Number 13 - 1999

RATIO MATHEMATICA

Journal of Applied Mathematics

Editors

Franco Eugeni and Antonio Maturo

Scientific Committee

Albrecht Beutelspacher, Giessen  Antonio Maturo, Pescara

Pierluigi Corsini, Udine Ivo Rosenberg, Montreal
Bal Kishan Dass, Delhi Aniello Russo Spena, L'Aquila
Franco Eugeni, Teramo Maria Tallini Scafati, Roma

Mario Gionfriddo, Catania Thomas Vougiouklis, Alexandropulos



Number 13 - 1999

RATIO MATHEMATICA

Journal of Applied Mathematics

Editors

Franco Eugeni and Antonio Maturo

Scientific Committee

Albrecht Beutelspacher, Giessen ~ Antonio Maturo, Pescara

Piergiulio Corsini, Udine Ivo Rosenberg, Montreal
Bal Kishan Dass, Delhi Aniello Russo Spena, L 'Aquila
Franco Eugeni, Teramo Maria Tallini Scafati, Roma

Mario Gionfriddo, Catania Thomas Vougiouklis, Alexandroupulos



Contents

J. Mittas, Sur la valuation stricte des hypergroupes polysymetriques
CAMORIGUES . ....cveiasseneeeeas et se e sttt s ra e st s s e e e e s st st a et

A. Hasankhani, Ideals in a semihypergroup and Green's relations ............ 29
G.G. Massouros, Hypercompositional structures from the computer theory .37
D. Lenzi, Closure system and closure Rypergroups ............coovuvivineininns 43

B. Ferri, A. Maturo, On some applications of fuzzy sets and commutative
hypergroups to evaluation in architecture and town-planning .................51

G. G. Massouros, C. G. Massouros, Homomorphic relations on
hyperringoids and join BYperrings ............ocoovveeiiiiiiniissnns 61

B. Davvaz, Lower and upper approximation in Hygroups ...................... 71



Ratio Mathematica 13
(1999), 5-28

SUR LA VALUATION STRICTE DES
HYPERGROUPES
POLYSYMETRIQUES CANONIQUE

JEAN MITTAS

BBSTRACY, This paper qemsralizes the theory of valumaited axd yporvaluated casoaieal hypergroups fn the case
of the polysyametrical canonlcal hypergroups, He distizguish two types of bypervaluated casonical poly-
spmetrical hypergroups, the weakly and the stroagly bypervaluated onen. The study of the lust cnes forms
the main part of this paper, while the study of the weakly bypervluated cosonical polpsymmetrical hypor-
qroups is qoing to be the subjoct watter of amother paper,

Préeliminaires

L' hypergroupe pulsrlyne'trique canonique (H.P.C.) est, comme on
le sait [26], un cas particulier de l' hypergroupe
polysymetri que (H.P.), qui a e'te"Intrudult par la
consideration des ntrlcfn a s?n’nnt_s dans un hypsranneau ou

dans un hypercorpa! (ou, autrement dit, des hypermatrices) [3],

1 Intefendssanat do cotto thebrle 1a detialtion des B.D.C. est la toivante:
0z appelle LEC, mubll__l uuet d' use hyperoperation, qui, notee adiftivessst, veritie, quels que

soleat x,7.8 ¢ §, lea axloms: -
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{81, [9]., (101, {13], [20], [28] moyennant une multiplication
specifigue [3), [27]. La thebrie des H.F.C. geheralise celle
des hypergroupes canoniques (H.C.) [12], [19] = gui, comme 1l
est connu, constitue la base pour 1' etude 4' autres structures
lhyparconpnsitionnslln-, comme les hypesrannsacx st les
hypercorps (dont leurs parties additives soat des E2.C.), les
hypermodules et les hyperespaces vectcrisls ef, eacore plus
generalement, les hyperalgebres linsaires [1), [3), (11}, [20],
[21), [231, (28] - D' autre part 1' etude des valuations et
hypervaluations des H.C. [14], [15], [1&]. [17]., [i8], [25] =
enrichli la thebrie g’e’n‘l'ru.ln des valuatices - == liaiscan avec
celle des structurea hypercompositiconelles - par plusieurs
resultats inteTessants. Cette etude a ete rsalises par la

gdnsralisation de la theorie correspondante des groupes values

Loxd Teydx

II. (zeq)ezmnt(y4 :;
ML (30 e DYr e H[0rx o x) (L' ddent ¢, oFidensest wigee, oot e sim e T
On sote que, cosoe &' habitade, o ldeatifis, quazd riss se 5' 7 cppese. |” demmr © e le singleton
correspondant {x}, Domc 0 ¢ x =z au llew da 0 ¢+ 1= {1},

W, Mre D(Jx" ¢ B0 e xtr') (Tout tol ' ¢ B ot 1 cppose ot opmeccipme &e 7 o= 1 expendle S(z) =

Ce{xelilezdr'} et le spetripw & 1

Losexsy (Ju' e8(n) )[rezer ]
Un I.E.C. d1ffere, conse L] est visible, i' 1 inpergrempe mamigm (11, (O @& St gue daas o denaler,
pour tout x ¢ §, §(x) est wn singleton, (1’ ), yquele cs, vim s T powr . @ mm pew 1 aziome ¥

3EI+Y =) Fes-3

D' autre part do 1' axiose I1T 1l résalte facilenent que, poar tows s e L o8 + 1 o qui amee 11, justlfie
Ia caractetination de cotte structure comse Irpecgreape (7], 111



No 13 - 1999 Ratio Mathematica J. Mittas

( et, pour de cas plus general, hypervalues), comme cette
derniere a ote formee par M. Krasner par 1' introduction de 1'
ultrametricite et, en particulier, par la consideration 4' une
distance ultrametrique c o mpa t 1 b 1 e avec la structure du
groupe [4],([51,(6]. Ains{, =i (G,.) est un groupe et
d: G x G —> B+ ( ou R+ est 1' ensemble des nombres reels non
negatifs ) est une ultrametrique sur G, la compatibilite de 4d
sea donne par la condition:
dix,y) = d(ax, ay) = 4(xa, ya)

quels gque solent x,y.a dans @g. Mais si on a que (G,.) = (H,.)
est un hypergroups, les "hyptruouponii" ax, ay, xa, ya ne sont
pas, en general, des slngletons et les distances d(ax, ay),
d(xa, ya) n' ont pas, generalement, de sens. Mais sl on
supposes gque pour tout X, y ¢« H les hypercomposes xy sont des
cercles de 1' sspace ultrametrique (H,d), ces distances ont de
sens, si ax Nya = ¢, xa N ya = ¢, ce qui donne la possibilite’
de construirs une theorie analogue des valuations (et puis, des

hypervaluations) pour les hypergroupes.

En particulier, ﬁbur exprimer cettae conpntihiliti'dnnn le cas
des H.C. ot ayant en vue la notion de 1' hypercorps value
introduite par M. Krasner a partir 4' un corps valua [5] (mais
pour qui Krasner n' a pas occupe avec son stude), on a pose’ les

deux conditions sulvantes! [17], [25]:

1 Ces conditions paut Stre emeors utllisdes, conse il wst clalr, pouc expeimar, lu compatibilite” de ln
distazcs ultrandtrique av cas dos hypergronpes completement réguliers ( au sens de Harty 0] ) possedant m
senl ¢ldaent waite’ot qul cas ot o¥idemaeat encors plus qeRetal que colul des B.C.
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81 (H,.) est un H.C. ot d: H x H ——> R+ est =me (distance)
ultrametrique sur H, alors
hi. Pour tout x,y € H lasomme x + 3y esi == cercle de [l
espace ultramétrique (H,d) de rayon proporticanel au
max { d4(0,x), 4(0,y) }, ou O est le serc de H. O
est-a-dire 11 existe un nombre semi-reel p20 4°' espece O
ou -. [4], tel que
x+y=0C (5, paax{|x|, [7|}).
ol % € Xx + ¥y eoat quelconqus et ou, pour icas x € E, on

met |x|] = d4(0,x) en 1' appelant valmtios de 1'
element x ( la fonction |.|: E —> B sizms! Ze7finie

dtant 1a valuation de H associed a 1° wltrsmetrigue d ).
ha. Pour tout x.:.y.u. €H tels que (x+a) N (F*a) = ¢ on a
Ay - dxes, yie)
Un H.C. muni 4' une telle ultrametrigue ccmpatible avec la
structure de 1' hypergroupe a ete appele 2 y ;e s 3 roupe
canoniqgque ultrametrigus et cette
definition, plutdt geometrique, sequivazt. —cmme —elzi-<i a ete’
demontre’, avec L autre, pursssnot alysscigoe, des
hypergroupes canopigues values
[17), [25]. Pour le cas des H.C. Ry pervalcses ocu, 4
maniers equivalents, hy perul trame sz igzes on
a les mlmes conditions comme ci-dessus, mais. maiztezant, 1'
ensemble ol 1' hypervaluation |..| et 1° :ypersltrasetrique d
prennant leurs valeurs peut Stre, g€oeTaleme=zt, ax Iieu de Rs,
un ensembls gquelcongque £ totalement criceme et possedant un
plus petit alement, note” O, et encors, am liex &z nombre
semi-reel P, on a une fonctien p: @ —> Q T §- =zcissante ot

telle gue p.0 = O ot ou § est le complete 2e Furepa 22 2 et T-

20
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est 1' ensamble dep olsments d' espece - de 9 [14), [15],

(171, [18), [25)].

La valuation (respec. 1' hypervaluation) ainsi definie sur H
peut 8tre caracterises comme s t r i ¢ t e st les H.C. munis de
telle valuation, s tr ictement values (H.C.5V)
[respec. hypervalues (H.C.S5H-V) ] ou, de manibre
dquivalents, st r ictement ultrametriquaes
(H.C.SU) [ reapsc. hyperultrametciquasds
(H.C.SH-U.) ]. Car sauf cette maniars de valuation (respec &'
hypsrvaluation) des H.C. il y a encore une autre, selon lagalle
1' ultrametrique ( respec. 1' hyperultramstrique) satisfait aux
conditione plus t:fblu:

hi'. Pour tout x,y € H la somme x + y est un cercle de 1°'

espace ultrametrique (H,d).

ha' = hs

ha'. Pour tout x,y€e H, 81 xex+y, alors x +y=Xx.
(h3' 'a 1' autre cas est une consequence de hi et hz [14), [15].
By f 1 Les H.C. munis de telle ultrametrigue (respec.
hyperultrametrigue) peut 8tre caracterises, contrairement au
premier cas, fa iblement values (H.C.FEV) [respec.
hypervalues (HC.FH-V)] ou faiblement
ultra-n’tri._quol (H.C.FU) [resp. hyper-
ultrametr i'q ues (H.C.FE-U)]. Maintenant, en ca
qui Gconcerns les H.P.C., il est svidemment naturel que pour
exprimer la ounpltlihilltn’d.' une ultrametrigue definle sur eux
avac leur structure d' hypergroupe d' accepter tout abord les
conditions hi' et ha' & h2 et puis 4d°' otudier lea deux cas

ssparement. Le present travail est ainsi consacre a 1' stude



J. Mittas Ratio Mathematica No 13-1999

du premier cas, c' est-a-dire aux hypergroupes palylrli%riqutn
canoniques strictement ultrametriques (E.P.C.SU), gqui par
definition satisfont aux conditions h:i et h: (respec.
hyperultrametriques (H.P.C.SH-U)], tandis que 1' etude des
H.P.C., lltilfli;lnt aux conditions hi', hi' et a une
qihu&llluation conﬁanlbla de h3a' et avec 1' adjonction encors
quelquas autrss axiomes et qui sercat appeles hypergroupes
polysymetrigques canoniques faiblement ultramstrigues (E.P.C.FU)
( respec. hyperultrametriques (H.P.C.FE-U) ) fera ' object d'
un sutre travail. Quant au premier cas, ex etudiant les
conlnﬁunnu-n de la definition-ayant en vue moc travail [25], ou
la theorie des H.C. value? et hypervaluss (strictement) est
exposee ot ou on peut trouver encore les ¢lements necessalres
de la theorie das espaces ultrametriques et des nombres
semi-reels! - on ; about! 'a la conclusion gus tout E.P.C.SU e
reduit en H.C.SU.f Mais Dbilen gque 1 oz a abouti ainsi,
toutefolis 1° e#ponu’ detaille’ de ce cas est absolument
netessairs pour l' stude de 1' autre. D' autre part on se
limite 'a 1l'stude seulement des HE.P.C.5U, car 1' ctude des
H.P.C.SH-U est pareille (avec da patites nodifications
q’vidcnt.l) et, par colcﬁuent, cn a le néme resultat final, C°

est-a-dire que tout H.P.C.SH-U se reduit ez E.C.SE-U.

b lelativemsat volr eacore (2], (4], [%}, (&1, [17]
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'
Etude du premiexr cas : IL.Le=m
hypergroupes polysymetrigues
canonigues strictement ultra—

metrigues CH.P.C.SU) .

Soit (H,+.4) un H.P.C.SU. Tout abord et d4' apres les
propristss des cercles des espaces ultrametriques, on deduit la
prnpridf{ purenent nlqihriqun(c'--t—n-dlr- qui s' exprime sans

1' intervention de 1' ultr-ni%riqua) sulivante:

Propoadtion 1. Quels que Aolent X, Y, 2, W EH, A4
(x+y) N (z+w) ¥ @, alorna ou blen x+y ¢ ztw, ou blen ztw c xty

D' autre part, comms aux H.C.SU [25], on a encore:

Propoeltlon 2. Pour tout X,y ¢ H on a
Ld{x.y) £ p|x| ==) x = 4

d' ou il remulte que, si Hy¥ { 0}, on a p < 1.
[ Caxr %+ 0= C(x,p|x|) = x et y e C(x,p|x|). Dons, si
0=y ¢ x, alors 0 ¢ C(x,p(x|) et d(0,x) = |x| > plx| 1.

Remarguss 1. a) Si on suppose gque p est le plus petit des
nombres semi-resks pour lesquels la condition hi est
satisfaite, on aura toujours 0 < p < 1 [ c¢' est-a-dire soit
Hy {0}, e0it H= {0} ].

b) ﬁ%id.llant. sl p=0, H est un groupe abslien.
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En particulier, pour les opposses d' un x « H on a les

propositions:

Propoaltion 3. Pouwr tout x ¢ H, x' € S(x), on a
[x] = [x']

Demonstrat i1 on. Il est clair pour x = 0. Scit x ¥ O
ot qu' il existe un x' e S(x) tel que |x| ¥ |x'|. Si [x'| ¢
< |x|, alors x + x' = C(0,p|x|) et x ¢ x + x'. Car x £ x + x'
==> d(0,x) = |x| £ p|x| ==> p 2 1, ce qui est inexact d' apres
la proposition precedente. Donc, par 1' axiome 22 et en vertu
des proprictes des cercles (distance de cerclss disdoints)
d(0,x') = d(x+0,x+x') = d(x,0)
81 x| < |x'|, on a de mfme x' ¢ x + x' et on aboutit par le

mme ralsonnement a la n@me conclusion x| = |x’

Cosoltalse f. Pour tout x', x'' € S(x) on &

[ & ]

Conollalae 2. Pounr tout x'e S(x), x* £ S(x') on a

pEr] | |

Propoadtdion 6. Poun tout x ¢ H; x', x'' ¢ S5(x) on a

L) x + x' = x + x'' 4l) x g x + x'

Demonstration., {) Evident, car (x+x') N (x+x'') # ¢
ot |x| = |x'| = |x''|.
1) Il rebulte de la demonstration de la proposition

precedants.
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-

La proposition qui suit accomplit la proposition 1 et elle joue

un rBle important pour la suite.

Proposaltion 5. Queta que Aodent X, Y, a € H, Al
(xta) N (yta) # ¢, alons x+a = y+a.

