T (0V ) = 0W .

Definition 3.8. Let V,W be two hypervector spaces over a hyperskewfield
K, and T : V −→ P (W ) be a mv-linear transformation. Then the kernel of
T is denoted by kerT and defined by

KerT = {x ∈ V | 0W ∈ T (x)}
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Theorem 3.9. Let V,W be two hypervector spaces on a hyperskewfield K
and T : V −→ W be a linear transformation. Then KerT is a subhypervector
space of V .

Proof. By Remark 4.18, we have T (0V ) = 0W which means that 0V ∈ KerT
and KerT 6= ∅, then we have x ∈ x⊕ 0V = x, for all x ∈ KerT . The other
properties of a canonical subhypervector space will inherit from V .

Theorem 3.10. Let V, U be two hypervector spaces and T : V −→ P ∗(U) be
a mv-linear transformation :

(i) if W is a subhypervector space of V , then T (W ) is also a subhyper-
vector space of U .

(ii) if L is a subhypervector space of U , then T−1(L) is also a subhyper-
vector space of V containing kerT .

Proof. (i) Let a ∈ K and x́, ý ∈ T (W ), such that x́ = T (x), ý = T (y) for
some x, y ∈ W . Then x́ ⊕ ý = T (x) ⊕ T (y) = T (y) ⊕ T (x) = ý ⊕ x́, hence
commutativity holds.
For all x ∈ V we have x = x⊕ 0V , then we obtain

T (x) = T (x⊕ 0V ) ⊆ T (x)⊕ T (0V ) = T (x)⊕ 0U .
Also, for all x ∈ V , there exists x́ = −x ∈ V such that 0V ∈ x ⊕ (−x). By
Remark 4.18 we have

0U = T (0V ) ∈ T (x⊕ (−x)) ⊆ T (x)⊕ T (−x) = x́⊕ x́.
where x́ = T (−x) is the unique inverse of x́.
Now suppose for all x, y, z ∈ V we have

x ∈ y ⊕ z =⇒ y ∈ x⊕ (−z)
This is equivalent to

T (x) ∈ T (y⊕ z) ⊆ T (y)⊕T (z) =⇒ T (y) ∈ T (x)⊕T (−z).
So, (T (W ),⊕) is a canonical hypergroup. Now for a ∈ K and x́ ∈ T (W ), we
have

a · x́ = a · T (x) = T (a · x) ⊆ T (W ).
Hence, (T (W ),⊕, ·), is a subhypervector space of V .

(ii) let a ∈ K and x, y ∈ T−1(L). Suppose x́ = T (x), ý = T (y), for
x́, ý ∈ L. Since (U,⊕) is a canonical hypergroup, then we have

x⊕ y = T−1(x́)⊕ T−1(ý) = T−1(ý)⊕ T−1(x́) = y ⊕ x.
Also, we have

x⊕ 0V = T−1(x́)⊕ T−1(0U) ⊇ T−1(x́⊕ 0U) ⊇ T−1(x́) = x.
for all x́ ∈ V , there exists −́x such that 0U ∈ x́⊕ (−́x), hence for x ∈ T−1(x́),
there exists T−1(−x́) ∈ T−1(L) such that

x⊕ (−x) = T−1(x́)⊕ T−1(−x́) = T−1(x⊕ (−x́)) = T−1(0U) = 0V .
Now for all x́, ý, ź ∈ L, we have

x́ ∈ ý ⊕ ź =⇒ ý ∈ x́⊕ (−ź)
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Suppose x, y, z ∈ T−1(L). The above relation is equivalent to
y ⊕ z = T−1(ý)⊕ T−1(ź) ⊇ T−1(ý ⊕ ź) ⊇ T−1(x́) = x

=⇒ x⊕ (−z) = T (x́)⊕ T (−ź) ⊇ T (x́⊕ (−ź)) ⊇ T (ý) = y.
which means that x ∈ y ⊕ z =⇒ y ∈ x⊕ (−z).
Moreover, a · x = a · T−1(x́) = T−1(a · x́) ⊆ T−1(L). Hence (T−1(L),⊕, ·) is
a subhypervector space of V .
Now for x ∈ KerT we have T (x) = 0U ∈ L, then we obtain x ∈ T−1(L),
hence KerT ⊆ T−1(L).

Theorem 3.11. Let U , V be two hypervector spaces on a hyperskewfield K
and T : V −→ P ∗(U) be a good linear transformation. Then there is a one
to one correspondence between sunhypervector spaces of V containing KerT
and subhypervector spaces of U .

Proof. Suppose A = {W |W ≤ V, W ⊇ KerT} and B = {L|L ≤ U}. We
show that the following map is one to one and onto:

φ : A −→ B
W −→ T (W )

By Theorem 3.10, T (W ) belongs to B, for all W ∈ A. Now let W1,W2 be
two elements of A such that W1 6= W2, then there exists w1 ∈ W1 −W2 or
w2 ∈ W2−W1. Let w1 ∈ W1−W2, then T (w1) ∈ T (W1)− T (W2) and hence
T (W1) 6= T (W2). If w2 ∈ W2 − W1, then T (W1) 6= T (W2), too. So, φ is
well defined and one to one. Now for L ∈ B, put W = T−1(L), then by
Theorem 3.9 we have W ∈ A and T (W ) = L. Therefore, φ is onto, hence
the result.

4 Construction of a hypermatrix

Now, we will talk about the basis of a hypervector space and verify that
considering a multivalued linear transformation will imply some conditions
to this definition. Finally, with the elements of hyperfield and basis we will
construct a hypermatrix.

Definition 4.1. A subset S of V is called linearly independent if for every
vectors v1, ..., vn ∈ S, and c1, ..., cn ∈ K, if we have 0V ∈ c1 · v1 ⊕ ...⊕ cn · vn
, implies that c1 = ... = cn = 0K . Otherwise S is called linearly dependent.

Theorem 4.2. Let V be a hypervector space and v1, ..., vn be independent in
V . Then every element in the linear space < v1, ..., vn > belongs to a unique
sum of the form

∑n
i=1 ai · vi where ai ∈ K.

83



M. Motameni, R. Ameri, R. Sadeghi

Proof. Every element of < v1, ..., vn > belongs to a set of the form
∑n

i=1 ai ·vi
where ai ∈ K. We will show that this form is unique. Let u ∈ V such that
u ⊆

∑n
i=1 ai·vi and u ⊆

∑n
i=1 bi·vi, where ai, bi ∈ K. Since V is a hypervector

space we have :
0V ∈ u−u ⊆

∑n
i=1 ai ·vi−

∑n
i=1 bi ·vi =

∑n
i=1 ai ·vi⊕

∑n
i=1(−b)i ·vi.

