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Abstract

The Mean square error matrices, bias vector and risk functions of pro-
posed improved mixed regression estimators are obtained by employing the
small disturbance approximation technique under the condition, when dis-
turbance terms follows multivariate t-distribution. Further, the risk function
criterion is used to examine the efficiency of proposed improved mixed re-
gression estimators.
Keywords: Stochastic restrictions; Mixed regression estimator; Stein- rule
estimator; Multivariate t-distribution etc.
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1 Introduction
When incomplete prior information is expressible in the form of set of linear

stochastic restrictions on the coefficients in a linear regression model, the method
of mixed regression for the estimation of regression coefficients provides asymp-
totically a more efficient estimator than the least squares method that ignores the
prior restrictions.
Stemming from the philosophy of stein-rule in this paper we proposed two fami-
lies of improved estimators for the regression coefficients and study their proper-
ties when disturbances have multivariate t-distribution. For multivariate t - distri-
bution see, [12], [10] and [3]. In section 2, we discuss the framework and estima-
tors. The properties of these estimators are presented in section 3 and the results
are compared in section 4. Simulation Study is carried out to support theoretical
finding in Section 5.

2 Model Specification and the Estimators
Let us postulate the linear regression model

Y = Xβ + U (1)

Where, Y is a n × 1 vector of dependent variables; X is a n × p column rank
matrix of n-observations on p explanatory non-stochastic variables; β is a p × 1
non-null vector of regression coefficient and U is a n × 1 vector of disturbance
following multivariate student t-distribution with probability density function as:

f

(
U

v
, σ2

)
=
γv/2Γ

(
v+n
2

)
π

n
2 Γ
(
v
2

) σ−n
[
v +

U ′U

σ2

]−n+v
2

(2)

Where, v > 0, σ > 0 are respectively the degree of freedom and dispersion pa-
rameters; the vector U has its error components Ui ∈ (−∞,∞), i = 1, 2, ..., n.
Here the error vector U has mean vectorE(U) = 0 for v > 1, variance-covariance
matrix E(U ′U) = σ2

(
v

v−2

)
I , for v > 2, measure of skewness γ1 = 0 and mea-

sure of kurtosis γ2 = σ4
(

6
v−4

)
I for v > 4.

Let the stochastic restrictions on β in (1) be

r = Rβ + V (3)

Where, r is a J × 1 vector of known elements, R is a J × p full row rank matrix
of known elements and V is a J × 1 vector of distribution such that

E(V ) = 0 ; E(V ′V ) = Ω (4)
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Where, Ω is a J × J positive definite symmetric matrix of known elements.

Further, we assume that the errors associated with the stochastic restriction are
independent with the distribution in model (1).
The ordinary least square (OLS) estimator of β that ignores the prior restrictions
(3) is

bo = (X ′X)−1X ′Y (5)

If we consider the prior information (3), then the mixed regression (MR) estimator
of β is given by

bMR = [X ′X + S2R′Ω−1R]−1[X ′Y + S2R′Ω−1r] (6)

Where ,

S2 =
1

n− p
((Y −Xb)′(Y −Xb)) (7)

The Stein-rule estimator of β is

bs =

[
1− k (Y −Xb)′(Y −Xb)

b′o(X
′X)b0

]
bo (8)

Where, k is a positive scalar characterizing the estimator.

The Stein-Mixed Regression (SMR) estimator of β is given as

bSMR =

[
X ′X +

1

n− p
[(Y −XbS)′(Y −XbS)]R′Ω−1R

]−1
[
X ′Y +

1

n− p
[(Y −XbS)′(Y −XbS)]R′Ω−1r

]
(9)

The Mixed Stein-Regression (MSR) estimator of β is

bMSR =

[
1− k (Y −XbMR)′(Y −XbMR)

b′MR(X ′X)bMR

]
bMR (10)

3 Properties of the Estimators

PX = X(X ′X)−1X ′ (11)

M = [I − PX ] (12)