Demonstration. On sait [26] que
(a+x)N (a+y)#p ==
==> (Ja' e S(a))(lq!x‘ € 5(x))(I=x" € 8(x'))(Jy' € 5(¥))
[(ata') N (x"+y') # ¢]

Alors, 8i 0 ¢ x*" +y',ona x"+y' ca+a', d' ou (pour les
rayons des cercles x"+y', a+a') pmax{|x"|,|y'|} ¢ pmax{|a|,|a'|
et, d' apres les precédents, max{|x|, |y|} < |a|, denc x + a =
=y + a, ces deux cercles non disjoints ayant des rayons
semi~reels egaux. si 0 e x* +y', alors |x*| = |y'| (donc
|%] = |y|) et, encore, ou bien x™ + y' c a + a', ou bien
a+a'ecx"+y', 4' ou il resulte respectivement, ou bien
x| = |y| < |a], ou Dbien ja| < |x| = |y| et on a, comme

auparavant, ¥ + a =y + a.

Concllaine 3. Quetls que Aodent X,4,a E H, Les ensembles
x +a, y+ a sont ou blen disjoints, ou bien codlncldentas.

Proposdtlon 6. Poun tout x,y ¢ H, x' € S(x) on a
L) S4L y £ S(x), akorns (x + y} N (x + x') = ¢

) SL x e x + y, akons x + Yy = X

13
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Demonstration., i) En effet, si (x+y) N (x+x') # o,
on auralt x+y = x+x', donc vy € S(x), ce qui est
contradictoire.

ii) x € x+y ==> (x+0) N (x+y) # ¢ ==> x+7v = x+0 = x

Propoalton 7. Poun fout x, y e H, x' ¢ S{x}), 4L y & x + x’,

aforns S(y) c x + x',

Demostration. Eneffet ye xex' ==> 7 e C(0,p|x|)
==> d(0,y) = |y| & p|x] ==> y' € C(0,p/x ) = x + x", pour tout

y' € 5(y).

"

S{x) on a:

Propoaltion 8. Pour fout x ¢ H, x',x°’
S(x') = S(x'")

+

Demostration. En effet, x™ € S{(x") => 0 € x' +x

may X+ R e (X kX)) + (X +xT) =0 (x'+x)+ (x''+ x")

4' apres

== 0 € (x' + x") + (x'' + x*), car x' + x -l A -

la proposition 4i. Donc il existe y e x'° = x" et 7 € S(y)
tel que y¥' € x' + x*. Maie y' e x' +# x* => S(§') e x' + x"
==>y e x' + x", done (x' + x") N (x'' =+ x") = ¢, ez, en vetru
de la proposition 5, x' + X" = x'' + x*, domc D € x'' + x*, c'
est~a~-dire x* € S(x'') et, comme x* € S(x') est 1’ importe
quel, alers S(x') ¢ S(x'"). Symetriguemezt on trouve

S(x'') e S(x'), 4’ ou la conclusion.

Conollaline 4. Pounr tout x ¢ H, x¥ ¢ S{S{x}} on =

S(x) = S{x*)
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Conottaire 5. Poun toult x,4y ¢ H on a
S{x) N S(y) # ¢ ==> $(x) = §(Y)

[ Car il existe =z e S(x) N S(y), donc x € S(z) et y e S(z), d'
ou S(x) = S(y) 1.
Remarques 2. a) Pour tout x € H il est evident que
S(S(x)) = Ux'«8(x>8(x') = S(x')
quelque soit x' e S5(x).

b) Descrmais et a cause des propositions 4i et 8 - et
seulement quand il n' y a pas le risque de confusion - on va
utiliser pour exprimer un n' importe quel element x' € S(x) la
notation -x. Ainsi on aura

X+ x'=x+x'""=.,..=x-x, 85(8(x)) = 8(-x)

Propoaltion 9. Pour tout x,y € H , x' & S(x), y' £ S(y)., 2L
S{x) N S(y) = ¢ ( donc! S(x) # S(y) } ona

d(x,y) = |x + y'| = |y + x|
ole, €videmment, sl A c H, |A] = { |z| € Re: z € A}.

Demonstration. Il est evident que, si S(x) N S(y) =
=¢ , alora x' ¢ S(y) et y' ¢ S(x) et, 4’ apfba la proposition
6i ona (x+y' )N (x+x')=¢ et (y+x')N(y+y') =2
Par consequent, vu h2 et les proprietes des cercles,

d(x,y) = d(x+x', y+x') = a0, y + ') = |y + %'|

d(x,y) = d(x+y', y*y') = d(0, x +y') = |x +¥']|

1 1 est possible que l'on ait x 7y, mais S{x) = 5(y), comne on a aux certains exexples en [26] et aur

divers cas des H.P.C
15
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Il en resulte gue les ensembles [x + y' | et ¥ = x'  soat des

singletons (méme egaux).

La proposition suivante generalise la propositice ci-Zessus 6ii
Propoallion 10, Pour tout x,y € H, x' ¢ S{x}, x* £ 5(x"), L
x¥ & x + y, alors x + y=x¥ Ponc, 4L x s x* + g, ona

x* + y = x.

Demonstration. En effet xe x =+ 7y => [ 3x"'= 5(x))
{y € #* + x''] donc, en vertu du corollaires £. =t de la
proposition 4i, y € x + x'= C(0, p|x'[), &' o= /¥ =3 x| < |x|

Par consequent x + y = C(x*, p|x{) = C(x", p x ). 2" apres le

)
L]
]
[}
L]
]
'
©
"
o
L]

corollaire 2. Done, x + y = x™, car C(x",

Propoadtdon 11. Pour Lout X £ KN, ¥ £x - x if exdiate

X® & S5(—x) tel que x + y = x¥ et x¥ — y = x.

Demonstration. En effet y € x+x'==> :;Ex"e S(x))
[x' ey +x'"'] == x+x' ex+y+x'"" == Qex+y+x'' ==
(] x" € S(x'"'))[x" € x + y] et, &' apras 1z proposition
precedente, x + y = x* [f@idemment, 8i on change x* danms S(x),
x" ne change pas, la somme x+y etant toujours la méme]. D'
autre part x + y = x* ==) x + y + y' = x* = 7P=>x e x" + ¥y

==> x™ + y' = x, pour tout y' € S(y), doac x* - ¥ = x.

Conollalne 6. Poun tout x ¢ H, x' £ S(x). §.9" € x — x fcan,
) “
d' apres La propoaltlon 7, S(y) C X - x] i€ exiate x'' & S(x)
tel que x' + y' = x'',
16
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Propoaltion 12. Pourn tout x e H on a

x + (x = x) = §(=-x)

Demostration. Evidemment, d' apres les precedents,
x + (x - x) ¢ 5(-x). D' autre part pour tout =x* € S5(-x) on a
X" e X" + (x + x') =x 4+ (x" +x%x') =x + (x + x') (par Prop. 4i

et Cor. 4), donc S(-x) ¢ x + (x - x), d' ou 1' egalite.

Remarque 3, Il est visible que, si pour x,y,a e Honax +a-=
=y + a, alora il resulte que

x+ (a-a)=y+ (a~-a)
Mais le reciproque est aussi vrai, c' est-a-dire on a encore la

proposition importante suivante:

Propoasition 13. Quels que Aolent x,Yy.a E H, Al
x+ (a—-a) =y+ (a-a), alons

x+ta=zy+a

Demostration. Ondistingue deux cas: y e S(a) et
y € 5(a).

i) Soit y e S(a). Alors: (x +a) +a' =y + (a + a') ==?
a' e (x +a) +a' == (Jtex+a) [a' et +a') == t + a' =
= a', par la proposition 6ii. Donc on a t + a'+a=a+a',
d' ou t e a + a', et, par consequent, t e (x +a) 1 (a + a')
mais qui est absurde, si x ¢ S(a), vu la proposition 6i. Il en
resulte que x € S(a), donc (x +a) N (y +a) # ¢ et, en vertu
de la proposition 5 (ou, de méme, par la prop. 4i),

xt+ta=y+ta.

17
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ii) Seoit y ¢ S{(a). Alora; x + (a -a) =y + (a - a) ==

==> (x+a)+ (a~a)=(y+a)+ (a—-a) domtils’ emsuit

(Muex+a)y(Jvey+a)Jtea-ajy=ev-c
D' autre part
v+ t=C(u, pmax{jv|, [t!]})
et, comme (y +a) N (a-a) =29, ona t =4(0,2) < d(0,v) =

= |v| (d' apres les propriftes des cercles), doac

v+ t=Clu, plvi)
Encore on a S(v) N S(t) = ¢, car autrement Si(v) = 5(Z) ca - a
selon le corollaire 5 et la proposition 7. Do=c, il vient que
v € a - aet, par suite, (y +a) N (a -~ a) # ¢, nais ce gqui est

contradictoire, wvu la proposition 6i. E=n agpligzs=nt. donc, la

proposition 9, on a

jv] = d(0,v) = d(a-a, y+a) = d(t',v) = d(t'+T, wst) = jv+t|
[car t' e a-a et (a - a) N (y+a) =g, (£'= &) 0 (v + 1) = p]
et, comme u € v+t, on a |u| € |v+t|, domc jmj = [v]. il en

resulte que

v+t=C(u plul) =u+0=xu
Mais v + ¢t =u==) (u+t)N (v+t) = (u-=%) z ] et on
distingue deux cas; u g u + t et u g u + t.
Siueun+t, alors u + t = u, qui entraine v + ¢+ = =7 =y + t

donc ueu+t', d' ou, de mBme, u + £' = u [ tocujours par la
méme proposition 61i et pour tout t' e S(t) ]. Rais v + t = u
implique v + £t +t' = u+ t', donc v e u+ t' pour tout t' €
€ S(t). Il en reaulte que u = v et par comseguect (x + a) N
N(y+a)#e 4d' oul' egalite’ x +a =73 = a.
Si ufgu+t, onaura (u+t) N (v + £} = @, dozc

d(u,v) = d(utt, v+t) = d(utt, u) = d(u+t, u+G) = d(t.0) = |¢t|

Si on suppose (x+a) N (y+a) = ¢, on aura d(u.v) > pmax{|x|, a|}

18
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[et d(u,v) > pmax[[y|.[a1}] done d(u,v) > pla|. Mais, d' autre
cBte, t € a - a = |t| < pmax{|a|,|-a|} = p|a], ¢' est-a-dire
d(u,v) & pla], gqui contredit au precedent. Par conseguent
(x +a)N(y+a) =¢ est impossible, donc (x+a) N (y+a) # ¢

et x+ta=y+ a.

Conroltalne 7. SLi x+ (a —-a) = y + (a = a), ators
x+a*=y+a* et x+a =y+al

quels que solent a' ¢ S(a), a' ¢ S(-a).
Relativement aux sommes x + x' = x — ¥ on a la proposition:

Propoaltlon 14. 4) Pour tout x £ H LRe aous~ -ensemble
x - x eat un Aous-hypengnroupe  polysymeirique  canonique
(S-H.P.C) de H.

il) Poun tout x,y e H ona

(x-x)+(y~y} = max{x=x, y-y} = (x=x)U{y—y) = Uze(x-x)+(y-y)(2~2Z)

Demonstration. i) Etant donne que y € x — x ==
S(y) ¢ % - x, il suffit de montrer que yi, Y2 € X = X ==
y1 + y2' ¢ x - x pour tout y2' e S(y2) [26]. En effet y1.y2z €
e x~x=x+x' == yL+y2'c(x+x')+yr =x+(x'+y2")
et, puisque 4' apfﬁa le corollaire 6 il existe x'' € 8(x) tel
que X' + yz2' =x"', y1 + y2' e x + x'' = x - %, pour tout y2' €
e S(y2).

ii) ﬁ;ident, contenu que x = Xx gy -youy-ygc ¥ ~— X

et que x - x et y -y sont des S-H.P.C. de H [donec z € x = X

==)z-—zg-z+ (x-%x)=x-x1].
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Coxollalne 8. Poun Ltout x & H 4Le acusr-enzeasile x - x = hx,
dtant S-H.P.C. de H, déginit Lo partition (moc ms) ze K, dont
Les classes sont C(z) = z + (x - x) [25].

Ensuite et relativement aux partiticns de E oz woit gue 1' on

a (du corollaire 3) la proposition cosidesrable szivante:

Proposltion 15. SL x ¢ H est 4ixe, fes sommesr x = v gquand y
parcount H 4orment une partiton de *, nolee moZ x, pour
Laquetle on a evidemment:

z £ w (mod x) (==) (j YyeH[(zex+g) aA(wex=+y)]

D' autre part il est evident que 1' on 2 ezcore gume la relation
binaire Rx dans H tel que
z =w (R) ¢==) x + 2 = x = w
est une relation d' eguivalence. Mais de la remargue 3 et la
proposition 13 on a gue
x+z=x+w<=>z+ (x-x)=w=(x-x]
donc, vu encore le corollaire 8,
( Rx ) 2 ( mod bx )
Soit maintenant z = w (mod x). Alors, il existe 7 = E tel que
Zz,WweEx+yetona yez+zx' et yew<sx", pour #Vixt? €

€ S(x) convenables, 4' ou il wvient x4+ 3 z + (x+x') et

In

x+ycw+ (x+x'"'"), donc [z + (x-x)1 70 ¥~ (x- x)] # &
et, par conséquent, z = w (mod x-x) et. eacore, vu les
precedents, z = w (Rx).

Inversement, solt z = w (mod x-x). Alors, z+(x=x") = x+(z+x')
= wr(x+x') = x+(w+x') et il existe y: € z+x’ et yI € wrx' tels

que z € x+yl et w € x+yz. Mais, d' apres le cerollaire 7,
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z4+(x+x') = w+(x+x') implique z+x' = w+x',6 donec yi,¥y2 € z#x',
¢! est-a~dire on a yi = y2 (mod x') et, en vertu des ci-des-
sus, y1 = y2 (Rx'). Il s' ensuit, donc, que y1 + x' = yz2 + x",
puis yi+ (x + x') = y2 + (x + x') et (par la proposition 13)
yi+ x = y2 + x, qui implique que z,w € x + y1, c' est-a-dire

gque z E w (mod x).

On est arrive ainsi a 1' ehonce suivant, considere” comme lemme

pour le thebreme considerable qui suit

Lemme. Llea retations d' equivatences dans H mod x,

mod{x-x) et Rx Aont colncldantes.

Par cosequent les classes contenant un z € H pour chacune d'
elles coincident. Ainsi la classe mod(x - x) contenant 1'
element x' € S(x) est Cx-x(x') = x' + (x - x) = x"' + (x' +Xx) =
= S(x), d' apres la proposition 12, tandis que pour la classe
Cx'(x') mod x' pour le méme x' € Hon a Cx'(x') = x' + y, car,
d' apres la proposition 15, il existe un y e H tel que x' €
e x' +y., Mais x' € x' + y implique x' + y = x' (Prop. 6ii).
Done, on a S(x) = x' et édvidemment on a la mEme chose pour
tout x € H et pour tout x' € S(x). On a aboutit, ainsi, que
pour tout x e H, S(x) est un singleton, c' est-a-dire au

theoreme, que 1' on a mentionne” au commencement:
Theoreme. Tout H.P.C.U. est un H.C.U.

Des precedents on conclit encore la remarque suivante

concernant aux hypergroupes fortement canoniques (H.FC)
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Remarque 4. Un tel H.C. verifie de plus par definition les
axiomes
f1 = Proposition 1 et f2: = Propositicon 6ii.

De ces axiomes (comme il est connu d= la theorie des
H.FC. [24], [25]) il decoule la propesition 5. Mzis on a vu
gue tres facilement et de maniere purement algebrigue la
proposition 5 impligque la proposition 6ii. OCn deduit, done,
qu' un H.FC. peut @tre defini de maniere sgquivalente par les

axiomes f1 et f£2' ®= Proposition 5 [22].

On acheve cet exposé' en citant un exemple montrant gqu il
existe des H.P.C.FV et que, par conseguent, les chesmiz pour leur
etude est ouvert. L' wultrametrique &' u=m tel Aypergroupe
satisfait aux conditions hi' et h2' des E.C.FV citees a 1'
introduction, mais non a h3', au lieu de laguelle verifie d'
autres conditions, dont la recherche pour le cas general fait

d' objet d' autre travail. Le sujet est cuvert.