Therefore, 0V ⊆
∑n

i=1(ai⊕ (−bi)) · vi. And since v1, ...vn are independent we
have ai ⊕ (−bi) = 0, ∀i, then ai = −(−bi) = bi.

Theorem 4.3. Let V be a hypervector space. Then vectors v1, ...vn ∈ V are
independent or vj for some 1 ≤ j ≤ r, belongs to the linear combination of
the other vectors.

Proof. Let v1, ..., vnbe dependent and let 0V ⊆
∑n

i=1 ai · vi such that at least
one of the scalars such as aj is not zero. Then there exists ti, (i = 1, ..., n)
such that

0V ∈ t1 ⊕ t2 ⊕ ...⊕ tn,

where ti = ai · vi, which means that
tj ∈ 0⊕ (−(t1 ⊕ ...⊕ tj−1 ⊕ tj+1 ⊕ ...⊕ tn))

=⇒ tj ∈ 0⊕ ((−t1)⊕ ...⊕ (−tj−1)⊕ (−tj+1)⊕ ...⊕ (−tn))
Moreover, for at least one vj we have vj = (a−1

j ) · tj. which means

vj ∈ (a−1
j ) · (−t1 ⊕ ...⊕ (−tj−1)⊕ (−tj+1)⊕ ...⊕ (−tn)) ∈

∈ ((a−1
j ) · (−t1))⊕ ((a−1

j ) · (−tj−1))⊕ ((a−1
j ) · (−tj+1))⊕ ...⊕ ((a−1

j ) · (−tn))

∈ ((a−1
j ) · (−a1 · v1))⊕ ...⊕ ((a−1

j ) · (−a1 · vj−1))⊕ ((a−1
j ) · (−aj+1 · vj+1))

⊕ ...⊕ ((a−1
j ) · (−an · tn))

∈ ((a−1
j ? (−a1)) · v1)⊕ ...⊕ ((a−1

j ? (−a1)) · vj−1)⊕ ((a−1
j ? (−aj+1)) · vj+1)

⊕ ...⊕ ((a−1
j ? (−an)) · tn)

∈ (c1 · v1)⊕ ...⊕ (cj · vj−i)⊕ (cj · vj+1)⊕ ...⊕ (cj · vn)

where cj = (a−1
j ? (−an)). Therefore vj belongs to a linear combination of

v1, ..., vj−1, vj+1, ..., vn as desired.

Definition 4.4. We call β a basis for V if it is a linearly independent subset
of V and it spans V . We say that V has finite dimensional if it has a finite
basis.

The following results are the generalization of the same results for vector
spaces, also the methods here are adopted from those in the ordinary vector
spaces.
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Theorem 4.5. Let V be a hypervector space. If W is a subhypervector space
of V generated by β = {v1, ..., vn}, then W has a basis contained in β.

Corolary 4.6. If V is a hypervector space, then every generating subset of V ,
contains a basis of V , which means every independent subset of V is included
in a finite basis.

Theorem 4.7. Let V be a hypervector space. If V has a finite basis with n
elements, then the number of elements of every independent subset of V is
smaller or equal to n.

Corolary 4.8. Let V be strongly left distributive and hypervector space. If
V is finite dimensional then every two basis of V have the same elements.

Lemma 4.9. Let V be a hypervector space. If V is finite dimensional, then
every linearly independent subset of V is contained in a finite basis.

Now, we want to determine that what is a free object in the category of
hypervector spaces. First, notice that if we denote the category of hypervec-
tor spaces by KrH-vect, we define the category as follows:
(i) the objects in this category are hypervector spaces over a hyperskew field
K;
(ii) for the objects V,W of KrH-vect, the set of morphisms from V to P ∗(W )
is the multivalued linear transformations which we show by Home(V ,W ).
(iii) combination of morphism is defined as usual;
(iv) for all objects V in the category, the morphism 1V : V −→ V is the
identity.

According to the definition of a free object in the category of hypersets
[2], and considering the category of hypervector spaces, if X is a basis for the
hypervector space V , then we say that F is a free object in KrH-vect then
for every function f : X −→ V , there exists a homomorphism f̄ : F −→ V ,
such that f̄ ◦ i = f , where i is the inclusion function. Now, we have

(f̄ ◦i)(x) = f̄(i(x)) = f̄(x) (?)
Since the homomorphism f̄ is defined in H-vect, it is a multivalued trans-
formation, then we define f̄(x) = {f(x)} we obtain f̄ ◦ i = f .

Let g : F −→ V be another homomorphism such that g(xi) = f(xi), then
for t ∈

∑n
i=1 ai · xi, let f̄ be defined by f̄(t) =

∑n
i=1 ai · f(xi), we have

g(t) ⊆ g(
n∑
i=1

ai · xi) =
n∑
i=1

ai · g(xi) = f̄(t).
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hence f̄ defined above is the maximum homomorphism such that (?) is sat-
isfied.

Suppose t ∈
∑n

i=1 ai · xi and t ∈
∑n

i=1 bi · xi, for ai, bi ∈ K, we have
f̄(t) =

∑n
i=1 ai · f(xi), and also f̄(t) =

∑n
i=1 bi · f(xi), then

∑n
i=1 ai · f(xi) =∑n

i=1 bi · f(xi), we obtain
0 ∈

∑n
i=1 ai · f(xi)− bi · f(xi) =

∑n
i=1(ai − bi) · f(xi)

So ai = bi. Therefore, f̄ is a unique mv-transformation.
Hence we have the following corollary:

Corolary 4.10. Every hypervector space with a basis is a free object in the
category of hypervector spaces.

Theorem 4.11. Let (V,⊕, ·), (W,⊕, ·) be two hypervector spaces on a hy-
perskewfiled K . If T : V −→ P ∗(W ) and U : V −→ P ∗(W ) be two mv-
transformations. We define L(V,W ) = {T |T : V −→ P ∗(W )} and the
hyperoperation ”� ” as follows:

(T � U)(α) = T (α)� U(α)

Also, we define the external composition as

(c� T )(α) = c� T (α)

Then (L(V,W ),�,�)) as defined above is a hypervectorspace over a hy-
perskewfield K.

Proof. The external composition ”� ” is defined as follows:
� : K × L(V,W ) −→ P ∗(L(V,W ))

(α, T ) 7−→ α� T
First we show that (L(V,W ),�) is a canonical hypergroup.
Communativity and associativity is obvious. We consider the transformation
0 : V −→ 0 as a ”0” for the group and 1 : V −→ P ∗(V ) as the identity. Then
there exists a unique inverse (−T ) such that 0 ∈ (T � (−T ))(α).
Now, let T, U, Z be three linear transformations that belong to L(V,W ) then
if Z ∈ T � U then we have Z(α) ∈ (T � U)(α), which means Z(α) ∈
T (α) � U(α). Now since W is hypervector space then we obtain T (α) ∈
Z(α) � (−U)(α), hence T ∈ Z � (−U),∀α ∈ K. Therefore, (L(V,W ),�) is
a canonical hypergroup.
Now, we check that L(V,W ) is a hypervector space. Let x, y ∈ K and
T, U ∈ L(V,W ) then we have
(1) (x� (T � U))(α) = x� (T � U)(α) = (x� T (α))� (x� U(α))
(2) ((x� y)� T )(α) =

⋃
z∈x�y z � T (α) = (x� T (α))� (y � T (α)).
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The other conditions will be obtained immediately. Therefore, (L(V,W ),�,�)
is a hypervector space.