5



Manoj Kumar, Vikas Bist and Man Inder Kumar

Mj = [PX − jC−1Xββ′X ′] j = 1, 2, . (13)

Nj = [(X ′X)−1 − jC−1ββ′] j = 1, 2, . (14)

C = β′X ′Xβ (15)

µ = (X ′X)−1R′Ω−1R(X ′X)−1 (16)

The OLS estimator defined in (5) is found to be unbiased if v > 1, with variance
- covariance matrix and risk function given by

E[(b0 − β)(b0 − β)′] = σ2

(
v

v − 2

)
(X ′X)−1; v > 2 (17)

Risk(bo) = σ2

(
v

v − 2

)
tr(X ′X)−1L; v > 2 (18)

Where, L is a positive definite symmetric loss matrix.

The properties of the MR estimator are same as the SMR estimator, so we consider
only the SMR estimator and present the results in the form of following theorems.

Theorem 3.1. The asymptotic expression for the bias vector, mean squared error
matrix and risk function of SMR estimator, up to order o(σ4) of approximations
are given as

B(bSMR) = 0 (19)

M(bSMR) = σ2

(
v

v − 2

)
(X ′X)−1 − σ4V1; v > 4 (20)

Where,

V1 =
[(

1− 2

n− p
− 6

v − 4
θ

)
µ+

6

(v − 4)(n− p)(
µX ′(In ∗M)X(X ′X)−1 + (X ′X)−1X ′(In ∗M)Xµ

)]
(21)

θ =
trM(In ∗M)

(n− p)2
(22)
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Risk(bSMR) = σ2

(
v

v − 2

)
tr(X ′X)−1L− σ4trV1L (23)

Proof 3.1: To employ small disturbances asymptotic approximations. Let us
write model (1) as

Y = Xβ + σω (U = σω) (24)

So that the i.i.d. elements of ω have multivariate-t distribution with mean zero for
v > 1, variance

(
v

v−2

)
, for v > 2, measure of skewness γ1 = 0 and measure of

kurtosis γ2 =
(

6
v−4

)
for v > 4.

Now, using (24) in (5), we find

b0 = β + σ(X ′X)−1X ′ω (25)

So that
Y −Xb0 = σMω (26)

Where
M = [In −X(X ′X)−1X ′] (27)

Using (25), we find up to order o(σ) of approximations.

1

b′o(X
′X)b0

= C−1[1− 2σC−1β′D′ω] (28)

Now, using (25), (26), and (28) in (8), we get up to order o(σ2) of approxima-
tions.

bs − β = σ(X ′X)−1X ′ω − σ2kω′MωC−1β (29)

and for the same order of approximation, we have

Y −Xbs = σMω − σ2kω′MωC−1Xβ (30)

Thus, using (30) and (3) in (9), we get

bSMR − β = σh1 + σ2h2 + σ3h3 + σ4h4 (31)

Here,
h1 = (X ′X)−1X ′ω (32)

h2 =

(
ω′Mω

n− p

)
(X ′X)−1R′Ω−1V (33)
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h3 =

(
ω′Mω

T −G

)
µX ′ω (34)

h4 =

(
ω′Mω

n− p

)2

[k2(n− p)C−1(X ′X)−1R′Ω−1V − µR′Ω−1V ] (35)

It is easy to see that

E(h1) = E(h2) = E(h3) = E(h4) = 0 (36)

Utilizing (36) in (31), we obtain the result (19) of the Theorem 1.

Now using (31), we get

(bSMR − β)(bSMR − β)′ = σ2h1h
′
1 + σ3(h1h

′
2 + h2h

′
1)

+ σ4(h1h
′
3 + h2h

′
2 + h3h

′
1) (37)

Here,
E(h1h

′
1) = (X ′X)−1 (38)

E(h1h
′
2) = E(h2h

′
1) = 0 (39)

E(h1h
′
3) =

1

n− p

[
6

v − 4
(X ′X)−1X ′(In ∗M)Xµ+ (n− p)µ

]
(40)

E(h2h
′
2) =

[(
6

v − 4

)
θ +

(
n− p+ 2

n− p

)]
µ (41)

Utilizing (38), (39), (40) and (41) in (37), we obtain the result (20) of the Theorem
1.