Exemple Si en partant d4' un corps totalement ordonne’, p.e. le
corps (R,+,.,<) des nombres reels, on definit ume hyperaddition

X + y comme suit

[-{x], |x|], 81 [x| = |7]
on obtient une hyperstructure (R,+)., gqui., com=me on le voit
facilement, est un H.P.C. avec S(x) = {-x, x}, pour tout x € H.

On voit encore que la fonction d : R x R —=> B+ telle que
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d(x,y) = d(y.x) = 0, s8i yv= x

i

ixi, si ¥ -%
est une ultrametrique sur R, qui, comme on le costante apré%
une investigation gcgr.les differents cas de x, v, a € H (en
particulier pour . {a] & ix| < jy|. |%j ¢ jai < jyj.
(ki <y & jaj et pour ¥y = X, y = -x) ve?;fie 1' axiome hz'.
Quant }.l’.axiome hi' on véit que 1' on a tout abord, si § ;x|
est la valuation associge a 1°' ultrameﬁriqug d, alors _
S d(0,x) = jix; = {xi et d(0,-x) = :{=x|} = |x]

donc {ixjj = ii-xi;. Par consequent

si (x| ¢ |yj, onax+y=Cly, ivl") = Cly, 0),
tandis que

si x| = jy|, alors x +y = [=ly¥], :¥ji]l = C(0, iy|).
c! est;i—dire, en ufilisant le nombre semireel p, on a
generalement

x+y=C (z, pmax{|x|,{y.})

avec

1=, siojx| < iy

1, si|x| = |y
hAutrement dit, les hypérsammes x + y sont des cercles de 1'
espace ultrametrique (R, d) dont les rayons sont dependants du
max{{x{, j¥yi}. mais sans un meme coefficient de
proportionnalite’. L' axiome donc hi' est aussi verifie
Enfin, en ce gui concerne l' axiome h3', celui-ci, evidemment,
ne marche pas en general. Mais on voit que 1' on a des
proprietes qui awraient pu jouer: le réle de hi' a la définition

des H.P.C-FV¥, comme p.e.
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si X € X +y, alors ou bien x +y = x, ou bien y € S(x)
{donc, ici, S(x) N S(y) # ¢}

et

Si S(x) N S(y) = @, alors pour tout x', x'' € S(x),
v', y'' € S(y), ou bien (x+x') N (y+=x'") =8. oubien
(y #%') N (x +y'') = ¢ [tandis que dans un BE.C.¥V, donc dans
un H.FC (Remarque 4 et [22]), ona x#y=>-x¢¥ -y ==
==> S(x) N S(y) =¢ ==} (x-y) N (x-x} =8 et

(y -%) N (y-y) =9, vugue S(x)={-x}. S@) = I-¥11.
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Zahedan, Iran

Abstract:
The concept of ideal in a right (left) semihypergroup is defined. Then some

connections between ideals and the hyper versions of Green’s relations are discussed.

1.Introduction

Marty in 1934[2] Introduced the notion of hypergroup.

We begin by recalling some definitions from [1].

A hyperopration of a non-empty set H, is a function from H x H into
Pe(H) = P(E\{0}.

If “+” is a hyperoperation on H, then (H, ) is called a hypergroupoid.

Let (H,*) be a hypergroupoid and A, B two non-empty subsets of H, then A* B
is defined by

AxB= U axb

aEAbER

By z+ A, and A+ we mean {z} * A and A * {z} respectively, for all x € H,

P#ACH.
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2.Main results
Definition 2.1. Let (H,*) be a hypergroupoid. Then H is said to be a right

(left) semihypergroup (or r.8 (Ls)) if
(cry)rzCax(y*z)Vo,u,2€ H

(z*(y*2) C(c*y)*zVz,y.2 € H).

An hypergroupoid is called a semihypergroup if it is both a left and a right
semihypergroup.

Definition 2.2[2]. Let (H,*)be a semihyprgroup. Then A is called a hypergroup
fz+sH=Hsz=H,forallz € H.

Definition 2.3. Left (H*) be a hypergroupoid and A € P*(H). Then A is
called

(i) a right ideal in H if
teA=z+yCAVWeH

(ii) a left ideal in H if
sc A=>y*xzCAVyeH
(iii) an ideal in H if it is both a left and a right ideal in H.

Example 2.4. If H is a totally ordered set and the hyperoperation “=” on H is
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defined by

{zeH:2<z2} if y<z
sy=yrz=
{zreH:y<z} if 2Ly,

for all z,y € H. Then we can show that (H,#) is a semihypergroup. Infact if
z,y,2 € H,and w € (z *y) * z are arbitrary, then we have w € a * z, for some
a€z+y. Ifz <y, then y < a. Now we have two cases,

Cases 1: Let z > a. Then since w € a * z, we have w 2 2. On the other hand,

since y < a, we obtain that z <y < z. In other words z € y* z and w € z* z. Now

weget that wezxzCx*(ysz).

Case 2: Let a > z. Then, since w € a * z, we conclude that w > a > z. Now if

z 2 y, then we have

w>2a>2=2Y 27T

Hence w € z+z Cz# 2z and 2 € y * 2. Thus
‘ wezxzCr*(y*z).
If y > 2, then we have
z2<y<a<w, sincew€ax*z

consequently

wezy, sincey <wand z <y C z*(y*2z), sincey € y* 2. Therefore

(zy)kz C z*(y*z),if z < y. Now since zxy = y*z, we have (z*y)*z C z*(y*z2).
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Note that, since £+ B = B+z. For all z,y,2 € H. Thus (H, =) is a semihypergroup.
Now Let A= {z € H : a < z}, where a € H. Then we shall show that Ais an ideal

of H. To do this let z € A,y € H and z € 2 *y. Then if z < y, we have
z2y2c20.

Hence z € A. If y < z, we have

z>z2>a.

That is z € A, Consequently = *y C A.

Definition 2.5. Let (H,x) be a hypergroupoid. For every e € H we define

aH = (axH)U{a};
Ha = (Hxa)U{a}
HeH = ((H*a)*xH)UHeUaH.

The hyper versions of Creen’s relations are the equivalence relations R L. 7 and K

defined for all a,b € H by

aRb& aH = bH:
alb& Ha= H;
alb & HoH = HbH;

L=L£NR.
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We shall also consider the relations < (R), € (£) and < (Z) defined for all

a,be H by

e < (R)b & oH CbH;
a<(L)b& Ha C HE,

a < (I)b & HaH C HbH;

(See[1,page 29]).

Teorem 2.6. Let H bearsand § # A C H. Then A is a right ideal iff for

every 7,y € f.
g<(R)yandye A=z €A (1)

Proof. Let H be ars, A € P*(H) and (1) hold. Then for all z € A and
y € H, we will prove that z xy C A. To do this let z € z*y, and w € zH are
abitrary. Then w = z or w € z 1, for some t € H. If w =z, then since z € T *y
we have w € z *y and h;snce wne zH. If w € z %1, then since z € z * y we get
that w € (z*y)*t C o+ (y*t) C oH. Therefore zH C zH. In other words
z < (R)z.Hence z € A. That is z * y C A

Conversly, let A be a right ideal in H, 2 < (R)yand y € A. Then yH C A,since
A is a right ideal. Hence

zezH CyH CA.

i3
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In other words € A.

Theorem 2.7. Let H be ar.s @ € H. Then aH is the smallest right ideals
containing a. Right ideals of this form are called principal right ideals.

Proof. The proof is easy.

Theorem 2.8. If H is a r.s and a,b € H, then the following are equivalent:
(1)a< (R)b
(2) ac bH
(3) b€ J = a € J for all principal right ideals J in #,
(4) be J = a € J for all right ideals J in H.

Proof. Clearly (4) = (3) = (2) and (1) = (2). By Theoem 2.7 we have
(2) = (1) and (2) = (4).

Corollary 2.9. If H is a r.s and a,b € H, Then the following are equivalent:
(1) aRb,
(2) b€ aH and a € bH,
(3) a € J & b€ J for all principal right ideals J in H,
(4) a € J & b€ J for all right ideals J in H.

Proof. The proof follows from Definition 2.5 and Theorem 2.8.

Definition 2.10. Let H be a lypergroupoid. A set F of functions on H is
separating if, for all distinct & and y in H, there is an f € F with f(z) # f(y).

Notation. Let H be a hypergroupoid = € H. Then R-class, L - class, I-class
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and K-class of z are denoted by 2, Z,, 25, and T, respectively.
Corollary 2.11. Let H be a r.s. Then the following are equivalent:
(1) the relation < (R) is an order on H.
(2) 2, =2,V € H,
(3) The set of all characteristic function of principal right ideals in H is separating,
(4) The set of all charactcristic functions of right ideals in H is separating .
Proof. Obviously (1) = (2) and (3) = (4). Firstly we shall prove (2) = (3).Let
z and y be two distinct elements in H. Then by Corollary 2.9,we have y ¢ zH or
z . Hence X, (3) # X, (¥) O Xyu(¥) # X,u(®)-
It is now sufficient to show that (4) = (2).Let ¢ < (R)y and y < (R)z. Then

z € yH and y € zH. From Corollary 2.9 we have

z € J & y € J for all right ideals J.

Hence z = y, by (4). Cl.;a;aily < (R) is reflexive and transitive.

Remark 2.12. For a s H there are corresponding theorems and corollaries
connecting the relation £ with left ideals.Moreover for a semihypergroup H there
are corresponding theorems and corollaries connecting the relation T with ideals, we
shall summarise a few of these results in the next theorem.

Theorem 2.13 Let H be a semihypergroup and a,b € H.Then

(1) eTbiff
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ae J e be J forall ideals J in H,
(2) akCb iff
acJabeJ
whenever J is a left ideal or a right ideal in H.
Theorem 2.14. Let H be a semihypergroup. Then H is a hypergroup iff
:cEz*Ha.nd g, =H\Vz e H.
Proof. The proof is easy.
Definition 2.15. Let H,H' be two hypergroupoid and f : H — H' a function.

Then F is called a homomorphism if
flzxy) = fz) = f(y)-
Theoerem 2.16. Let H,H' be two hypergroupoids and f : H — H' an onto

homomorphism. Then f preserves the relations < (R),< (£) and < (I).Moreover

f(xn) = (f(z))k,f(ﬂ:,:) = {f(z));:: f(zr) = (f(I))I and J:i-.::j' = (f(z))e-
Proof. The proof is easy.
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Abstract This paper presents the several types of hypercompositional structures that
have been introduced and used for the approach and solution of problems in the
theory of languages and automata.

AMS-Classification Code:68Q45, 08a70, 20N20, 68Q70

Certain properties of the Automata, as well as some essential elements of the
structure of the formal languages gave the initiative of introducing the theory of
hypercompositional structures into the above theories [5]. This paper will present
the structures that have been used for this purpose along with some of the
characteristic properties that they have. The use of those structures can be found in
the papers that appear as references in the following text.

In [5], it has been proved that the set of the words A’ over an alphabet A, can be
organized into a join hypergroup, which was named B-hypergroup, through the
introduction of the hypercomposition:
a+b= {a, b} foreverya,b e A

It is worth mentioning that this hypercomposition can be found in a paper by L.
Konguetsof, written as early as the 60’s, We have introduced again this
hypercomposition though, motivated by the theory of Languages and we have
named it B-hypercomposition, after the Binary result it gives. The deriving
structures (B-hypergroup, Dilated B-hypergroup, B-hyperringoid etc.) which
have already been studied in depth, have produced many and interesting results in
both theories.

The join hypergroup is a commutative hypergroup (H,+), which also satisfies the

axiom:
(M @:b)nc:d) 22 = (a+d)n(c+b) # foreverya,b,c,de H
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where a:b={xeH | a e x+b} ., is the induced hypercomposition from + [2].
We remind that the axiom (J) as well as the join space, ie. a commutative
hypergroup enriched with (J) and certain additional axioms. have been introduced
by W. Prenowitz for the study of Geometry with methods and tcols from the
Hypercompositional Algebra (e.g. see [17]).

Moreover, the set of the words A" is a semigroup with composition the concatenation
of the words. It has been proved though that the concatenation is bilateral
distributive to the B-hypercomposition [5].  Thus, there appeared a new
hypercompositional structure, the hyperringoid.

Definition . A triplet (Y,+,. ) is called hyperringoid, if
i. (Y,+) is a hypergroup
ii. (Y,. ) is a semigroup
iii. the compositicn is bilateral distributive to the hypercomposition
If (Y +) is a join hypergroup, then the hyperringoid is named join.

An important join hyperringoid for the theory of languages is the B-hyperringoid, in
which the (Y,+) is a B-hypergroup.

The study of the theory of languages and automata through the theory of the
hypercompositional structures has also led to the introduction of a new hypergroup,
the fortified join hypergroup (FJH). This new hypergroup has been introduced in
order to satisfy the need of considering a non scalar neutral element in the join
hypergroup and therefore being able to describe the “null werd™. the use of the
symbol <SOS> (Start Of String) in the realization of the automaton etc.

Definition 2. Fortified Join Hypergroup is a join hypergroup which also
satisfies the axioms:
FJ; There exists a unique neutral element, denoted by 0. the zero element
of H, such

that for every xeH holds: x e x+0 and 0+0=0
and
FJ, For every xeH\(0}, there exists one and only one element x'H\{0},

the opposite
or symmetrical of x, denoted by -x, such that: 0 = x+x" Alsc-0=0.

From the above axioms, it is obvious that the FIH places itself berween the canonical
[13] and the join hypergroup, since, as it is known. if a join hypergroup has a scalar
neutral element, it is a canonical one [1], [3].

The relevant analysis of the properties of the FJHs [6] has revealed that they consist
of two kinds of elements, the canonical (c-elements) and the attractive ones (a-
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elements). This distinction appears due to the different behavior of the elements in
their hypersum with the zero element. So, for the canonical elements x, x+0 equals
to {x}, i.e. they act like the elements of the canonical hypergroup, while, for the
attractive ones, x+0 = {x, 0} i.e. they attract the neutral element in the result of the
hypersum x+0. Moreover, since 0+0 is not a biset, we have included 0 among the
canonical elements. Furthermore the property -(x-x) = X-x is not always valid in a
FJH. Thus, there derives another distinction of the elements, namely the normal
ones, i.e. the elements that satisfy the above equality, and the abnormal ones, i.e. the
elements that do not satisfy it. The following Proposition gives a list of the
fundamental properties of the elements of this new hypergroup.

Propusition. In @ FJH the following are valid:
[. ifxis a c-element, then -x is also a c-element.
ii. ifxis an a-element, then -x is also an a-element.
iit. The sum of two a-elements consists only of a-elements (and the 0, if they are
opposite) and also it always contains the two addends.
iv. The sum of two non opposite c-elements consists of c-elements, while the sum
of two opposite c-elements contains all the a-elements.
v. The sum of an a-element with a non zero c-element is the c-element.
vi. All the c-elements are normal elements.
vii. Ify is normal, or if x gy-y, then -(x : y) = (x) : (-)

For the relevant proofs of the above see [6].

Moreover, it has been proved that in the FJHs the reversibility holds under
conditions. More precisely, z € xty = y € z-x, exceptifz=x#ywhere x € xty
= X € x-y, while generally y ¢ x-x. This gives as a result that for every x # y holds
x-y = (x:y) U (-y):(-x), while x-x < x:x. If one of the x, y is a c-element then x-y =
xty = (-y):(-x) [6].