Theorem 4.12. Let (V,⊕, ·), (W,⊕, ·) be two hypervector spaces on a hyper-
skewfield K, if A = {α1, ..., αn} be a basis for V and β1, ..., βn be any vectors
in W , then there is a unique linear transformation T : V −→ P ∗(W ) such
that T (αi) = βi, 1 ≤ i ≤ n.
In Other words, every linear transformation can be characterized by its op-
eration on the basis of V .

Proof. Since for every v ∈ V , there exists scalars c1, ..., cn ∈ K such that

(∗) v ∈
n∑
i=1

ci · αi

then we define a map T : V −→ P ∗(W ) as follows:
T (v) =

∑n
i=1 ci · T (αi) =

∑n
i=1 ci · βi

Since (∗) is unique then T is well-defined. Now, we check that T is a linear
transformation. Let v, w ∈ V and scalars d1, ..., dn ∈ K then v ∈

∑n
i=1 ci · αi

and w ∈
∑n

i=1 di · αi, then we have T (v) =
∑n

i=1 ci · T (αi) and T (w) =∑n
i=1 di · T (αi). Now since v ⊕ w ∈

∑n
i=1(ci ⊕ di) · αi, then we obtain

T (v ⊕ w) ⊆ T (
∑n

i=1(ci ⊕ di) · αi) =
∑n

i=1(ci ⊕ di) · T (αi)
=

∑n
i=1 ci ·T (αi)⊕

∑n
i=1 di ·T (αi) = T (v)⊕T (w).

Also, it is clear that (c ◦ T )(α) = c ◦ T (α). Hence, T is a linear transforma-
tion.
Now, we shall check that T is unique. Let S : V −→ P ∗(W ) be another
linear transformation that satisfies S(αi) = βi. We will show that S = T .
We have

S(α) =
n∑
i=1

ci · S(αi) =
n∑
i=1

ci · βi =
n∑
i=1

ci · T (αi) = T (α)

So, S = T as desired.

Remark 4.13. Let T : V −→ P ∗(W ) be a linear transformation. We denote
KerT = {α ∈ V | 0 ∈ T (α)} by NT and by ImT we mean RT = {T (α)|α ∈
V }.
We call dimension of RT , rank of T and it is denoted by R(T ). Notice that
NT is a subhypervector space of V and RT is a subhypervector space of W .

Theorem 4.14. Let V,W be two hypervector spaces over a field K. Let
T : V −→ P ∗(W ) be a linear transformation and dimV = n <∞. Then

dimRT + dimKerT = dimV
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Proof. Let W = NT and let β1 = {α1, ..., αk} be a basis for W . We extend β1

to β2 = {α1, ..., αk, αk+1, ..., αn}. We will show that β = {T (αk+1), ..., T (αn)}
is a basis for RT . Let c1, ..., cn be scalars in K such that

0 ∈
n∑

i=k+1

ci · T (αi)

then there exists γ ∈
∑n

i=k+1(ci · αi) such that 0 ∈ T (γ), this implies that

γ ∈ KerT = NT , hence γ ∈
∑k

i=1(ci · αi). Therefore

0 = γ − γ ∈
k∑
i=1

(ci · αi)⊕
n∑

i=k+1

((−ci) · αi) =⇒ ci = 0

Now, we claim that β generates RT because if for all α ∈ V we have T (α) = β,
and since 0 ∈

∑k
i=1 ci · T (αi), hence

β = T (α) ⊆ T (
∑n

i=1 ci · αi) =
∑n

i=1 ci · T (αi) =
∑k

i=1 ci · T (αi) +
∑n

i=k+1 ci ·
T (αi) =

∑n
i=k+1 ci · T (αi)

Therefore, dimRT + dimNT = (n− k) + k = n = dimV .

For all 1 6 j 6 n and 1 6 p 6 m, we define Cpj as the coordinator of
T (αj) on the ordered basis B = {β1, ..., βp} which means

T (αj) =
m∑
p=1

Cpj · βp

where for Cpj = (cpj), βp = (βp1). Now, if we notice the following matrix with
a crisp product and hypersum, we will have a hypermatrix as the following: c11 ... c1p

... ... ...
cj1 ... cjp


︸ ︷︷ ︸

 β11

...
βp1


︸ ︷︷ ︸

=

 c11 · β11 ⊕ ...⊕ c1p · βp1
...

cj1 · β11 ⊕ ...⊕ cjp · βp1

=

 T (α1)
...

T (αj)


︸ ︷︷ ︸

Cpj βp

Theorem 4.15. Let V,W be two hypervector spaces. If dimV = n and
dimW = m, then dimL(V,W ) = mn.

Proof. Let A = {α1, ..., αn} and B = {β1, ..., βm} be the basis of V,W re-
spectively. For all (p, q), where p, q ∈ Z, and 1 6 q 6 n, 1 6 p 6 m by
Theorem 4.12 we have a unique linear transformation Tpq : V −→ P ∗(W )
which we define by Tpq(αi) = βp, when i = q and otherwise it is defined 0.
Since we have mn linear transformation from V to P ∗(W ), it is sufficient to
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show that β
′′

= {Tpq|1 6 p 6 m, 1 6 q 6 n} is a basis for L(V,W ).
Let T : V −→ P ∗(W ) be a linear transformation. For all 1 6 j 6 n, let
C1j, ..., Cmj be the coordinate of T (αj) in the ordered basis β́, i.e, T (αj) =∑m

p=1Cpj ·βp. We will show that T =
∑m

p=1

∑n
q=1Cpq ·Tpq generates L(V,W ).

Because if we suppose U =
∑m

p=1

∑n
q=1Cpq · Tpq, then if suppose i = q we

obtain
U(αj) =

∑m
p=1

∑n
q=1 Cpq ·Tpq(αj) =

∑m
p=1

∑n
q=1 Cpq ·βp =

∑m
p=1 Apj ·βp =

T (αj).
Otherwise it will be 0. Also, it is obvious that β

′′
is independent. Hence the

result.