Apart from the different kinds of elements, as described above, the FJH has a variety
of subhypergroups [11]. Initially, very significant in every join hypergroup are the
intersections x:y M z:w which appear in the first part of the join axiom. Thus, if h
is a subhypergroup of a join hypergroup H and if x, y, z, w € h, then the following
can happen:

> [(xy)n(zZw)]n(Hh) =0

ii> [xy)n(zw)]ch
If <ii> is valid for every x, y, z, w € h, then h is called join subhypergroup of H.
Since it has been proved that a subhypergroup h of a commutative hypergroup H is
closed in H if and only if x:y < h for every x, y € h [4], one can easily see that the
join subhypergroups are the closed ones. Now if H is a FJH for which -x € h for
every X € h, then h is called symmetrical subhypergroup of H. It can be proved
that every join subhypergroup of a FIH is a symmetrical one.
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A hyperringoid now, with additive hypergroup a FIH, is called join hyperring. The
join hyperring has properties, some of which are very different from the properties of
Krasner’s hyperring [12], i.e. hyperringoid in which the additive hypergroup is a
canonical one. So, for instance, in a join hyperring, the property (-xJ-v) = xy is not
always valid. In [10], example 3.1. one can see a join hyperring for which  (-x)(-y)
= -Xy. Also, its canonical and attractive elements give special properties in the
multiplication. Thus, while the product of two c-elements is always a c-element, the
result of the product of a c-element with an a-element is always the zero element.
Furthermore the product of two a-elements is also the zzro element. if the join
hyperring contains a nonzero c-element.

Another structure which has been used for the approach of the theory of automata
through the theory of the hypercompositional structures is the join polysymmetrical
hypergroup.

Definition 3. Join Polysymmetrical Hypergroup is 2 join hypergroup which
also satisfies the axioms:
JP; There exists a unique neutral element, dencted by 0. the zero element
of H, such

that for every xeH holds: x € x+0 and 0+0=0
and
JP, For every xeH\0}, there exists at least one element x'=H\{0}, the
opposite or

symmetrical of x, such that: 0 e x+x° The set of the opposite
elements of x is

denoted by S(x) and named symmetrical (set) of x. Also S(0) = 0.

Those hypergroups have appeared and used for the minimization of the automaton
[5] and their study has revealed the significant properties that they have [6]. For
instance join polysymmetrical hypergroups are the P-hypergroups i.e. hypergroups
that are defined from an abelian group (G,+), a subset P which contains the neutral
element of G and hypercomposition “"” defined as follows:

X'y = x+y+P, forevery x,v e G

In addition to the above hypergroups that have been introduced from the study of the
theory of automata and languages, notable in the above study. is the role of the
canonical hypergroup, with its different types (superiorly canonical and strongly
canonical [14], [15]) as well as the canonical polysymmetrical hvpergroup [16].
Those hypergroups have been used in order to describe the structure of an
automaton. More precisely, through the introduction of the notion of the order of a
state there appear the attached order hypergroups of an automaton. which belong
to he above categories [9].
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Furthermore, in the study of the theory of languages and automata, except from the
special types of hypergroups, we have also used the hypergroup itself. The
introduction of the following hypercomposition into the set S of the states of an
automaton, has made S a hypergroup:

( {se§ | s=s,wand s, = sy, with w,y € A*},
| if there exist ze A*, such that s; =5,z
51+ S Z{
[ {s\., s,}, ifthere does not exist ze A', such that 5 =5 2

This hypergroup has been named attached hypergroup of the paths. With a proper
generalization of this hypergroup in the case of the operation of the automaton, we
have obtained the attached hypergroup of the operation. Using this last
hypergroup, an algorithm has been developed, which, among other information,
gives all the possible states that an automaton can be found at any clock pulse,
during its operation, as well as all the possible paths that it may have passed through
up to any clock pulse [8].

Lastly, in an automaton, the word (of the language it accepts) causes the system to
move from state to state. Therefore, this is an action from a set of operators, which
is a subset of A* on the set of the states of the automaton. This has led to the
introduction of two more hypercompositional structures, the hypermoduloid and the
supermoduloid.

Definition 4. If M is a hypergroup and Y is a hyperringoid of operators over M,
such that for every k, A € Y and s, t € M, the axioms:

i (sk)=s(kh) 7y

i, (s+t)A= sA+A

iil. s(A+k) c sitsk
hold, then M is called hypermoduloid over Y. If Y is a set of
hyperoperators, that is, if there exists an external hyperoperation from MxY
to P(M) satisfying axiom <i>, then M is called supermoduloid over Y.

The hypermoduloids are being used in the study of the deterministic automata, while
the supermoduloids are being used in the case of the non deterministic automata [7].
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CLOSURE SYSTEMS AND
CLOSURE HYPERGROUPS

Domenico Lenzi*

SUNTO - Dato un sistema di chiusura (S,G), sull'insieme S si pud defi-
nire un'iperoperazione + ponendo, per ogni a,b € S, ab=<a,b>g, dove
<a,b> & il minimo elemento di T a cui appartengono sia a che b.

In questo lavoro noi studiamo questo tipo di iperoperazione, evidenziando
diverse proprieta significative. Nei casi in cui l'iperoperazione in questione e
associativa essa attribuisce ad S una struttura di ipergruppo, che noi chia-
miamo ipergruppo chiusura.

ABSTRACT - If (S,©) is a closure system, then one can define on the set
S a hyperoperation * by setting, for any a,beS, ab:=<ab>y, where

<a,b> is the minimum element of T containig @ and b.

In this paper we study such a type of hyperoperations and prove several inte-
resting properties. Whenever the above hyperoperation is associative, then it
gives S a hypergroup structure that we shall call closure hypergroup.

1. PRELIMINARIES AND RECALLS

A function - : SxS — ®(S) is said a partial (binary) hyperoperation on S. If
Xy # @ (X := +(X,y)) for any x,y € S, then one speaks of hyperoperation.
For any X,Y C S one can set XY := Uxex,yﬂmy (hence @-Y = & = X-@).
Thus one has also a binary operation on % (S).

IfaeS and B C S, then one usually writes respectively a-B and B-a instead
of {a}'B and B-{a}. It is obvious that Uxe xY=XY = Uyev)(-y.

It is easy to verify that a partial hyperoperation on S is associative or com-
mutative - with an obvious meaning of these terms - if and only if the corre-

sponding operation on ¥ (S) is associative or commutative.

* Dipartimento di Matematica dell'Universita, 73100 Lecce (Italy).

43



D. Lenzi Ratio Mathematica No. 13 -1999

Now we recall that a closure system on a set S is a subset T of the power
set ®(8) which is closed under the arbitrary set intersection (in particular,
S =N@ e B). One says also that (S,G) is a closure system.

For any X C S one can consider the so called closure of X under . given by
the intersection of the elements of & including X, and represented by <X >
If X4, Xz, ..., Xy are elements of S, then one writes <X, , X, , ... Xp>p
instead of <{Xy, X5, ..., Xn}>p and says that <X, X,, ..., Xn >z is fi-
nitely generated. The elements of & of the type <X>p are said principal;
moreover, if every element of % is principal, then (S,T ) is said principal.

2. BINARY CLOSURE SYSTEMS

Through a closure system (S,%) one can define a commutative (binary) hy-
peroperation * on S by setting, for any ab € S, a'b :=<ab>,. We

shall say that * is a (binary) closure hyperoperation.

Remark 1. If - is the above hyperoperation, since a-b = <a,b>; and
ab C<a>gz-bC<a>.-<b >z € <a,b>, forany a,b<=S. then one
has:

1) ab=<a>zb=a<bh>, =<a>,<b>;.

Consequently, ifa € S and B C S, then one has:

ticular, if * is an associative hyperoperation and X;, X, ... , X~ £S. with
N> 2, then Xy*Xp® ... *Xp, = <Xy > <Xt <Xy >n
Now, if T is a closure system on S, let G ; be the set of the parts X of S
which are closed under the hyperoperation * associated to G (i.e.: X*X = X).
Thus we shall say that the set B2 is a binary (or linear) closure svstem on S
and call binary subspace (or pseudo-linear subspace) of (S,T) every element
of 2. Obviously, & is a binary subspace of (S,%); moreover G < B35
Now we recall that a closure system (S, ) is said algebraic if, for any subset
X of S and for any X € <X>, there is a finite subset F of X such that
X e<F>, .Itis known that (8,3) is algebraic if and only if T is closed un-

der the set union of the elements of any subset of &, which is upper directed
(in particular, which is a chain) with respect to C. Therefore one can easily

verify that G is an algebraic closure system.
If + is a partial hyperoperation on S, then it is clear that the set of the parts
of S which are closed under + is a binary closure system on S.
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Remark 2. Let (S,C) and (S,C ) be closure systems. If <X, y>z1 C <X,

y>. forany X,y €S, then G2 €T ». Consequently, if @ C 'C', then
B, C Glz.

Remark 3. 1) If X,y € S, then <X,y>g € <X,y >z . Moreover by defi-
nition of G2, since X,Y €<X,y >y, 0ne has <X,y>gz € <x,y>az. As a
consequence one gets:

(a) <X, ¥y>z =<X,Y>g j (in particular, <X>g = <X >Bz)' Therefore
G and ©, define the same binary closure hyperoperation, and hence G, =
= (B2)2.

(b) Since G2 =(B2)2, B is a binary closure system if and only if T = Ca.
2) G, is the lower binary closure system on S including G. Indeed, if G ‘isa
binary closure system and G C %, then G, C TL=0.

3) If X is an element of B2, then X € X-X, and hence X = X*X.

Theorem 4. If (S,%) is a binary closure system, let C be a fixed element
of G, andletG' = {Ye G | Y=2 or C S Y}. Then (S,G) is a binary
closure system.

Proof. It is obvious that (S,%) is a closure system. Thus, by Remark 3
(see (b) of property 1)), it is sufficient to prove that B8,C8.

To this end, let X be a non empty element of ©',. Thus, for every X, Y€X,
one has C S <X,y>g+ € X and <X,y>g € <X,y >5+ © X. Therefore

Xel. .

2. PARA-NORMAL CLOSURE SYSTEMS

Now, in order to extend some interesting properties of the normal subgroups
of a group, in this paragraph let us assume that 7\, is a binary closure system
on S, + is a hyperoperation on S and © is the closure system of the subsets

of S closed under +. Thus we shall indicate respectively with g and *; the

closure hyperoperations associated to 7, and to G.
We shall say that (S,9, ) is para-normal with respect to + whenever the follo-
wing condition holds:

® VXY € S: <X>q+<y>q =<XY>q .

45



D. Lenzi Ratio Mathematica No. 13 -1999

Hence, since if X,y € S we have X4y C <X>q +<y>; = <X, y>q =

= X', Y, then the following property holds:
(°9) VXY € S X+y C X Y.

And now let us assume that the binary closure system (S. 9. ) is para-normal
with respect to the hyperoperation +. Then we have the following theorems.

Theorem 5. for any A,B € . one has:
*) A+B = A-,B = A-B.
Furthermore 9\, is included in G.

Proof. Preliminarily let us remark that A+B = A+, B. In fact the follo-
wing equalities are trivial:

A'l'B = UaeA bEB<a>%+<b>% = UaEA.EB<a. b>?. =
=Vacapepd ab =A:B.

In particular, one has A+A = A+g A = A, Thus T\, is included in T and hence
A+,B C A+ B. As a consequence - since it is obvious that A+B S A-.B -

we get A+B=A-.B=A- B. i

Theorem 6. Let A € € be a union of elements of 7, . Then A=, '

Proof. It is sufficient to prove that A, A C A. Indeed one has:

A'TLA c U A<a>¢n’.ﬂ<a‘>% = Ua.ai‘:—A(a;a‘ >:= -

aa'e

= U, gea<a>q+<a’>y CA+ACA

! See the case of a subgroup which is a union of normal subgroups.
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Remark 7. Let us point out that if the binary closure system (S, 9, ) is pa-
ra-normal with respect to an associative hyperoperation + then, as in the case
of normal subgroups of a group, also *; is associative. Indeed, by Remark 1
and by Theorem 5, for any &, b, ¢ €S we have:

a+, (beyC) = <a>q +(<b,c>q) = <a>g +(< b>g #<c>q) =
= (€a>q +<b>g J#<C>y =(<a,b>q )y <C>q = (@, b) g c.

In the meantime *. can be not associative, as in most groups (S,+) in
which + is a non commutative operation.

3. ASSOCIATIVE CLOSURE SYSTEMS

Now let * be the hyperoperation associated to a given closure system (S,8);
hence, for any X,y €S, X and Y belong to the hyperproduct X*y. As a conse-
quence, if * is associative, then * gives S a structure of commutative hyper-
group (in the sense of [1], p. 8). Therefore we shall say that (8,T) is associa-
tive and (S, *) is a closure hypergroup.

Furthermore, we shall say that (S,%) is 3-strong associative if, for any X, Y,
zeS, x(y2) =<X,Y,2>5 (= z(xy) = (x*y)z). In such a case, sin-
ce X(y'z) € <X,Y, Z>c,§ <X,y,Z>p , then one has <X, Y,Z>g =
= <X, ¥, 2>, -

More generally, given a natural numbers N = 2, we shall say that (S,G) is
n-strong associative if it is associative and X1 Xg" ... *Xp = <Xy, Xz, «v0 s

Xn>g for any X, Xz, .- s Xn €S. Furthermore, we shall say that (S,G)

is finitely strong associative if it is N-strong associative for any natural num-

bers N 2 2.

Obviously, a closure system (S,G) is 2-strong associative if and only if it is
associative. Furthermore, if m and N are natural numbers such that 2<m<n
and (S,8) is n-strong associative, then (S,T) is m-strong associative. In
fact, if one set X = Xmyq = -.. = Xp, then (see 1) of Remark 1) one gets L

X1')(2' e ')(m_1 'Xm = X1°XQ’ wes 'Xm_1'<xm >ﬁ =

2 We recall that <X>g*<X>g = <X>g forany X €8S.
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- )(«I'Xg' ain ‘xl'I'I-T ":xm}u'{Xm_'_‘] >G YT ‘<Xn >-c -
- X1‘X2‘ ass 'Xm 'Xm+1 Y 'Xn = <X1, Xg, rae g Xn>a -
= <K1 N Xa, was g xrn)c e

Theorem 8. Let N be a natural number greather than 1. Then a closure
system (S,%) is n-strong associative if and only if the following property
holds 3

N Ry By o o M B BTy My Ky P SNy vy Xy D s
Proof. The assertion is obvious if n = 2 orn = 3. Thus let n > 3, If
(8,%) is n-strong associative then, since it is also (n-1)-strong associative,
we have:

<X1 y Xy owen ,Xn>c = X" Xa2" ... " Xp = X-,'<X2, Vi Xn>c ¥

Conversely, let the condition (*) hold. Then it holds also with n replaced by a
natural number m such that 2 < m < n. In fact we can set X, = Xy = ... =

= Xp, . Thus, by setting m = 3, we have that (S,8) is associative.

As an immediate consequence, by induction, we get <X., Xz, ..., Xp>p =
= X" X5 . *Xp .

1 2 n ]
Theorem 9. Let (S,%) be a closure system and let a,.a,....3,,.beS.

If <@p,..., By>p =<b>u . then 8,°<a3;, ..., 87> =<8y, 820 v, 8n>p -

Proof. Indeed (see 1) of Remark 1), a,'<a;, ... . @,>, = a.'<b>; =

= asb =<a,,b>; =<4a,,a,, ..., 83> ; whence the thesis. i

Remark 10. If the finitely generated and non empty elements of a closure
system G are principal, then (by Theorem 6) the condituon (*) of Theorem 8
is true for any natural number n, and hence (S,T) is finitely strong associati-
ve. In particular, the closure system ¢ of the ideals of a semilattice (S, ) *is
a finitely strong associative closure system. In fact one can immediately veri-
fy that, for any X;, Xz, ... , Xn € S, the ideal generated by X;. X5. ..., Xp i$
equal to <X;+Xot ... +X,>y .

3 If n = 2 then, by 1) of Remark 1, property (*) is true even if (S.T) is non
associative.

4 A semilattice is a structure (S, U), where U is an idempotent, commutative
and associative binary operation; an ideal is a subset B of S closed under u
such that, for any X € S and X' € B, if x<x' (i.e.: XuX' = X'). then x £ B.
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Theorem 11. Let (S,B) be an algebraic and associative closure system.
Then @ is finitely strong associative if and only if G U {@} = G..

Proof. Let (S,B) be finitely strong associative. Thus, since BU{@} C G,,
in order to prove that Bl {@} = ©; it is sufficient to verify that if X is a
non empty element of By, then <X>, = X (hence X is also an element of
G).

Sil)lce X € <X>z , we only have to verify that <X>, C X. Thus let X' €

€ <X>, and (by the hypothesis that (S,B) is algebraic) let us consider X,

-eey Xn € X such that X' €<Xy, ..., Xy > . As G is finitely strong associa-

tive, <Xq, ..., Xp>p = X1* ... *Xy € X, and hence x' € X.

On the contrary, let GU {@} = €,. Hence € and B, determine the same
hyperoperation *; moreover <X >z,=< X> for any non empty subset X of
S, hence © is finitely strong associative if and only if T is finitely strong

associative. Thus let us verify that if Xq, X, ..., Xy €S, then X;"Xo* ... *
'x” = <X1, Xz, nea g Xn>62.
Indeed, since Xq, Xz, ..., Xp €X1*Xp™ ... " Xp © <Xy, X, vy Xn>pg ) and

<X1; Xz, ..., Xn>g  is the minimum element of T containing {X;, X,
...» Xn}, it is sufficient to point out that, by associativity and by commutati-

vity, one has (¢f. Remark 1):

(X" Xpm e X)) (XXt o " Xp) = X" X" X" X" oo "Xy Xy =

= <x$>n 2'<x2>c 2' sea '<Xn>ﬁ 2 = )(1')(2' see 'Xn .
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ON SOME APPLICATIONS OF FUZZY SETS AND
COMMUTATIVE HYPERGROUPS TO EVALUATION
IN ARCHITECTURE AND TOWN-PLANNING'

Antonio Maturo® and Barbara Ferri’

SUNTO: In alcune recenti leggi sulla determinazione dei canoni di affitto e dei
valori catastali degli alloggi & richiesta una “divisione in zone omogenee” della citta
in base ad assegnati criteri. In molte citta, come risulta anche dai quotidiani, & stata a
tale scopo effettuata una classificazione crisp dell’insieme degli alloggi. In alcuni
nostri lavori abbiamo osservato che, dato il modo “non brusco” in cui variano le
caratteristiche degli alloggi, sembra piil opportuna una classificazione fuzzy.

In questo lavoro, partendo dal concetto di join space associato ad un insieme fuzzy,
indaghiamo sulle relazioni fra partizioni fuzzy ed ipergruppi commutativi. Pill in
generale, introduciamo i concetti di “insieme fuzzy qualitativo lineare” e mostriamo
le relazioni fra le famiglie di tali insiemi, le partizioni fuzzy e gli ipergruppi
commutativi. Lo scopo del lavoro & di mostrare come la teoria degli ipergruppi
commutativi possa essere un utile strumento di lavoro per affrontare problemi di
valutazione in urbanistica. In particolare, per mezzo dei blocchi associati ad un
opportuno ipergruppo commutativo si individuano aree “quasi omogenee”, per le
quali si possono determinare le oscillazioni di affitti e valori catastali.

ABSTRACT: In some recent laws about the determination of the rents and of the
estimated income of properties, it is required a subdivision of the municipal area in
homogeneous zones on the basis of assigned criteria. For this reason in many cities,
as it also appeared in some daily newspapers, it has been made a crisp classification
of the set of buildings. In some our papers we have observed that the peculiarities of
the buildings change in a “not sharp” way and so a fuzzy classification seems more
suitable.

In this paper, starting from the concept of join space associated to a fuzzy set, we
study the relations between fuzzy partitions and commutative hypergroups. More in

! The present paper is financially supported by Research Murst “Models for the
treatment of partial knowledge in decision processes” 1997-1998
2 Universita di Chieti, Dipartimento di Scienze, Storia dell’ Architettura e Restauro
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general, we introduce the concepts of “qualitative linear fuzzy set” and we show the
relations among the families of these sets, fuzzy partitions and commutative
hypergroups. The aim of the study is to show that the commutative hypergroups are
a useful tool to study problems on the evalvation in town-planning. In particular,
from the blocks associated to a suitable commutative hypergroup, we single out
“almost homogeneous” areas and we can determine, in such areas, the fluctuation of
the rents and of the values of the buildings.

KEYWORDS: Commutative hypergroups, Fuzzy classifications. Evaluation in
Architecture and in Town-planning, Qualitative fuzzy sets

1. CLASSIFICATION FOR THE EVALUATION IN TOWN-
PLANNING

Many problems about the evaluation in town-planning lead to a classification of a
city or of a territory: for example the organization of the taxation of the building, the
evaluation of the soil or the distribution of the mail and of the shops.

In recent times, many Italian newspapers show the classifications of some cities
made by municipal governments for the definition of the rents. Every city is
considered as a set Q with elements the buildings and it is divided in a fixed number
of subsets, called microzones, that are a partition of Q. Such classifications depend
on a set of criteria fixed by the national law.

The classifications considered by the municipal authorities are all of crisp type, that
is any element of O belongs totally only to a class. Besides. by reading of the laws
and of the reportages of the newspapers it would seem that such classifications are
not obtained with precise statistical methods but rather in some empirical ways.

In some our recent papers, [6], [7], we note that for the characteristics of a city a
fuzzy classification seems to be more appropriate than a crisp one. In fact the
variations of the characteristics of the buildings are not crisp but they are always
variable almost with continuity and so it is not possible to consider “walls” that
divide the microzones from one to other. In [7] we propose some algorithms of
fuzzy classification that we think suitable for the formation of the microzones.

In this paper we investigate about the relations between fuzzy classifications and
commutative hypergroups. We think that the hypergroups are a very useful tool to
individuate, both by an algebraic and a geometric point of view, homogeneous zones
in the city. We consider also a generalization of the concept of fuzzy set, the
“qualitative linear fuzzy set” that is a more natural function than fuzzy sets in
problems of Architecture in which we can give judgments but not precise measures
about the degree in which a building belongs to a given class or has a particular
characteristic.
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2. FUZZY CLASSIFICATION AND HYPERGROUPS

We recall some fundamental definition

Definition 2.1 A fuzzy set with universe Q is a function ¢:Q—[0,1]. If p(€2) = {h},
he[0,1] ¢ is called constant fuzzy set. In particular for h=1 is called null fuzzy set
and for h=1 unitary fuzzy set. A fuzzy partition is a finite o countable family of non
null fuzzy sets {¢;, icl} such that, ¥xeQ, I, ¢i(x) = L.

A fuzzy set 0:Q—>[0,1] with ()< {0, 1} is called crisp set and a finite o countable
family of non null crisp sets {;, iel} such that, ¥xeQ, ;g @;(x) = 1 is said to be a
crisp partition.

If we consider the bijection ¥: Se @(Q)— (ps: Q—{0, 1} / 0s"'(1) = S) we can
identify every subset S of Q with the crisp set @s with universe . Then a crisp
partition is a usual partition of 2.

Definition 2.2 A hypergroupoid H = (€2, o) is said to be a hypergroup if we have the
following properties

(1) associative Va,b,ce(), (acb)ac = ac(bac);

(2) reproducibility Va,beQ, 3x,yefd: b € aox M yoa.

A hypergroup is said to be commutative if Va,beQ, acb = boa. In a commutative
hypergroup we define “in a natural way” the division “/” if we put
Va,be(l, b/fa= {xe(d: beaocx}.

Definition 2.3 Let H = (Q, o) be a commutative hypergroup. It is
o ogpenif Va,beQ, azb, asbn{a,b}=;
closed if Va,be(l, asbo{a,b};
geometric if YaeQ), asa = {a} = a/a;
Jjoin space if we have the following incidence property:
Va, b, c, d €Q, a/lbric/d2d= aednbeczd.

Let ¢:2—[0,1] be a fuzzy set with universe Q. By a result of Corsini, [3], if we put
Va, beQ, ach = {ze: min{p(a), p(b)}< p(z)< max{p(a), p(b)}}
then H = (Q, o) is a closed join space, called associated to .

Let I be a finite or countable set and let Viel, ¢;:Q—[0,1] be a fuzzy set with
universe set Q. If we put,
Viel, acb = {zeQ: min{p;(a), ¢i(b)} < ¢i(z)s max{@i(a), pi(b)},
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we have the family of the closed join spaces {H; = (€, ¢;), i€l} associated to the
family of fuzzy sets @ = {¢;, i€l}.

Now we introduce some hypergroups associated to the fuzzy partitions. We begin by
considering the particular case of the crisp partitions.

Let @ = {(;, icl} be a crisp partition with universe Q and, VaeQ, let C(a) the class
of a. If we put Va, beQ, a*b = C(a)uC(b) we can consider the hypergroupoid
H=(2, *), that we call hypergroupoid associated to @.

We have the following

Theorem 2.4 Let ® = {¢,, iel} be a crisp partition with universe (2 and let H=(£2, *)
be the hypergroupoid associated to . Then H is a commutative closed hypergroup.
Moreover we have Va, be(l, a*b =, acb.

Proof The associative and commutative properties are consequences of the ones of
the union. Since {a, b} c a*b we have the closure and the reproducibility and so H
is a commutative hypergroup.

Let x an element Q. We have that

(xea*b) < (xeC(a)uC(b)) < (Viel, gi(x) = gi(a) or gi(x) = (b)) =

¢ (Viel, xeaob) < (xen;. aob).

In general, let ® = {¢;, icl} be a fuzzy partition with universe Q. If we wish to
extend the results achieved for the crisp partitions to the fuzzy ones, we have to
consider the hyperoperation *: (X, y)eQ—y.; ac;b. But, for the applications to the
architecture and town-planning it is convenient to examine a concept more general
than the one of fuzzy set, that we call qualitative linear fuzzy set.

In fact, if Q is a set of objects (e. g. the buildings of a city) to evaluate as to a
criterion K, in general we do not have a numeric function ox: 2—[0,1] such that,
VxeQ, ox(x) gives the measure in which x satisfies the criterion K. We are happy if
we can find a set totally ordered S of the “possible judgements™ about the truth or
the falsity of the proposition “x satisfies K”. For example S may be “false, not all
false, partially false, partially true, not all true, true”. S is called set of qualitative
values. We suppose that S has a minimum F and a maximum T, that are,
respectively, the qualitative values “false” and “true”. For any judgement g of S we
call the opposite of g the judgement g° obtained by g with the change between the
words “true” and “false”. We call the opposite of S the set S° of the opposites of the
elements of S.

Definition 2.5 Let S be a set of qualitative values. An application c: QS is called
qualitative linear fuzzy set (qifs). A qlfs of: Q—S° that to any xeQ associates
(a(x)) is called the opposite of o..

Definition 2.6 Let S be a set of qualitative values. We call numerical evaluation on
S any function v: S—[0,1] such that v(F) = 0, v(V)=1, Vz, te8, zst = v(z)<v(D).
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We say that v: S—[0,1] is a strong numerical evaluation on S if it is a numerical
evaluation on S and ¥z, teS, v(z)<v(t) = z<t.

We can note that, if v: S—[0,1] is a numerical evaluation on S then v $°=[0,1]
such that, VzeS, v¥(z°) = 1-v(z) is a numerical evaluation on S° such that ¥z, teS,
7<t = vi(z9)2v(t°). If v is strong then also v* is strong. We call v° the opposite of v.
We have the relations (S°)°=S, (o°)°=c and (v%)*=v.

If o: QS is a qualitative linear fuzzy set and v: S—[0,1] is a numerical evaluation
then the function @=vea. is a fuzzy set with universe Q. Then, from a glfs on Q, if we
give a suitable numerical evaluation, we can have also a fuzzy set on Q. Let
@'=v%.o’, It is easy to prove that ¢°=1-0.

We can prove that the theorem of Corsini can be extended also to the qualitative

linear fuzzy set. In fact the proof of this theorem utilizes only the properties of the

total order relation on [0, 1]. So, if a: Q—S is a qualitative linear fuzzy set, if we put
Va, beQ, ach = {zeQ: min{a(a), a(b)}< a(z)< max{a(a), a(b)}},

with < order relation on S, we have that H = (), o) is a closed join space, that we

call join space associated to o.

We note that, if we consider the opposite o of ., the order relation <° on S is the

opposite of < on S. Then we have {zeQ: min{a(a),a(b)} <o(z)<max{o(a),o(b)}} =

={zeC:max{a(a),a(b)} 2’(z)2min{o"(a),0°(b)} }. So the join space associated to

o is equal to the one associated to o.

Let ¥ = {a;, icl} a family of qualitative linear fuzzy sets and let,Viel, H; = ({2, o))

the join space associated to o;. Let “*” the hyperoperation such that to any pair (a, b}

of elements of Q) associates a*b = Mie; ac;b. We have the following

Theorem 2.7 The pair H=(Q, *) is a closed commutative hypergroup, called
associated to the family of the qualitative linear fuzzy sets ¥ = {a;, i€1}.

Proof Since a*b = Mg acib, by definitions it follows that H is a closed and
commutative hypergroupoid and since bea*b, Va, beQ, the reproducibility holds.
Therefore, it remain to prove that * is associative. We have, Va,b,cef, (a*b)Y*c =
=M1 (@*b)o;c. Let m= min{ai(a), ay(b), oi(c)}, M;= max {ai(a), ay(b), au(c)}. Since
a*bcach, Vxea*b, a(x) belongs to the closed interval with extremes o;(a) and
ai(b). Then, we have (a*b)oic = {zeQ: mi< ay(z)< M} and so (@*b)*c = Mg {zeQ2:
m; < ai(z) < M;}. Similarly, we prove that a*(b*c) = Mgy {zeQ: m; < aj(z) £ M} and
so the associative property holds.

Since a family of fuzzy sets ® = {¢;, icl} with universe Q is also a family of
qualitative linear fuzzy sets with universe Q and with [0, 1] as set of judgements, the
previous theorem is valid also if ‘¥ is a family of fuzzy sets. In particular, if ¥ is a
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fuzzy partition, the commutative hypergroup H=(Q), *) generalizes the one
considered in theorem 2.4 for the crisp partitions.

Now we consider the following problem: given a closed commutative hypergroup
H=(Q,*), we wish to find, if it exists, a fuzzy partition ® = {@;, i€l} such that
H=(€2, *) is the commutative hypergroup associated. For this aim, we introduce the
following

Definition 2.8 We say that a hypergroup H=(Q,*) is fuzzy decomposable if it is a
closed commutative hypergroup and there exists a finite or countable family
{H;=(€, 0;)};e1 of closed commutative hypergroups. called fuzzy decomposition of
H, such that
(FD1) Viel, H,; is associated to a qualitative non-constant linear fuzzy set oy;
(FD2) ¥ a, be2, a*b =y acb.

If H=(Q), *) is a fuzzy decomposable hypergroup and {H;=(Q), o;)}.s) is a fuzzy
decomposition of H, then, for any i€l, there exists a qualitative linear non-constant
fuzzy set o;:QQ—S; such that H; is associated to o; and so H; is associated also to o.
Let v; be a strong numerical evaluation of S;. Then o¢; = viar; and ©;° = v;*-0;° are two
non-constant fuzzy sets associated to H;, and such that ¢,” = | - @;. Moreover, Viel
and ¥A;e(0, 1] also A; ; and A, ¢;° are non-constant fuzzy sets associated to H;.

We say that a family of fuzzy sets ® = {@,, iel} is associated to H if, Viel, ¢; is a
non-constant fuzzy set associated to H;.

We say that two fuzzy sets @ and v are similar if there exists a A.<(0, 1] such that
y=A@ or y=Lo". Moreover, we say that two family of fuzzy sets ® = {¢,, i€l} and
Y = {y, iel} are similar if, Viel, ¢; and v, are similar.