Remark 4.16. Let T : V −→ P ∗(W ) and S : W −→ P ∗(Z) be two linear
transformations and α ∈ V , we define (S ◦ T )(α) = S(T (α)) =

⋃
β∈T (α) S(β)

then S ◦ T is also a linear transformation.

Definition 4.17. Let T : V −→ P ∗(V ) be a linear transformation, we call
T a linear operator(or shortly an operator) on V , and If we have T ◦ T , we
denote it by T 2.

Lemma 4.18. let V be a hypervector space on a field K. If U, T, S be three
operators on V and k ∈ K, then the following results are immediate:
(i) I ◦ U = U ◦ I = U ;
(ii) (S ⊕ T ) ◦ U = S ◦ U ⊕ T ◦ U , U ◦ (S ⊕ T ) = U ◦ S ⊕ U ◦ T ;
(iii) k ⊕ (U ◦ T ) = (kU) ◦ T = U ◦ (kT ).�

Example 4.19. Let β = {α1, ..., αn} be an ordered basis for the hypervector
space V . Consider the operators T(p,q) regarding the proof of Theorem 4.15.
These n2 operators construct a basis for the space of operators of V . let S, U
be two operators on V then we have

S =
∑

p

∑
q Cpq · Spq, U =

∑
r

∑
sBrs · Srs.

Now by lemma 4.18, we have
(S ◦ U)(αi) = S(U(αi)) =

⋃
β∈U(αi)

S(β) =
⋃
β∈ΣrΣsBrs·Trs(αi)

S(β)

= S(
∑

r

∑
sBrs · T(r,s)(αi)) = S(

∑
r

∑
sBrs · αr)

when i = s we have∑
r

∑
sBri · S(αr) =

∑
r

∑
sBrs · (

∑
p

∑
q Cpq · Tpq(αr))

=
∑

r

∑
s

∑
p

∑
q(BriApq) ◦ αp

and when r = q we have
=

∑
r

∑
s

∑
p

∑
q(BriCpr) · αp =

∑
r

∑
s

∑
p

∑
q(CprBri) · αp

and since 1 6 i 6 P then we have
∑

r

∑
s

∑
p

∑
q(BC)n2 · αi

Hence when we compose two operators S and U , the result is obtained by
multiplying two matrices of them.�
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Now, it is time to talk about the inverse of a transformation. As it is usual
for defining an inverse we have:

Definition 4.20. let T : V −→ P ∗(W ) be one to one and onto. T is said to
have an inverse when there exists U : W −→ P ∗(V ) such that T ◦ U = IV
and U ◦ T = IW . Also, the inverse of T is denoted by T−1 and obviously is
not unique. We have (U ◦ T )−1 = T−1 ◦ U−1.
We say that a linear transformation T is called nonsingular if 0 ∈ T (α)
implies that α = {0}, which means that the null space of T is equal to {0}.

Lemma 4.21. Let T : V −→ P ∗(W ) be a linear transformation then T is
one to one if and only if T is nonsingular if and only if KerT = 0

Proof. Let T be one to one and suppose 0 ∈ T (α), then since T (0) = 0, we
have T (0) ∈ T (α) then

T (0) ∈ T (α + 0) ⊆ T (α) + T (0) =⇒ T (α) ∈ T (0) + (−T (0)) = 0
hence α = 0. Conversely, let T is nonsingular and suppose for x, y ∈ V ,
we have T (x) = T (y) then, 0 ∈ T (x) − T (y) = T (x − y) and since T is
nonsingular we obtain x− y = 0, which means x = y.
Now let for all α ∈ KerT we have 0 ∈ T (α), then since T is nonsingular
we obtain α = 0 which means KerT = 0. Conversely, if KerT = 0, then
suppose 0 ∈ T (α) implies that α ∈ KerT = 0, hence α = 0.

Theorem 4.22. Let V,W be two hypervector spaces on a hyperfiled K and
let T : V −→ P ∗(W ) be a linear transformation. If T is good reversible linear
transformation, then the reverse of T is also a good linear transformation.

Proof. Let w1, w2 ∈ W and k ∈ K, then there exists v1, v2 ∈ V such that
T−1(w1) = v1, T

−1(w2) = v2, where T (v1) = w1, and T (w2) = v2. We have
T−1(w1 ⊕ w2) = T−1(T (v1) ⊕ T (v2)) ⊇ T−1(T (v1 ⊕ v2)) = v1 ⊕ v2 =

T−1(w1)⊕ T−1(w2)
and when T is a good linear transformation, T−1 is also a good linear trans-
formation.

Theorem 4.23. Let T : V −→ P ∗(W ) be a linear transformation. T is
nonsingular if and only if T corresponds every linearly independent subset of
V onto a linearly independent subset of W .

Proof. Let T be nonsingular and S be a linearly independent subset of V .
We show that T (S) is independent. Let śi ∈ T (S) and for all i there exists
si ∈ S such that T (si) = śi. We assume∑n

i=1 ci · śi = 0 =⇒
∑n

i=1 ci · T (si) = 0 =⇒ T (
∑n

i=1 ci · si) = 0
because T is nonsingular we have

∑n
i=1 ci · si = 0, and since si, for all i are
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linearly independent then ci = 0, hence T (S) is linearly independent.
Conversely, let 0 6= α ∈ V , then {0} is an independent set. Hence by
hypothesis T corresponds this independent set to a linearly in dependent set
such as T (α) ∈ P ∗(W ), then we have T (α) 6= 0. Therefore, T is nonsingular.

Theorem 4.24. Let V,W be two hypervector spaces with finite dimension
on a hyperskewfield K and dimV = dimW . If T : V −→ P ∗(W ) is a linear
transformation, then the followings are equivalent:
(i) T is reversible;
(ii) T is nonsingular;
(iii) T is onto.
(iv) If {α1, ..., αn} is a basis for V , then {T (α1), ..., T (αn)} is a basis for W .
(v) There exists a basis like {α1, ..., αn} for V such that {T (α1), ..., T (αn)}
is a basis for W .

Lemma 4.25. let V be a hypervector space with finite dimension on a hy-
perfield K, then V ∼= Kn.

5 Fundamental Relations

Let (V,⊕, ·) be a hypervector space, we define the relation ε∗ as the small-
est equivalence relation on V such that the set of all equivalence classes,V/ε∗,
is an ordinary vector space. ε∗ is called fundamental equivalence relation on
V and V/ε∗ is the fundamental ring.
Let ε∗(v) is the equivalence class containing v ∈ V , then we define � and �
on V/ε∗ as follows:

ε∗(v)� ε∗(w) = ε∗(z), for all z ∈ ε∗(v)⊕ ε∗(w)
a� ε∗(v) = ε∗(z), for all z ∈ a · ε∗(v), a ∈ K

Let U be the set of all finite linear combinations of elements of V with
coefficients in K, which means

U = {
∑n

i=1 ai · vi; ai ∈ K, vi ∈ V, n ∈ N}
we define the relation ε as follows:

vεw ⇐⇒ ∃u ∈ U; {v, w} ⊆ u

Koskas [4] introduced the relation β∗ on hypergroups as the smallest
equivalence relation such that the quotient R/β∗+ is a group. We will denote
β+ the relation in R as follows:
vβ+w ⇐⇒ ∃(c1, ..., cn) ∈ V n such that {v, w} ⊆ c1 ⊕ ...⊕ cn
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Freni proved that for hyperrings we have β∗+ = β+. Since in here (V,⊕) is a
canonical hypergroup the we will have:

Theorem 5.1. In the hypervector space (V,⊕, ·), we have ε∗ = β∗+.

Vougiouklis [9] has proved that the sets {ε∗(z) : z ∈ ε∗(v) ⊕ ε∗(w)} and
{ε∗(z) : z ∈ a · ε∗(v)} are singletons. With a similar method we can prove
the following theorem:

Theorem 5.2. Let (V,⊕, ·) be a hypervector space, then for all a ∈ K ,
v, w ∈ V , we have the followings:
(i) ε∗(v)� ε∗(w) = ε∗(z), ∀z ∈ ε∗(v)⊕ ε∗(w)

a� ε∗(v) = ε∗(z), ∀z ∈ a · ε∗(w)
(ii)ε∗(0V ) is the zero element of (V/ε∗,�).
(iii) (V/ε∗,�,�) is a hypervector space and is called the fundamental hy-
pervector space of V .

Proof. (i) The proof is the same as [9], and we omit it.
(ii) since from (i) we obtain ε∗(v)�ε∗(w) = ε∗(v⊕w) and a�ε∗(v) = ε∗(a·v)
we have

ε∗(v)� ε∗(0) = ε(v ⊕ 0) = ε∗(v)

(iii) The conditions for the vector space (V/ε∗,�,�) will be obtained from
the hypervector space (V,⊕, ·).

Theorem 5.3. Let (V,⊕, ·, K) be a hypervector space and (V/ε∗,�,�) be
the fundamental relation of it then dimV = dimV/ε∗.

Proof. Let B = {v1, ..., vn} be a basis for V . We show that the set B∗ =
{ε∗(v1), ..., ε∗(vn)} is a basis for V/ε∗. For this let ε∗(v) ∈ V/ε∗, then for
every v ∈ V there exists a1, ..., an ∈ K such that x ∈

∑n
i=1 ai · vi, then

v = t1 ⊕ ... ⊕ tn, where ti = ai · vi, i ∈ {1, ..., n}. Now by Theorem 5.2 we
have ε∗(ti) = ai · ε∗(vi) then
ε∗(v) = ε∗(t1⊕....⊕tn) = ε∗(t1)�....�ε∗(tn) = (a1�ε∗(v1))�(an�ε∗(vn)).

hence, V/ε∗ is spanned by B∗.
Now we show that B∗ is linearly independent. For this let

(a1 � ε∗(v1))� ...� (an � ε∗(vn)) = ε∗(0)
=⇒ ε∗(a1 · v1)� ...� ε∗(an · vn) = ε∗(0)
=⇒ ε∗(a1 · v1 ⊕ ...⊕ an · vn) = ε∗(0)
=⇒ 0 ∈ a1 · v1 ⊕ ...⊕ an · vn

since B in linearly independent in V , then a1 = ... = an = 0. Therefore, B∗

is also linearly independent.
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Lemma 5.4. Let V , W be two hypervector spaces and T : V −→ P ∗(W ) be
a linear transformation, then
(i) T (ε∗(v)) ⊆ ε∗(T (v)), for all v ∈ V ;
(ii) The map T ∗ : V/ε∗ −→ W/ε∗ defined as T ∗(ε∗(v)) = ε∗(T (v)) is a linear
transformation.

Proof. (i) straightforward.
(ii) It is obvious that T ∗ is well defined. Now we show that T ∗ is a linear
transformation. Let a ∈ K, x, y ∈ V , then by Theorem 5.2 we have
T ∗(ε∗(x) � ε∗(y)) = T ∗(ε∗(x ⊕ y)) = ε∗(T (x ⊕ y)) ⊆ ε∗(T (x) ⊕ T (y)) =
ε∗(T (x))� ε∗(T (y)) = T ∗(ε∗(x))� T ∗(ε∗(y))
and T ∗(a�ε∗(x)) = T ∗(ε∗(a·x)) = ε∗(T (a·x)) = ε∗(a·T (x)) = a�ε∗(T (x)) =
a� T ∗(ε∗(x))
hence, T ∗ is a linear transformation.

Theorem 5.5. The map F : HV −→ V defined by F (V ) = V/ε∗ and
F (T ) = T ∗ is a functor, where HV and V denote the category of hypervector
spaces and vector spaces respectively. Moreover, F preserves the dimension.

Proof. By Lemma 5.4 F is well-defined. LetT : V −→ P ∗(W ) and U :
W −→ P ∗(Z) be two linear transformations, then F (U ◦ T ) = (U ◦ T )∗ such
that for all v ∈ V we have
(U ◦ T )∗(ε∗(v)) = ε∗((U ◦ T )(v)) = ε∗(U(T (v)))

= U∗ε∗(T ∗(x)) = U∗T ∗(ε∗(x)) = F (U)F (T )(ε∗(v))
=⇒ F (U ◦ T ) = F (U)F (T )

Also, the identity is F (1∗V ) : V/ε∗ −→ V/ε∗ such that 1∗V (ε∗(v)) = ε∗(v).
Hence, F is a functor And by Theorem 4.14 we have dim(F (V )) = dim(V/ε∗) =
dim(V ).

Theorem 5.6. Let T : V −→ P ∗(W ) be a liner transformation in HV.
Then the following diagram is commutative:

V T
−→ W

ϕV ↓ ↓ ϕW
V/ε∗ T ∗

−→ W/ε∗

where βV , βW are the canonical projections of V and W .

Proof. Let v ∈ V then ϕW (T (v)) = ε∗(T (v)) = T ∗(ε∗(v)) = T ∗(ϕV (v)) =
T ∗ϕV (v).
Hence, the diagram is commutative.
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Abstract

The paper deals with the reduced harmonic series generated by
four primes. A formula for the sum of these convergent reduced har-
monic series is derived. These sums (concretely 42 from all 12650 sums
generated by four different primes smaller than 100) are computed by
using the computer algebra system Maple 15 and its programming lan-
guage, although the formula is valid not only for four arbitrary primes,
but also for four integers. We can say that the reduced harmonic series
generated by four primes (or by four integers) belong to special types
of convergent infinite series, such as geometric and telescoping series,
which sum can be found analytically by means of a simple formula.