Now we consider the following problem: given a family of fuzzy sets ® = {¢;, i€l}
associated to a fuzzy decomposable hypergroup H to find a family of fuzzy sets ¥ =
{w;, iel} similar to ® and fuzzy partition of Q. We consider the case in which 1 is
finite. We prove the following

Theorem 2.9 Let H=(Q, *) be a fuzzy decomposable hypergroup. and let & = {g;,
iel} be a family of fuzzy sets associated to (H, v). Then there exists a fuzzy
partition of Q W={i,, iel} similar to @ if and only if, 3keR and Viel 3p;#0 such
that Zic; Big; = k.

Proof Let @ = {p,, iel} be a family of fuzzy sets associated to H and suppose ¥ =
{w,, iel} is a fuzzy partition similar to ®. Then, Viel, there exists a A;e(0, 1] such
that w=Aiq; or W=A;¢;" and Zi; yi=1.

Let P={iel: y;=Ajp;} and let Q=={iel: y=kio|}.

We have Eiep l,'([)'i “-‘Z,‘EQ ;\.i{l-(pj} =1 and so Eisp )‘.ill}g +EieQ (—?Li)(j)]‘ = I-ZiEQ ?\.,. if we
put B; = A for ieP, f; = -A; for ieQ and 1-Z;.q A; = K, the first part of theorem is
proved,
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On the converse, suppose that IkeR, Viel IB=0 such that Zi; Bp; = k. Let P={icl:
Bi>0} and let Q‘—‘{ie l: Bi’:O}. We have Ziep [31'901 =5 Zicf) (-BJ“ -(pi) = k.'EjEQ ["ﬁi)-
Let h = k-Zi.q (-B)). We have that h>0. If we put y; = Bipi/h for ieP, y; = -Bi(1-¢;)/h
for ieQ then we have Zi.; y=1 and so {y; i€l} is a fuzzy partition similar to @.

If 1 and Q={0;};.; are finite, |1]=c, [J[=n, a family of fuzzy sets ® = {q, i€l} is
represented by a matrix Ag, of type [c, n], with generic element a;=i(0;), called first
matrix of ®. Denote by Ae*, called second matrix of @, the matrix obtained by Ae
by adding a vector row, denoted u, with n columns and with any element equal to 1.
By previous theorem we have the following

Corollary 2.10 Let ® = {¢;, iel} be a family of non-constant fuzzy sets associated
to H and let Ag* be the second matrix of ®. If there exists a fuzzy partition '¥' = {y;,
iel} similar to ® then the rank of Ag* is not superior to c¢=| 1. On the converse, if
the rank of Ae* is not superior to c then there exists a I*cl and a fuzzy partition
Wr={\y*, iel*l} that is similar to the subfamily, of @, ®* = {g;, iel*}.

Proof In fact, if there exists a fuzzy partition of Q ¥ = {y;, i€l} similar to @, for the
previous theorem JkeR, Viel 3PB#0 such that ¥ Big; = k. If k=0 the @;, il are
linearly dependent and, if k=0, u is linearly dependent on the ¢;, i€l. In both the
cases the rank of Aq* is not superior to c.

On the converse, if the the rank of Ag* is not superior to ¢ we have that Viel,
3B, R such that Z;.; Big; = 0 if the @;, i€], are linearly dependent and Viel, 3p;eR
such that Ty Bio; = u if the @, icl, are linearly independent. In both the cases, let
[*={iel: B#0}. By theorem 2.9 we have that from the subfamily of fuzzy sets *
={@;, ieI*} we can find a family of fuzzy sets ‘¥* ={y,, icI*} that is a fuzzy
partition of Q.

We can obtain, in the previous theorem, a fuzzy partition ‘¥*={y;*, ie[*cl} with I*
maximal. In fact, the rank of Ae* is not superior to ¢ if and only if the homogeneous
system Ziep Xi®i — Xe+14 has at least a not trivial solution. The set S of solutions is a
vector space. If d is the dimension of S and {vy, va,.. .,Vq} is a base of S, we can find
a vector v={B, Ba....Be, Bes1} €S such that, Vje {1, 2, ...,n+1}, B; is null if and only
if the component j of v, is null for all se{l, 2,...,d}. Since, Yw={wi, Wa,...,W,,
Weut€€S and Vje{l, 2, ...,n+1} if B; is null then also w; is null, the set [,*={jel:
w;#0} is maximal for v. By theorem 2.9 by the subfamily of fuzzy sets @* ={q;

icl,*} of @ we obtain a maximal fuzzy partition F* ={y;, ie[,*}.

In the application to evaluation in Architecture and Town-Planning, we have a set Q
of objects to evaluate and a family ['={C;, i€} of classes. We suppose that, for any
class C;, we can find a total preorder relation p; on Q such that, Vx, ye(, we have
xpiy if and only if we think that the measure in which x belongs to C; is not superior
the one that y belongs to C;. We suppose p; is not trivial, that is that there are at least
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two elements a, b of 2 such that ap;b but not bp;a. If for any i<, we put, Va, beQ,
aoib = {ze): (apiz and zp;b) or (bp;z and zp;a)} and a*b = N, acb, we can prove
that H = (Q, *) is a commutative closed hypergroup and {H=(Q, 5,), il} is a fuzzy
decomposition of H. In fact, Viel, if we put, Va. beQ. a ~ b if and only if (ap;b and
bpia), ~ is an equivalence relation on Q. Let E;, = Q/~,. Denote by [a]; the
equivalence class of aQ. If we put, Va, beQ, [a}<[b], < (ap,b and not bp;a) we
have a total order on E;. Any element of E; is a judgment about the truth of the
proposition P(x)=“the element xeQ belongs to C;”. If there is not an element of E;
that means “true” we add as “true” the symbol “T" and we assume [a];<T, YaeQ. In
an analogous way, if there is not an element of E; that means “false” we add as
“false” the symbol “F” and we assume F<[a];<T, VaeQ. Let S=E,U{V, F}. The
function o xeQ-»[a]ieS; is a qualitative linear fuzzy set and H=(Q,c;) is the
associate closed commutative hypergroup. Then {H,, i€l} is a fuzzy decomposition
of H.

By theorem 2.9 and corollary 2.10 we can find, under suitable conditions, a fuzzy
partition of Q.

3. A REAL CASE OF STUDY

In this paragraph we describe the methodology we propose to classify an urban
territory in homogeneous areas. This is a “multicriteria” procedure, since the
clustering is made by considering a set of criteria.

We start our study by the law 431/98 that has recently pointed out the problem of a

fairer regulation of the rents: it fixes new criteria to define the prices on extended

metropolis and on towns with high density of population.

This act prescribes to establish the reference values of the rents in a municipal area

on the basis of the quality of real estates, considering both the conditions of

buildings and the conditions of services of the zones in which they are placed;

sectors of fluctuation of the prices have to be singled out by dividing municipal

areas in homogeneous zones, said microzones.

According to the aforesaid law the microzones, as sectors with similar peculiarities,

are individuated by the municipality on the basis of the following elements:

1. market price of the area;

2. infrastructures (transport, public parks and gardens, schools, health services,
commercial equipments);

3. kind of housing, considering cadastral categories and classes;

4. artistic quality of the area;

5. presence of urban decay.

These parameters, or criteria, are useful also to define pru:lse maximum and

minimum values of prices within each sector. In order to assign the actual rent
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between this two aforesaid extreme values in each microzone the law prescribes to
consider also the following elements: fypology of the house; maintenance state of the
house and of the whole building, pertinences of the house (box, car place, cellar,
etc.); presence of common spaces (courtyard, open spaces and gardens, sport
facilities, etc.); technical fixtures and fittings (lift, independent or centralized heating
system, air conditioner, efc.); passible equipment of forniture.

The cities of Milan and Pescara conformed to the law, defining their microzones by
observing peculiarities of the settlements. The first one has been divided in nine
zones; each zone is subdivided in three strips: an economical sector, a middle sector
and a luxury sector and each of these is characterized by a minimum value and a
maximum value of the rent [11]. In the city of Pescara the present three cadastral
zones, to which three different sectors of classification and cadastral rent
correspond, are now replaced with ten new microzones [12].

As we have underlined in the paragraph |, there are some perplexities about the trait
of homogeneousness of the microzones: is it suitable the empirical clustering made
in Milano and Pescara? Is it possible a so “hard” difference among peculiarities of
near zones? We think the reality is more complex and that there is a gradual, soft
passing from the traits of a certain zone to the traits of another zone. Really it seems
that the microzones include elements with characteristics not to distinguish so
sharply and that their frontiers have a fuzzy connotation: a building could belong
even to more zones simultaneously. For this reason we deem it opportune the
recourse to methods of statistical clustering that permit to obtain a subdivision of an
urban territory in clusters having traits of major homogeneousness than clusters
recently singled out in an empirical way. Moreover we think that the fuzzy
classification is more suitable than the crisp one.

The aim of our study is the formulation of algorithms to define the grade in which a
building, having defined peculiarities deduced by analyzing the context in which the
building is located, belongs to various zones.

Our mathematical model of clustering is based on the attribution of gqualitative
Jjudgments representing the grade of achievement of the set of the predefined criteria:
this step corresponds to the formulation of a qualitative matrix in which the rows are
the criteria, the columns are the objects and the element in the row i and column j is
the judgment on the grade in which the object j achieves the criterion i.

Successively, through a suitable strong numerical evaluation v: S—[0,1], it is
possible to parametrize the model, by substituting the qualitative judgments with
numerical values deduced by analysing the urban context: this step corresponds to
the formulation of a quantitative matrix.

At this step, for the formulation of the clustering, it is necessary a suitable
algorithm, by fixing the number of classes and a distance among the objects.

In [7] we have formulated for the case of Pescara an algorithm of fuzzy
classification obtained by considering a distance among the buildings based both on
the geographical position (as urban metric) and on the difference among the grades
of achievement of criteria fixed by the law.
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This classification is represented by a matrix A = [a;] such that a;e[0,1] represents
the grade in which the building O; belongs to the class C;.

Each row of the matrix is a fuzzy set and it is possible to associate to this one a
hypergroup of Corsini H;. Moreover we can associate to the set of the rows of the
matrix the commutative hypergroup considered in the theorem 2.7. Each block
aj*ay*...*a, of this hypergroup is the set of buildings having peculiarities, in
particular rents and estimated incomes, constrained by the ones of aj, a,, ..., a,.

By utilizing the theorem 2.9, the corollary 2.10 and the definition 2.8 we notice that
an alternative criterion of clustering is obtained by fixing “a priori” the classes C;,
C,, ..., C,. For any class we assign a qualitative linear fuzzy set with universe the set
Q of the buildings. Finally with the methods considered in the previous paragraph
we have a fuzzy classification on Q.
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Abstract This paper is a study of the Join Hyperringoid, which is a
hypercompositional structure that has appeared recently. Here appear the
homomorphic relations and a special type of such relations, the congruence ones.
Moreover, the homomorphisms of the join hyperringoids are being studied, along
with the homomorphisms of the Fortified Join Hyperringoids.

1. INTRODUCTION

The hyperringoid is a hypercompositional structure that has been introduced by G.
Massouros and J. Mittas for the study of the theory of Automata and Languages [4].
The hyperringoid is a triplet (Y,+, .), for which the following axioms are valid:
l. (Y,+) is a hypergroup

ii. (Y,.) is a semigroup

ii. the composition "." is bilaterally distributive with regard to the
hypercomposition "+"
If the hypergroup (Y,+) is a join one, then the hyperringoid is called join. The join
hypergroup is a commutative hypergroup in which the Prenowitz’s join axiom is also
valid, i.e., it holds that:

@ (ab) N (c:d) # D = (a+d) N (b+c) # &, for every a,b,c,d e H

where ab={x e H | a € x+b} is the induced from "+" hypercomposition [1].

An important join hyperringoid for the theory of Languages, is the B-hyperringoid
[6], in which the hypercomposition is defined as follows:

a+b={a b}
We shall begin the study of the congruence relations starting with certain
Propositions which hold in more general hypercompositional structures, the
hypergroupoids.  So let (H,+) and (H',+) be two hypergroupoids with
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hyperoperations defined in the entire sets and always giving non void result, i.e.,
atb # &, for every two of their elements a, b. Then:

Definition 11. A binary relation R ¢ H x H” is called homomorphic if for every
(a1,b4) € R and (a;,b;) € R holds:

(Vx € artap)(3ye bitby) [(x,y)eR] and (¥Wy'e by+by)(3x ' as+a,) [(x'y') € R]
(D)

or equivalentiy for every x € a;+a, and for every y < by+b, holds:
[{x}x(bi#b)]nR # @ and [(ata;)x{y}]nR =@ (D)

From the definition it derives that the inverse binary reiation R is also a
homomorphic one. Moreover, when R defines a mapping © : H — H', then, ifab
H for every x € atb, we have ¢(x) € p(a)te(b), and therefore o(a+b) <
¢(ayte(b). Also, forevery y € o(a)+o(b) there exists  x € a+b such that @(x) =
¥, thus @(a)+¢(b)  g(atb). Consequently the condition ¢(a;+a.) = o(a,)+o(a;) is
being verified and so the Proposition:

Proposition 1. If a homomorphic relation between two hypergroupoids defines a
mapping, then it is a normal homomorphism.

We remind that, according to the terminology which has been introduced by M.
Krasner, a mapping ¢ from the hypergroupoid H to the power-set @ (H’) of the
hypergroupoid C’ is called homomorphism if o(x+y) < o(x)+0(y) for every X,y €
H. A homomorphism is called strong if the above relation holds as an equality.
Moreover, if ¢ is a mapping from H to H' for which o(x+y) < o(x)+o(y). then ¢ is
a strict homomorphism. Lastly, if for a strict homomorphism holds o(x+y) =
o(x)+@(y), then we have a normal or good homomorphism.

For the homomorphic relations and the normal homomorphisms we give the
Propositions:

Propasition 1.2. If R, S are homomorphic relations between the hypergroupoids H', H
and H, H" respectively, then their composition SR is a homomorphic relation
between H and H".

Next let R be a homomorphic relation between the hypergroupoids (H,+) and (H',+).
Ifh’c H' is a subhypergroupoid of H' and h the image of h” under R, then:

Proposition 1.3. Ik is stable under the hypercomposition, then h is stable as well.
Proof Letxy e h. It will be proved that x + y c h. Indeed, since x,y € h then
there exist t,, t, from h’, such that (x.t;), (v,t) belong to R. But since R is a
homomorphic relation, it derives that for every w € x +y holds:
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[{wlx(t;+1)]"R#2.

But h’ is stable with regard to the hypercomposition and therefore t; + t; is a subset
ofh'. Thus, for every w from x +y, there exists t from h” such that (w,t) e R. So
w € h and therefore, for every y from h, x+y is asubset of h. Consequently h
is stable.

Corollary 1.1 The inverse image of a semi-subhypergroup through a homomorphism
between two hypergroups is a semi-subhypergroup.