Key words: reduced harmonic series, sum of convergent infinite
series, computer algebra system Maple.

MSC2010: 40A05, 65B10.

1 Introduction

This paper is inspired by a small study material from the Berkeley Math
Circle (see [5]) and it is a free continuation of the papers [2], [3], and [4].
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In two last mentioned papers the sum S(a, b) of the convergent reduced
harmonic series

G(a, b) =
1

a
+

1

b
+

(
1

a2
+

1

ab
+

1

b2

)
+

(
1

a3
+

1

a2b
+

1

ab2
+

1

b3

)
+

+

(
1

a4
+

1

a3b
+

1

a2b2
+

1

ab3
+

1

b4

)
+

(
1

a5
+

1

a4b
+ · · ·+ 1

b5

)
+ · · · ,

(1)

generated by two primes a and b, and the sum S(a, b, c) of the convergent
reduced harmonic series

G(a, b, c) =
1

a
+

1

b
+

1

c
+

(
1

a2
+

1

b2
+

1

c2
+

1

ab
+

1

ac
+

1

bc

)
+

+

(
1

a3
+

1

b3
+

1

c3
+

1

a2b
+

1

a2c
+

1

b2a
+

1

b2c
+

1

c2a
+

1

c2b
+

1

abc

)
+

+

(
1

a4
+

1

b4
+

1

c4
+

1

a3b
+

1

a3c
+

1

b3a
+

1

b3c
+

1

c3a
+

1

c3b
+

+
1

a2b2
+

1

a2c2
+

1

b2c2
+

1

a2bc
+

1

b2ac
+

1

c2ab

)
+ · · · ,

(2)

generated by three primes a, b, and c, were derived and also computed for
primes less than 100. It was shown that for arbitrary two primes (or integers)
a and b it holds the formula

S(a, b) =
a + b− 1

(a− 1)(b− 1)
(3)

and for arbitrary three primes (or integers) a, b, and c it holds the formula

S(a, b, c) =
(a + b− 1)(c− 1) + ab

(a− 1)(b− 1)(c− 1)
. (4)

In the paper [2] the sum S of all the unit fractions that have denominators
with only factors from the set {2, 7, 11, 13} was determined. This sum was
calculated by using numeric method based on the programming language in
the computer algebra system Maple 15 and also by analytical method. By
these both attempts was obtained the same result: S = 1.7805.

In this paper we shall deal with a certain variant of these two problems
– the determination of the sum of the reduced harmonic series generated by
four primes.

Let us recall the basic terms and notions. The harmonic series is the
sum of reciprocals of all natural numbers (except zero), so this is the series
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in the form
∞∑

n=1

1

n
= 1 +

1

2
+

1

3
+ · · ·+ 1

n
+ · · · .

The divergence of this series can be easily proved e.g. by using the integral
test or the comparison test of convergence.

The reduced harmonic series is defined as the subseries of the harmonic
series, which arises by omitting some its terms. As an example of the reduced
harmonic series we can take the series formed by reciprocals of primes and

number one 1 +
1

2
+

1

3
+

1

5
+

1

7
+

1

11
+

1

13
+ · · · .

This reduced harmonic series is divergent. The first proof of its divergence
was made by Leonhard Euler (15.4.1707–18.9.1783) in 1737 (see e.g. [1]).

2 Reduced harmonic series generated by four

primes

Now, let us consider the reduced harmonic series G(a, b, c, d) below, gen-
erated by four primes a, b, c, d:

G(a, b,c, d) =
1

a
+

1

b
+

1

c
+

1

d
+

(
1

a2
+

1

b2
+

1

c2
+

1

d2
+

1

ab
+

1

ac
+

1

ad
+

+
1

bc
+

1

bd
+

1

cd

)
+

(
1

a3
+

1

b3
+

1

c3
+

1

d3
+

1

a2b
+

1

a2c
+

1

a2d
+

+
1

b2a
+

1

b2c
+

1

b2d
+

1

c2a
+

1

c2b
+

1

c2d
+

1

d2a
+

1

d2b
+

1

d2c
+

+
1

abc
+

1

abd
+

1

acd
+

1

bcd

)
+

(
1

a4
+

1

b4
+

1

c4
+

1

d4
+

+
1

a3b
+

1

a3c
+

1

a3d
+

1

b3a
+

1

b3c
+

1

b3d
+

1

c3a
+

1

c3b
+

1

c3d
+

+
1

d3a
+

1

d3b
+

1

d3c
+

1

a2bc
+

1

a2bd
+

1

a2cd
+

1

b2ac
+

1

b2ad
+

+
1

b2cd
+

1

c2ab
+

1

c2ad
+

1

c2bd
+

1

d2ab
+

1

d2ac
+

1

d2bc
+

+
1

a2b2
+

1

a2c2
+

1

a2d2
+

1

b2c2
+

1

b2d2
+

1

c2d2
+

1

abcd

)
+ · · · .

(5)

Analogously as in the cases of the reduced harmonic series generated by
two and three primes, we assume that its sum S(a, b, c, d) is finite, so the
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series (5) converges. Because all its terms are positive, then the series (5)
converges absolutely and so we can rearrange it.

For easier determining the sum S(a, b, c, d) of the series G(a, b, c, d) it is
necessary to rearrange it and divide it into ten subseries G(a), G(b), G(c),
G(d), G(ab), G(ac), G(ad), G(bc), G(bd), and G(cd), where

G(a) =
1

a
+

1

a2
+

1

a3
+

1

a4
+ · · · = 1

a

(
1 +

1

a
+

1

a2
+

1

a3
+ · · ·

)
, (6)

G(b) =
1

b
+

1

b2
+

1

b3
+

1

b4
+ · · · = 1

b

(
1 +

1

b
+

1

b2
+

1

b3
+ · · ·

)
, (7)

G(c) =
1

c
+

1

c2
+

1

c3
+

1

c4
+ · · · = 1

c

(
1 +

1

c
+

1

c2
+

1

c3
+ · · ·

)
, (8)

G(d) =
1

d
+

1

d2
+

1

d3
+

1

d4
+ · · · = 1

d

(
1 +

1

d
+

1

d2
+

1

d3
+ · · ·

)
, (9)

G(ab) =
1

ab
+

1

a2b
+

1

b2a
+

1

abc
+

1

abd
+

1

a3b
+

1

b3a
+

1

a2bc
+

1

a2bd
+

+
1

b2ac
+

1

b2ad
+

1

c2ab
+

1

d2ab
+

1

a2b2
+

1

abcd
+ · · · =

=
1

ab

(
1 +

1

a
+

1

b
+

1

c
+

1

d
+

1

a2
+

1

b2
+

1

c2
+

1

d2
+

1

ab
+

1

ac
+

1

ad
+

+
1

bc
+

1

bd
+

1

cd
+ · · ·

)
,

(10)