2. HOMOMORPHIC RELATIONS IN THE JOIN HYPERGROUPS

As it is known, from the general theory of the hypergroups, a subhypergroup h of a
hypergroup H is closed in H if a:b < h for every a,b € h [2]. Thus, in a closed
subhypergroup h of a join hypergroup H, the axiom (J) is being verified in h.
Moreover if a subhypergroup h of H is a join hypergroup itself, then it is called join
subhypergroup of H. Therefore the closed subhypergroups of H are its join
subhypergroups. For the following, let H be a join hypergroup, h a join
subhypergroup of H and E a hypergroupoid with hyperoperation defined for every
two elements of E and always giving non void result. IfR is a homomorphic relation
from H to E with the property: y =y’, when (x,y), (x,y’) belong to R, then:

Proposition 2.. The image h” of h through R is a subhypergroup of E. Also if all the
elements of h”: h™ are images through R of elemenis of H, then the elements of h’
satisfy the join axiom inside E, but not necessarily inside h”.
Proof Let (xyy) € R with x € h and y € h’ and let’s consider the hypersum y
4+t teh. For teh’ thereexists v € h suchthat (vt) € R. Consequently for
every b € y +t there exists a € x + v such that (a,b) € R, and therefore y+t
ch’. Thus y+h ch’. Nextlett € h". Then (v,t) € R forsome v € h. Now, for
v, there exists a € h suchthat ve x+a. Let b bean element of h” such that
(a,b) € R. Then:

[{v}x(y+b)]NR=@
so te y+b and therefore h"cy+h’. Thus h'=y+h". Also it can be proved
that for every three elements a’, b’ and ¢’ from h’ the associativity holds and so h’ is
a hypergroup. Next let’s assume that all the elements of h":h" are images, through R,
of elements of H. Suppose that for the elements a’,b’,c’,d" of h” holds:

@b)n(c:d)=D

We remark that the a:b” and ¢":d’ are not necessarily subsets of h’. If t € a":b" and
tec:d, then a’ eb +t andc’ e d” +t. Next we choose the elements v € H, and
b, d € h in such a way that the pairs (b,b"), (d,d") and (v,t) belong to R. Then for
every xe b+v and y € d +v holds:
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[{x}x(®+)]NnRz#& and [{y}x(d +)]nR=D.
Therefore, for the a’, ¢ which belong to b"+t and d" +1t respectively, there exist
a, ¢, such that the pairs (a,a”) and (c,c’) belongto Randalso aeb-+v and ce
d + v. Then v € (a:b) N (c:d) and thus (a:b) m (c:d) # &. From the last relation,
and since H is a join hypergroup, it derives that (atd)n{c+b)=J. Now let
w be an element of the intersection (a+d)m(c+b). Then:
[{w}x(@ +d)]nR#ED and [{w}x(c"+b)]nRzL
So there exists w* which belongs to the hypersums (a’+ d’) and (¢’+ b") such that
(w,w") € R, Thus
(@ +d)Yn(c'+b) ]+
Therefore it has been proved that the join axiom is being verified for the elements of
h’, not necessarily inside it, but inside E.

Corollary 2.1. Let ¢ be a normal epimorphism from the join hypergroup H on the
hypergroupoid E. Then E is a join hypergroup and the image through ¢ of every
join subhypergroup of H is a subhypergroup of E.

A homomorphic relation which is also an equivalence relation will be named
congruence relation. '

Proposition 2.2. Every congruence relation R on a hypergroup H is a normal
equivalence relation and therefore the set H/R is a hypergroup if we define the
hypercomposition:

CeC={C/zex+y)}
where Ca is the class of an arbitrary element a € H.

Praposition 2.3. If the hypergroup H is join, then H/R is also a join hypergroup.

3. HOMOMORPHIC RELATIONS AND HOMOMORPHISMS IN THE
JOIN HYPERRINGOIDS

Let Y and Y’ be two hyperringoids and let R € Y x Y’ be a binary relation from Y
toY'.

Definition 3.1. R will be called homomorphic relation, if it satisfies the axioms
of the Definition 1.1. and moreover if for every (a;,by) € R and (a;b;) € R
holds:

(a1az, bebs) € R (D2)
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The notion of the homomorphism, as well as the different special types of
homomorphisms that exist in the hypergroups are also being defined in the
hyperringoids, with the use of the additional axiom:

o(x.y) = @(x) . o(y)
for every x,y from the domain of ¢. For the following, let K and K" be two join
hyperringoids and E a hyperringoid. Then:

Proposition 3.1. If @ is a strict homomorphism between K and K, then the inverse
image through @, of a join subhyperringoid of K, is a join subhyperringoid of K.

Proposition 3.2. If R is a homomorphic relation between K and E, then the image of
every join subhyperringoid of K is a subhyperringoid of E.

Corollary 3.. Let ¢ be a strong epimorphism from K to E, then E is a join
hyperringoid and the image, through @ of every join subhyperringoid of K is a
subhyperringoid of E.

Proposition 3.3. Every congruence relation R over E is a normal equivalence relation
and therefore the set E/R is a hyperringoid with the following hypercomposition and
compaosition:
CeC={CecER/[zex+y)}
Cx C} - C:_r

Proposition 3.4. If E is a join hyperringoid, then E/R is also a join hyperringoid.

Proposition 3.5. Let A be a bilateral hyperidealoid of K. If we define in K a relation
R as follows:

(A) eR Iif (k: ) nA=D and (k: ) NA =2
Then R is a homomorphic relation.
Proof. Let(x;, L) € R and (x;, A,) € R. Then from the definition of R we have:
Ki:A)NA=D, Aik)nAzZand(: ) NAz2D, AMik)NA*D
So there exist x, X' belonging to A and such that x € k;: A and x" € Ay : K.
From here it derives that «, € x+ X, and A, € x'+k;, from where K€ M+
A (I)and Ajex;+A (2). Similarly, K, e A+ A (3) and A e K, + A (4).
From (1) and (3) we have k, +k; < (A, + ;) + A i.e. for every a € x; + K there
exists b € A, + A, suchthat a € b+ A, or equivalently (a:b) " A =, from
where, due to the definition of R, (ab)eR. So [{a}x (M +A)]NR=D for
every a € x, + x,. Similarly, from (2) and (4) it derives that for every b e A, + %,
there exists a € x; + x, such that (a,b) € R. Thus [(k, +k)x {b}]nR=#.
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Moreover, from the relations k; € x +4; and x, € y + A, it derives that x,.x, €
(x + A1) . (y + Xy) and due to the Properties I11.1.1 of [5]

x+A). (Yt exy+txhy+hLy + A,
Therefore k;.k; € Xy + XAy + Ay + A.A; But, because of the multiplicative
property of A, we have Xx.Ay, A.y, Xy € A, $0 KiK» € Aphs+ A or (K1.Ky !
AMr) N A#D thus (KiKy, A.Az) € R and so R is a homomorphic relation.

Proposition 3.6. Let R be a congruence relation over K. Then the mapping ¢ from K
to K/R which is defined as follows:

p(x) = G forevery x e K
is a normal homomorphism from K on K/R.

Proposition 3.7. Ler ¢ be a normal epimorphism of K on K. We define in K a
relation R as follows:
(cy) R ifand only if p(x) = ()
Then R is a congruence relation in K and K/R is isomorphic to K °.
P roof. Obviously the relation R is an equivalence relation and with not much
difficulty it can be proved that it is also homomorphic. Next let C, be the
equivalence class of R which is defined from a. If ¢ is the mapping from K/R to K*
which is defined by o(C,) = ¢(a), then o is well defined, 1-1 and it maps K/R to
K'. Also
O-(Ca ‘ch ) = G(Cah) = tF’(ab) = CPfa)(be) = U(Ca }U(Cb)
and G(C,+Ch)=0{Cx|xea+b}={tp(x)[xea+b}
=@(a+b)=g(a)+eb)=o(C,) + o(Cy)
Therefore o is indeed an isomorphism.

Corallary 3.2. Ler @ be a normal homomorphism from K to K°. Then there exists a
congruence relation R in K, a natural epimorphism = : K — K/R and a
monomorphism y: K/R — K’ such that ¢ = yer.

Next we observe that if an equivalence relation R in a hyperringoid E satisfies the
property:

xRy and we E = xwRyw and wxRwy  [D;]
then it satisfies the axiom [D,] of the Definition 3.1. If a relation satisfies [D,’], then
it is called compatible to the composition. It is possible though that an equivalence
relation satisfies only one of the conditions of the second part of [D,’]. We will call
such a relation right or left compatible to the composition respectively.

Thearem 3.1. Ler L be a subset of E. We define in E a relation Re as follows:
xRy < (VabeE)fxacl @yael (i) and bx eL < by el (ii)]
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Then R. is an equivalence relation in E compatible to the composition. If R.
satisfies only (i), {symb. R."] or only (ii) [symb. "Ri] then it is right or left
compatible respectively. If E is a B-hyperringoid, then Rw is a congruence relation.
P r o o f. Obviously this relation is reflexive and symmetric, and it is not very
difficult to prove that it is transitive as well. Next let x;Rpy, and x;Rpy;. Suppose
that for some b € E holds b(x,x;) € L or equivalently (bx, )x; € L Then, since
xRy, we have (bx,)y; € L or equivalently b(x;y,) € L and so x;x:Rpxy».
Similarly x;y.R1v1y2, and thus x;X;R;yy,, that is the axiom [D,]. Next let E be a
B-hyperringoid. If w € x; + Xy, then w € { x), Xo}. Thus [{w} x (y; +y2)] " RL =
[{w} x { v, ¥2}] n Ry and therefore this intersection is non void. Similarly, for z €
y; + ¥y, we have [(x; +x3) x {z}] " Ry, # &. Thus the axiom [D,] of
Definition 1.1. is being satisfied and so the Theorem.

Corollary 3.3. If E is a B-hyperringoid, then the quotient E/R. is a B-hyperringoid
as well.

Now, let’s suppose that the subset L of E is a union of classes with regard to an
equivalence relation R. Then, if R is right compatible with regard to the
multiplication, from xRy, it derives that xaRya for every a € E. Therefore the
classes (xa)z and (ya)r are equal for every a € E and since L is a union of classes,
it derives that:
xaelL < yvael forevery acE

So, according to Theorem 3.1, the above relation defines an equivalence relation R’
in E, for which xRy = x Ry, and consequently every class of R is contained in a
class of R;". Therefore every class of R, " is a union of one or more classes of R and
so rk(Ry") < rk(R). Respective results we get when R is a right compatible or a
compatible relation. Thus:

Thearem 3.2. If there exists an equivalence relation R in E compatible to the
multiplication, with regard to which L is a union of classes, then rk(Rc) < rk(R)
and therefore, if rk(R) <co then rk(R.) < co. Respective properties hold for R.”
and “Ru, if R is right or left compatible with regard to the multiplication.

A special case of join hyperringoid is the Join Hyperring [7], in which the additive
hypergroup is a Fortified Join Hypergroup [7], i.e. a join hypergroup (H,+) that
also satisfies the axioms:
FJ; There exists a unigue neutral element, denoted by 0, the zero element
of H, such

that for every xeH holds: x € x+0 and 0+0 =0
and
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FJ;  For every xeH\{0}, there exists one and only one element x’ eH\{0},
the opposite
or symmetrical of x, denoted by -x, such that: 0 e x+x" Also -0 =0.

In the following we will present a few Propositions which refer to the
homomorphisms of the join hyperrings. IfY, Y’ are two join hyperrings and ¢ is a
normal homomeorphism from Y to Y, then, as usual [8], we define the kernel of &,
denoted by kerg, to be the subset ¢™'(¢(0)) of Y and we denote the homomorphic
image o(Y) of Y, with Img. In accordance now to what holds in the case of the
normal homomorphisms of the fortified join hypergroups [3], in the join hyperrings
holds:

Propasition 3.8.
i. kerg is a subhyperringoid of Y
it. Ime is a subhyperringoid of Y', which generally does not contain the
element 0°eY’, but @(0) is neutral element in Img
iii. If T is a join subhyperring of Y which contains the kernel of o, and
if @ is an epimorphism, then ¢(T) is a join subhyperring of Y".

Propusition 3.9. If Y is an integral join hyperring, then kerp is a symmetrical

hyperideal of Y.
Proof It has been proved (see Proposition 2.5 of [3]) that the set

[kerd] = -(p"((p({))) U (p'](q:u(ﬂ)) is a symmetrical subhypergroup. And since Y is an
integral join hyperring, if ©(x) = ¢(0), then for ¢(-x) we have:

o(-x) = e(x)o(-1) = (0)p(-1) = ¢(0)
Thus ©(-x) € kergp and therefore [kerg) = kerg. Now if x € kergp and w is an
arbitrary element of Y, then o(xw) = ¢(0). Consequently xw € ker¢ and so kerg
is a symmetrical hyperideal.

The study of the homomorphisms in the case of the fortified join hypergroups [3] has
shown that if ¢ is a normal homomorphism (and much more a homomorphism), then
its kernel does not necessarily contain the opposite of every element it consists of.
Thus a new type of homomorphism, the complete homomorphism was introduced,
for which -x e kergp for every x € kerg. As it has been proved in the previous
Proposition, this relation holds when Y is an integral join hyperring and so:

Proposition 3.10. Every normal homomorphism with domain an integral join
hyperring, is complete.

Also we have the Proposition:

Proposition 3.11. If ¢ is a complete and normal homomorphism from Y to Y~ with the
property @(0) = 0, then:
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i. kerp is a symmetrical hyperideal of Y

ii. Img is a symmetrical subhyperring of Y~
iti. if T is a symmetrical subhyperring of Y, then ¢(I) is a symmetrical
subhyperring of Y’
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1 Introduction

The notion of rough sets has been introduced by Pawlak [11] in 1982 and
subsequently the algebraic approach of rough sets has been studied by some
authors, for example, Bonikowaski (2], Iwinski [8], Pomykala and Pomykala
(12}, Gehrke and Walker (7). Recently, Biswas and Nanda [1] introduced the
notion of rough subgroups. Kuroki and Wang gave some properties of the lower
and upper approximations with respect to the normal subgroups in [9].

The concept of hypergroup was introduced in 1934 by Marty [10] and has
been studied in the following decades and nowadays by many mathematicians
among whom, Krasner, Prenowitz, Mittas, Corsini, Sureou, Comer, Jantosciak,
Vougiouklis.

The last of these, at the fourth A.H.A congress, Xanthi (1990), introduced
the definitions of H,-group.

The principal notions of hypergroup theory can be found in [3]. The basic
results of H,-groups are in [13].

In this paper we apply the concept of rough sets theory in the theory of
algebraic hyperstructures. We consider the fundamental relation 3* defined on
an H,-group H and interprete the lower and upper appraximations as subsets
of the fundamentsl group H/B* and obtain some results in this connection. In
particular, we show that if X is an H,-subgroup of H then upper approximation
of X is a subgroup of H/B*

2 Interval sets

Given two subsets A;, A2 C U with A; C A3, we define the following closed

interval set:
[A1, 42] = {X € P(U)| A1 € X C 45}
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which is a subset of P(U). The set A; is called the lower bound, and A the
upper bound. That is, members of an interval set are subsets of the universe IJ.
An interval set consists of all those subsets that are bounded by two particular
zlements of the Boolean algebra P(U). Let I(P(U)) denote the set of all closed
mterval sets.

Set-theoretic operators on interval sets can be defined based on set operators
on their members. For two interval sets A = [A}, A9] and B = [By, By, interval

set intersection, union, and difference are defined by
ANB={XNnY|X € A Y € B},

AUB={XUY|X €AY € B},
AB={X-Y|X €AY €B}.

The above defined operators are closed on J(P(U)), namely, AN B, AU B, and
A\B are interval sets. They can be explicitly computed by

ANB =[A;NBy, Ap N By),

AUB =[A; UB,, 4;U By,
A\B = [A; ~ By, Az — By].

The interval set complement ~ is defined by [U, U]\[4;, A3). This is equivalent
to [U— Ag,U — Ay) = [~ Ag,~ Ay]. Clearly, we have -{§,0] = [U,U] and
-[U, U] = 10,0].

Degenerate interval sets of the form [A, A] are equivalent to ordinary sets.
For degenerate interval sets, the proposed operators M,L,\, and - reduce to
set operators. Interval set operators obey most properties of set operators. For
example, idempotence, commutativity, associativity, and distributivity laws
hold for M and L; De Morgan's and double negation laws hold for —. Thus,
the system (I(P(U)),N,U) is & complete distributive lattice, with zero element
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[0,0] and unit element [U,U]. The associated order relation is called interval

set inclusion. It can be defined using the set inclusion relation:
AC B+ A; C B and A3 C Bs.

The system (I(P(U)),N,U, =, [@,0], [U,U]) is called an interval set algebra.

3 Lower and upper approximations

Let p be an equivalence relation defined on the set U and [z], equivalence class
of the relation p generated by an element z € U.

Any finite union of equivalence classes of U is called a definable set in U.
Let A be any subset of U. In general, A is not a definable set in U. However,
the set A may be approximated by two definable set in U/. The first one is called
a p-lower approximation of A in U, denoted by p(A) and defined as follows:

p(A) ={z € U| [z], € A}.

The second set is called a p-upper approximation of A in U, denoted by 5(4)
and defined as follows:

P(A) ={z € U] [al,n A #0}.

The p-lower approximation of A in U is the greatest definable set in U contained
in A. The p-upper approximation of A in U is the least definable set in U
containing A. The difference p'.(:‘i_) = P(A) — p(A) is called the p-boundary
region of A. In the case when p@) = 0 the set A is said to be p-exact.

Using p-lower and p-upper approximations, we define a binary relation on

subsets of U:
X~Y <= p(X) = p(Y) and 5(X) = 5(Y).
It is an equivalence relation which induces a partition P(U)/ = of P(U). An

equivalence class of ~ is called a p-rough set. Therefore a p-rough set of X is
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the family of all subsets of U having the same p-lower and the same p-upper
approximations of X. More specifically, & p-rough set is the following family
of subsets of U:

< A1, Az >={X € P(U)| p(X) = A1, B(X) = Aa}.

A set X €< Ay, Az > is said to be a member of the p-rough set.
Rough set intersection M, union U, and complement — are defined by set
operators as follows: for two p-rough sets < A4;, 42 > and < By, By >,

<A, Ay >N< By, By > ={XGP(U)] E(X) = A;NB, 5(}{):.42“32}
=< A1 N By, AN By >,

<AL A;>U< BBy > =({XeP({U)| p(X)=A1UB1, 5(X) = Az U By}
=< A U By, As U By >,

~<AyAy > ={X €P(U)| p(X) =~ A, B(X) =~ A1}
=<~ Ag,~v A >
The results are also p-rough sets. The induced system (P(U)/ =, N, U, =, [@]x, [U]x)
is called a p-rough set algebra.
The corresponding order is called p-rough set inclusion and is given by

< Al,Ag >C< By, B; ><= A; C B, and Az C Bs.

The proof of the following theorem is similar to the Proposition 2.2 of
Pawlak {11] and Theorem 2.1 of Kuroki [9]. We shall give a proof for complete-

ness.

Theorem 1. Let p be an equivalence relation on a set . If A and B are
non-empty subsets of U/, then the following hold: |

1) p(4) C A C (A,
2) H(AU B) = 5(4) UP(B)
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3) p(AN B) = p(4) N p(B);
4) AC B implies p(A) C p(B);
5) AC B implies 5(4) C 7(B);
6) p(AUB) 2 p(4) U p(B);
7) p(ANnB) < A(4) nA(B);

Proof. (1) Ifa € p(A), then a € [a], C A. Hence p(4) C A. Next, if a € A,
then, since a € [a],, we have [a], C A # 0, and a € p(A). Thus A C 5(A).

(2) a€P(AUB) <= [al, N (AUB) £0=> ([al, 1 A) U((a], " B) £ 0
<= [a],NA#Dor[a],NB) # 0 +=>a € 5(A) or a € 5(B)
<= a € p(A)UP(B)

Thus 5(AU B) = 5(A) UB(B).

(3) aep(ANB) <=>(a), CANB<=|a), C Aand[a),C B
<=>a € p(A) and a € p(B) <> a € p(4) N p(B).

Thus p(A N B) = p(A) N p(B).
(4) Since AC Biff ANB = 4, by (3) we have

p(A4) = p(AN B) = p(4) N p(B).

This implies that p(4) C p(B).
(5) Since AC B iff AUB = B, by (2) we have

P(B) = P(AU B) = 5(4) Up(B).

This implies that p(A) C 5(B).
(6) Since A C AUB and B C AU B, by (4) we have

p(A) S p(AUB) and p(B) C p(AU B),
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which yields
p(4) U p(B) € p(AU B).

(7) Since ANB C Aand ANB C B, by (5) we have
P(ANB) Cp(A) and 7(ANB)C (B),

which yields
A(ANB) C A(4) N7(B).0

4 Probabilistic rough sets

The notion of conditional probability is a basic tool of probability thery, and
it is unfortunate that its great simplicity is somewhat obscured by a singularly
clumsy terminology.

Let X be an event with positive probability. For an arbitrary event A we

shall write
P(ANX)

P(X)

The quantity so defined will be called the conditional probability of A on the
hypothesis X (or for given X'). When all sample points have equal probabilities,
P(A|X) is the ratio Ji,‘%x‘-l of the number of sample points common to A and
X, to the number of points in X. All theorems on probabilities are valid also
for conditional probabilities with respect to any particular hypothesis X. For
example, the fundamental relation for probability of the occurrence of either A

or B or both takes on the form

P(A|X) =

P(AUB|X) = P(AlX) + P(B|X) — P(AN B|X).
For any A C U, a rough membership function is defined by

- iAﬂ [319!
kale) = T
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By definition, elements in the same equivalence class have the same degree of
membership. One can see the similarity between rough memberghip function
and conditional probability. The rough membership value p4(2) may be in-
terpreted as the probability of z belonging to A given that z belongs to an
equivalence class, Under this interpretation, one obtains the notion of prob-
abilistic rough sets. By the laws of probability, the intersection and union of
probabilistic rough sets are not truth-functional. Nevertheless, we have

1) pa(z) =1+=z € p(4),

2) pa(z) =0z € p(4°),

3) 0< pa(z) <1<z € p(d),

4) pa(z) =1~ pae(a),

5) paus(z) = pa(z) + pa(z) = pans(z),

6) maz{pa(z), pa(z)} < pave(e) < min{l, pa(z) + ps(z)},

7) pans < min{ua(z), pa(z)},

8) for any pairwise disjoint collection P of subsets
pop(®) =Y {uy(z)| Y € P}.

They follow from the properties of probabability.

With the rough membership function, One may view a probabilistic rough
set as a special type of fuzzy set. By drawing such a link between these two
theories, the non-truth-functionality of the operators on probabilistic rough
sets may provide more insights into the definition of fuzzy set operators.

The notion of probabilistic rough sets may be related to p-rough set alge-
bra (P(U/ =,N,U,~, [0]x, [U]~). For two members of the same membership
function, i.e., A & B, they may not be characterized by the same membership
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function, i.e., pa # up. Let c(ia) and s(uua) denote the core and support of
p4 defined by
e(ua) = {z| pa(z) =1},

3(ua) = {z| pa(z) > 0}.

By properties (1) and (2), one can verify that if A ~ B, then ¢(u4) = c(up),
end s(ua) = s(up). In other words, & p-rough set is a family of probabilistic

rough sets with the same core and support.

5 Algebraic hyperstructures

A hyperstructure is a set H together with a function - : Hx H — P*(H) called
hyperoperation, where P*(H) denotes the set of all the non-empty subsets of
H. According to [10] Marty defined & hypergroup as a hyperstructure (H, )
such that the following axioms hold: (i) (z-y) 2 =z-(y-2) for all 2, y,zin H,
(i) a-H=H:a=H for all ¢ in H. The second axiom is called reproduction
axiom. In the above definition if A, B C H and z € H then we define

A-B= U a'b, z-B={z}-B, A-z=A.{z}.
acAbeR

An H,-group (cf. [4,5,13,14,15]) is a hyperstructure (H,-) such that (i)
(-y) zNz-(y-2z) #0 for all z,y,2 in H, (li)a-H=H-a=Hforala
in H. The first axiom is called weak associativity. If (H,-) satisfies only the
first axiom, then it is called an H,-semigroup. A subset K of H is called an
H,-subgroup if (K, ) is itself an H,-group.

Let (H,:) be an Hy-group. The relation 8* is the smallest equivalence
relation on H such that the quotient H/f", the set of all equivalence classes, is
a group. 8" is called the fundamental equivalence relation on H. This relation
is studied by Corsini (3] concerning hypergroups, see also [6], [13] and [16].

According to [13] if Z{ denotes the set of all the finite products of elements
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of H, then a relation § can be defined on H whose transitive closure is the
fundamental relation §*. The relation § is as follows: for z and y in H we
write z0y if and only if {z,y} C u, for some u € Y. We can rewrite the
definition of #* on H as follows:

af3*b iff there exist 21,...,2n41 € H with 2; =@, 2,41 =band uy,...,us el
such that

{z,zi1} Cw (i=1,...,n).

Suppose 4 (a) is the equivalence class containing @ € H. Then the product
© on H/B" is defined as follows: §*(a) @ A*(b) = {8"(c)| ¢ € B7(a): B*(b)} for
all g,b in H. It is proved in [13] that 3*(a) ® B°(b) is the singleton {5*(c)}
for all ¢ € B*(a) - 8*(b). In this way H/G* becomes & hypergroup. If we put
() ® B*(b) = B*(c), then H/B* becomes a group.

Let p be an equivalence relation on an Hy-group H. If {4, B} C P*(H),
we write AGB to denote that for every a € A, there exists b € B such that apb
and for every b € B, there exists a € A such that apb.

We write ABB if for every a € A and for every b € B, one has apb.

Definition 2.(cf. [3]). An equivalence relation p on an Hy-group H is called
regular to the right if for every (z,y) € H x H, one has

zpy =>z-apy-aforallac H

‘We say that p is strongly regular to the right if for every (z,y) € H x H,
the implication
zpy=>z-apy-a tmforalla€e H
is valid.
Analogously we define the regularity (strong regularity) of an equivalence
relation to the left. A regular equivalence (strongly regular) relation to the
right and to the left is called regular (strongly regular). -
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The following corollary is exactly obtained from above definitions.
Corollary 3. §* is a strongly regular relation.

Definition 4. Let (H;,-) and (Hp,*) be H,-groups. A mapping T' from
Hy into Hj is called a strong homomorphism if

| T(c) =T(a) » T(%)

cEa-b
for all a,b € H. The set K = {(a,b) € Hy x Hi| T(a) = T(b)} is called the
kernel of T

Proposition 6. Let T : H; — Hp be a strong homomorphism of the H,-
groups (Hi,-) and (Ha, ). Then K is a regular relation on Hj.

Proof, The proof is straightforward and omitted.O

6 On the fundamental relation 3*

Throughout this section we let H be an H,-group.
The lower and upper approximations can be presented in an equivalent form
as shown below. Let X be a non-empty subsets of H. Then

B1(X) = {#"(=) € H/B"| B*(=) € X}

and

B(X) ={B"(z) € H/B*| B*(z) N X # B}.
Now, we discuss these sets as subsets of the fundamental group H/3*.

Proposition 6. Let X and Y are non-empty subsets of H, then the following
hold:
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1) B(XUY)=p(X)up(Y);
2) pr(XNY)=p(X)NB(¥)

3) X CY implies 8*(X) C &Y);
4) X C Y implies B(X) C F(V);

5) fr(XUY) 2 B1(X)UBHY);

6) B*(X NY) C B(X)nB(Y).
Proof. (1)

£*(z) € (X UY) <= B*(z)N(XUY)#0

No 13 - 1999

= (B*(z)NX)U(B*(z)NY) #0
S E)NX#0 or B(r)NY)#0
= f*(z) € B*(X) or §*(z) € B*(Y)

= B(z) € B* (X UB*(Y).

Thus B*(X UY) = g*(X) U g*(Y).
(2)

f(z) € 7 (XNY) <= B*(z
<= 3%

s-z
m m N N

5]

<= f*(

LB, o 2

)
)
)
= B7(z) € g1(X) N B(Y)

Thus g*(X NY) =g(X)Np*(Y).

(3) Since X C Y iff X NY = X, by (2) we have

F(X)=8(XNY)=p5(X)nF(Y).

This implies that 8*(X) C g*(Y).
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(4) Since X CY if XUY =Y, by (1) we have

Bx(Y) = B(X UY) = B*(X) UB*(Y).

This implies that 8*(X) C g*(Y).

(5) Since X C X UY and Y C X UY, by (3) we have

F1X) CA(XUY) and g7(Y) C B*(X UY),

which yields
FXxjugy) c (X uy).

(6) Since XNY C X and X NY C Y, by (4) we have

B XNY)CA(X) and FF(XNY) C B (D),

which yields

B (X NY) CFX)NF(Y).0

Theorem 7. If X is an Hy-subgroup of (H,-), then A*(X) is a subgroup of
(H/p",0).

Proof. The kernel of the canonical map ¢ : H — H/S* is called the core
of H and is denoted by wy. Here we also denote by wy the unit element of
H/B.

First we show that wy € W Since X is an H,-subgroup of (H, ), then
for every a € X we have a- X = X. Therefore a € a - X and 8o there exists
b € X such that a € a- b which implies §*(a) = #*(a - b) = B*(a) ® B*(b).
Therefore 3*(b) = wy and s0 b € wy N X which implies wg N X # . Therefore
Wy £ m

Now, suppose §*(z), 3*(y) € *(X), we show that §*(z) © B*(y) € H/B".
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We have B*()N X # @ and §*(y) N X # 0 then there exist a € 8(z) N X and
bef(y)NX. Thusa € f*(z), ac X, be B*(y), b€ X and so

a-bC B*(x)-B"(v) C B*(zy) = B*(z) © B*(y).

For every ¢ € z-y we have §*(c) = #*(z) - 8*(y). Therefore we get a-bC B*(c)
anda-bC X.
Therefore 8*(c)N X # 0 which yields 8*(c) € B*(X) or §*(z) ©5*(y) € B*(X).
Finally, if 5*(z) € B*(X) then we show that §*(z)~! € F*(X). Since
wg N X # 0 then there exists h € wy N X and since *(z) N X # B then there
exists y € §*(z) N X. By reproduction axiom we get h € y- X then there exists
@ € X such that h € y - a which implies §*(k) = 8*(y) © 8*(a). Since h € wy
then 3*(k) = wy. Therefore wy = *(y) © B*(a) or wy = f*(z) @ B*(a) which
yields §3*(a) = 8*(x)~!. Since a € X and a € #*(a) then 8°(a) N X # 0 and so
B*(a) € B*(X). Therefore §*(X) is a subgroup of H/A", ©). O

Proposition 8. If X and Y are non-empty subsets of H, then

B X)op(Y)Sp(X-Y)

Proof. We have
FX)0B(Y) ={B"(a)© B (b)] B(a) € B(X) , B*(b) € B~(¥)}
={8"@)0p () B )NX #0, B*(B)NY #0}.
Therefore (8*(a) - 8*(b)) N (X - Y) # 0. Since £*(a) - 8°(6) C B*(a - b). We
obtain §*(a-5) N (X - Y) # 0. Thus B*(a-b) = 8*(a) @ 4*(6) € A(X - V) and
s0 f*(X) 0 B*(Y) C B*(X - Y). D

Proposition 9. Let X and ¥ be two H,-subgroups of H and let f: X — Y

be a strong homomorphism, then f induces a homomorphism F : 8*(X) —

B*(Y) by setting
F(B*(z)) = 8"(f(z)), VeeX.
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Proof. First we prove that F is well-defined. Suppose that 8*(a) = 8*(b)
then there exist #1,...,%m+1 € H with 2y =@, spmy1 =band uy,...,um €U
such that {z:,zit1} € wi (i = 1,...,m) which implies {f(z:), f(zi+1)} €
f(us) (i=1,...,m). Since f is a strong homomorphism and u; € i we get
f(u;) € U. Therefore f{a)B*f(b) or F(B*(a)) = F(B*(b)). On the other hand
if 8*(a) € f*(X) then 8*(a) N X # @ and so there exists b € §"(a) N X. Thus
b3*a and b € X which yield f(8)5* f(a) and f(b) € ¥. So f(b) € 8*(f(a)) and
f(b) €Y then B*(f(a))NY # 0 and s0 5*(f(a)) € B*(Y) or F(§*(a)) € B*(Y).
Thus F' is well-defined. Now we have

F(B*a) 0 5*(b)) = F(8*(a-?))
=B*(f(a- b))
= f*(f(a) - (b))
= "(f(a)) @ B*(f(b))
= F(6*(a)) © F(B*(2)).

Therefore F is & homomorphism. O
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