G(ac) =
1

ac
+

1

a2c
+

1

c2a
+

1

acd
+

1

a3c
+

+
1

c3a
+

1

a2cd
+

1

c2ad
+

1

d2ac
+

1

a2c2
+ · · · =

=
1

ac

(
1 +

1

a
+

1

c
+

1

d
+

1

a2
+

1

c2
+

1

d2
+

1

ac
+

1

ad
+

1

cd
+ · · ·

)
,

(11)

G(ad) =
1

ad
+

1

a2d
+

1

d2a
+

1

a3d
+

1

d3a
+

1

a2d2
+ · · · =

=
1

ad

(
1 +

1

a
+

1

d
+

1

a2
+

1

d2
+

1

ad
+ · · ·

)
,

(12)
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G(bc) =
1

bc
+

1

b2c
+

1

c2b
+

1

bcd
+

1

b3c
+

+
1

c3b
+

1

b2cd
+

1

c2bd
+

1

d2bc
+

1

b2c2
+ · · · =

=
1

bc

(
1 +

1

b
+

1

c
+

1

d
+

1

b2
+

1

c2
+

1

d2
+

1

bc
+

1

bd
+

1

cd
+ · · ·

)
,

(13)

G(bd) =
1

bd
+

1

b2d
+

1

d2b
+

1

b3d
+

1

d3b
+

1

b2d2
+ · · · =

=
1

bd

(
1 +

1

b
+

1

d
+

1

b2
+

1

d2
+

1

bd
+ · · ·

)
,

(14)

G(cd) =
1

cd
+

1

c2d
+

1

d2c
+

1

c3d
+

1

d3c
+

1

c2d2
+ · · · =

=
1

cd

(
1 +

1

c
+

1

d
+

1

c2
+

1

d2
+

1

cd
+ · · ·

)
.

(15)

3 Analytic solution

Now, we determine by the analytic way the unknown sum S(a, b, c, d) by
means of the sums of the series (6) – (15). By the formula

s =
a1

1− q
,

for the sum s of the convergent infinite geometric series with the first term
a1 and with the ratio q, |q| < 1, we get the sums S(a), S(b), S(c), and S(d)
of the series (6) – (9):

S(a) =
1

a
· 1

1− 1/a
=

1

a
· a

a− 1
=

1

a− 1
(16)

and, analogously

S(b) =
1

b− 1
, S(c) =

1

c− 1
, S(d) =

1

d− 1
. (17)

It is clear that the sum S(ab) of the series (10) we can write in the form

S(ab) =
1

ab

[
1 + S(a, b, c, d)

]
. (18)
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The sum S(ac) of the series (11) is the product of the fraction 1/(ac) and
the sum of number one and the reduced harmonic series generated by three
primes a, c, and d. So, by the formula (4) above, we can write

S(ac) =
1

ac

(
1 +

(a + c− 1)(d− 1) + ac

(a− 1)(c− 1)(d− 1)

)
=

=
(d− 1)

[
(a− 1)(c− 1) + (a + c− 1)

]
+ ac

ac(a− 1)(c− 1)(d− 1)
=

=
(d− 1)(ac− a− c + 1 + a + c− 1) + ac

ac(a− 1)(c− 1)(d− 1)
=

=
(d− 1)ac + ac

ac(a− 1)(c− 1)(d− 1)
=

acd

ac(a− 1)(c− 1)(d− 1)
=

=
d

(a− 1)(c− 1)(d− 1)
.

(19)

Because the sum S(bc) of the series (13) is the product of the fraction 1/(bc)
and the sum of number one and the reduced harmonic series generated by
three primes b, c, and d, we can analogously write

S(bc) =
d

(b− 1)(c− 1)(d− 1)
. (20)

Obviously, the sum S(ad) of the series (12) is the product of the fraction
1/(ad) and the sum of number one and the reduced harmonic series generated
by two primes a and d. So, by the formula (3) above, we can write

S(ad) =
1

ad

(
1 +

a + d− 1

(a− 1)(d− 1)

)
=

(a− 1)(d− 1) + a + d− 1

ad(a− 1)(d− 1)
=

=
ad− a− d + 1 + a + d− 1

ad(a− 1)(d− 1)
=

1

(a− 1)(d− 1)

(21)

and, analogously for the sums S(bd) and S(cd) of the series (14) and (15),
we get

S(bd) =
1

(b− 1)(d− 1)
, S(cd) =

1

(c− 1)(d− 1)
. (22)

By the assumption of the absolute convergence of the series (5) we can
write its sum S(a, b, c, d) in the form

S(a) + S(b) + S(c) + S(d) + S(ab) + S(ac) + S(ad) + S(bc) + S(bd) + S(cd) .
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According to (16) – (22) we get the equation

S(a, b, c, d) =
1

a− 1
+

1

b− 1
+

1

c− 1
+

1

d− 1
+

1 + S(a, b, c, d)

ab
+

+
d

(a− 1)(c− 1)(d− 1)
+

d

(b− 1)(c− 1)(d− 1)
+

+
1

(a− 1)(d− 1)
+

1

(b− 1)(d− 1)
+

1

(c− 1)(d− 1)
.

Multiplying both sides of this equation by ab(a− 1)(b− 1)(c− 1)(d− 1), we
obtain the equation

(ab− 1)(a− 1)(b− 1)(c− 1)(d− 1)S(a, b, c, d) = ab
[
(b− 1)(c− 1)(d− 1) +

+ (a− 1)(c− 1)(d− 1) + (a− 1)(b− 1)(d− 1) + (a− 1)(b− 1)(c− 1)
]

+

+ (a− 1)(b− 1)(c− 1)(d− 1) + abd
[
(b− 1) + (a− 1)

]
+

+ ab
[
(b− 1)(c− 1) + (a− 1)(c− 1) + (a− 1)(b− 1)

]
.

It is easy to derive (e.g. by means of the computer algebra system Maple 15
and its simplify and factor statements) that it holds S(a, b, c, d) =

=
abc + abd + acd + bcd− ab− ac− ad− bc− bd− cd + a + b + c + d− 1

(a− 1)(b− 1)(c− 1)(d− 1)
,

i.e.

S(a, b, c, d) =

[
(a + b− 1)(c− 1) + ab

]
(d− 1) + abc

(a− 1)(b− 1)(c− 1)(d− 1)
. (23)

This formula can be also written in another two equivalent forms:

S(a, b, c, d) =

[
(a + c− 1)(b− 1) + ac

]
(d− 1) + abc

(a− 1)(b− 1)(c− 1)(d− 1)

and

S(a, b, c, d) =

[
(b + c− 1)(a− 1) + bc

]
(d− 1) + abc

(a− 1)(b− 1)(c− 1)(d− 1)
.

4 Numeric solution

For approximate calculation of the sums S(a, b, c, d) for the primes
a, b, c, d < 100, i.e. for 25 primes a, b, c, d ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,
37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}, we use the computer algebra
system Maple 15. The sums S(a, b, c, d) we calculate for concrete four primes
by the following for statements and by the procedure partabcd:
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partabcd:=proc(a,b,c,d)
local s;
s:=(((a+b-1)*(c-1)+a*b)*(d-1)+a*b*c)/((a-1)*(b-1)*(c-1)*(d-1));

print("S(a,b,c,d) for a=",a,"b=",b,"c=",c,"d=",d,"is",evalf[8](s));
end proc:

P:=[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,
83,89,97]:

for i in P do
for j in P do

for k in P do
for l in P do

if (i < j and j < k and k < l) then
partabcd(i,j,k,l);
end if;

end do;
end do;

end do;
end do;

Fourty-two representative sums of these 12650 sums S(a, b, c, d), where
12650 is the number of combinations of size 4 from a collection of size 25, i.e.(

25

4

)
=

25!

(25− 4)! 4!
=

25 · 24 · 23 · 22

4!
= 12650 ,

are presented in two following tables. There are 27 sums with a finite decimal
expansion (called regular numbers) with at most 4 decimals in the table 1
and another 15 sums, including the sum S(2, 7, 11, 13) = 1.7805 calculated
in the paper [2] and mentioned above, rounded to 6 decimals, in the table 2:

(a, b, c, d) S(a, b, c, d) (a, b, c, d) S(a, b, c, d) (a, b, c, d) S(a, b, c, d)
(2, 3, 5, 7) 3.375 (2, 3, 11, 13) 2.575 (2, 5, 11, 23) 1.875
(2, 3, 5, 11) 3.125 (2, 3, 11, 23) 2.45 (2, 11, 23, 41) 1.3575
(2, 3, 5, 13) 3.0625 (2, 3, 11, 31) 2.41 (2, 11, 23, 47) 1.35
(2, 3, 5, 31) 2.875 (2, 3, 11, 61) 2.355 (2, 11, 41, 83) 1.2825
(2, 3, 5, 61) 2.8125 (2, 3, 11, 67) 2.35 (2, 67, 79, 89) 1.0797
(2, 3, 7, 11) 2.85 (2, 3, 11, 89) 2.3375 (3, 7, 11, 23) 1.0125
(2, 3, 7, 29) 2.625 (2, 3, 13, 53) 2.3125 (3, 7, 11, 71) 0.9525
(2, 3, 7, 41) 2.5875 (2, 3, 31, 41) 2.1775 (3, 11, 23, 31) 0.7825
(2, 3, 7, 71) 2.55 (2, 3, 41, 83) 2.1125 (3, 11, 23, 43) 0.7625

Table 1: The table with some values of the sums S(a, b, c, d)
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(a, b, c, d) S(a, b, c, d) (a, b, c, d) S(a, b, c, d) (a, b, c, d) S(a, b, c, d)
(2, 3, 5, 17) 2.984375 (2, 5, 7, 31) 2.013889 (2, 23, 37, 43) 1.200156
(2, 3, 5, 73) 2.802083 (2, 5, 11, 53) 1.802885 (3, 7, 13, 19) 1.001157
(2, 3, 7, 31) 2.616667 (2, 7, 11, 13) 1.780556 (3, 7, 59, 89) 0.800402
(2, 3, 11, 29) 2.417857 (2, 5, 37, 83) 1.600779 (3, 31, 53, 79) 0.600002
(2, 3, 19, 89) 2.202652 (2, 7, 59, 89) 1.400536 (79, 83, 89, 97) 0.047622

Table 2: The table with another values of the sums S(a, b, c, d)

5 Conclusion

In this paper the sums S(a, b, c, d) of the convergent reduced harmonic
series G(a, b, c, d) generated by four primes a, b, c and d were derived. These
sums were computed for a, b, c, d < 100, although the formula

S(a, b, c, d) =

[
(a + b− 1)(c− 1) + ab

]
(d− 1) + abc

(a− 1)(b− 1)(c− 1)(d− 1)

derived above gives results for arbitrary four different primes a, b, c, d. So
that, for example

S(101,103,107,109) =
(203·106 + 101 ·103)·108 + 101 ·103·107

100·102·106·108
.
= 0.039056 .

It is clear that this formula is valid not only for four primes, but also for four
integers. For example the sum of the series

1

2
+

1

4
+

1

6
+

1

8
+

1

22
+

1

42
+

1

62
+

1

82
+

1

2·4
+

1

2·6
+

1

2·8
+

1

4·6
+

1

4·8
+

1

6·8
+

1

23
+

1

43
+· · ·

is S(2, 4, 6, 8) =
(5 · 5 + 2 · 4) · 7 + 2 · 4 · 6

1 · 3 · 5 · 7
.
= 2.657143.

We can say that the reduced harmonic series G(a, b, c, d) generated by four
primes (or by four integers) belong to special types of convergent infinite
series, such as geometric and telescoping series, which sum can be found
analytically by means of a simple formula.
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v Nitre, 2013, 84-89. ISBN 978-80-552-1047-6.

[5] T. Rike, Infinite Series (Berkeley seminary). Berkeley Math Circle,
March 24, 2002, 6 pp.

104



 

Ratio Mathematica, 25, 2013 

 

 

Contents 

 
   

Asokkumar, A. – Class of Semihyperrings from Partitions of a Set  pag. 3-14 

Borzooei, R., Radfar  –Classification of Hyper MV-algebras of order 3 pag. 15-28 

Chaudhary, K., Singh, Y., Jha, P. C. –  Optimal Control Policy of a 

Production and Inventory Systém for multi-product in Segment Market 

pag. 29-46 

Dramalidis, A. –  The Divisors’ Hyperoperations pag. 47-58 

Lygeros, N., Vougiouklis, Th. – The LV-hyperstructures Pag. 59-66 

Massouros, Ch. – Some properties of certain Subhypergroups pag. 67-76 

Motameni, M., Ameri, R., Sadeghi, R. – Hypermatrix Based on Krasner 

Hypervector Spaces 

pag. 77-94 

Potucek,  R. – The sum of the reduced harmonic series generated by four 

primes determined analytically and computed by using CAS Maple 

pag. 95-104 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

COPYRIGHT © 2005 Franco Eugeni 

Via Lucania, 1 – 64026 ROSETO DEGLI ABRUZZI (Italy)  

 

Autorizzazione n. 9/90 del 10-07-1990 del Tribunale di Pescara  

 

ISSN 1592-7415 

Ratio Mathematica  

[Testo stampato] 

 

ISSN 2282-8214 

Ratio Mathematica  

[Online] 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