Risk(bSMR) = trM(bSMR)L (42)

Thus, result (23) of the Theorem 1 follows from (42).

Theorem 3.2. The asymptotic expression for bias vector, mean squared error ma-
trix and risk function of MSR estimator, up to order o(σ4) of approximations are
given as

B(bMSR) = −σ2kv(n− p)
v − 2

C−1β + σ4
[ 6k

v − 4
C−2(

(trM4(In ∗M))I + 2(X ′X)−1X ′(In ∗M)X − Cθµ(X ′X)
)
β

+ kC−2
(

(n− p)(p− 2)I − n− p+ 2

n− p
Cµ(X ′X)

)
β
]

(43)
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Where * denotes Hadamard product.

M(bMSR) = σ2

(
v

v − 2

)
(X ′X)−1 − σ4

[
V1 +

12k

v − 4
C−1[

(X ′X)−1X ′(In ∗M)X(X ′X)−1 − C−1
(

(X ′X)−1X ′(In ∗M)Xββ′

+ ββ′X ′(In ∗M)X(X ′X)−1 +

(
k

2

)
(trM(In ∗M))ββ′

)]
+ 2k(n− p)N(2+ k

2
(n−p+2))

]
(44)

Risk(bMSR) = σ2

(
v

v − 2

)
tr(X ′X)−1L− σ4

[
trV1L

+ 12
k

v − 4
C−1

(
tr(X ′X)−1X ′(In ∗M)X(X ′X)−1L

− C−1
(

2β′X ′(In ∗M)X(X ′X)−1Lβ +
k

2
(trM(In ∗M))β′Lβ

))
+ 2k(n− p)trN(2+ k

2
(n−p+2))L

]
(45)

Proof 3.2: Using (3), (24) and (26) in (6), we obtain up to order o(σ2) of
approximations.

bMR = β + σ(X ′X)−1X ′ω + σ2

(
ω′Mω

n− p

)
(X ′X)−1R′Ω−1V (46)

Thus, for the same order of approximation, we have

1

b′MR(X ′X)bMR

= C−1
[
1− 2σC−1β′X ′ω

− σ2C−1
( 2

n− p
ω′MωV ′Ω−1Rβ + ω′MDω

)]
(47)

Using (46), we get up to order o(σ2)of approximations.

Y −XbMR = σMω − σ2

(
ω′Mω

n− p

)
X(X ′X)−1R′Ω−1V (48)

Using (46), (47) and (48) in (10), we obtain up to order o(σ4), we get

bMSR − β = σh∗1 + σ2h∗2 + σ3h∗3 + σ4h∗4 (49)

Where
h∗1 = (X ′X)−1X ′ω (50)

9
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h∗2 =

(
ω′Mω

n− p

)[
(X ′X)−1R′Ω−1V − kC−1β

]
(51)

h∗3 = −
(
ω′Mω

n− p

)[
µ+ k(n− p)C−1N2)

]
X ′ω (52)

h∗4 = k(ω′Mω)C−2
( 2

n− p
ω′Mωββ′R′Ω−1V + ω′M4ωβ

+ 2(X ′X)−1X ′ωω′Xβ
)
−
(
ω′Mω

n− p

)2

[
µR′Ω−1V + kC−1(β′V ′Ω−1R + (n− p)I)(X ′X)−1R′Ω−1V

]
(53)

Here, it is easy to verify that
E(h∗1) = 0 (54)

E(h∗2) = −k(n− p)C−1β (55)

E(h∗3) = 0 (56)

E(h∗4) =
6k

v − 4
C−2

[
(trM4(In ∗M))I + 2(X ′X)−1X ′(In ∗M)X

− Cθµ(X ′X)
]
β + kC−2

[
(n− p)(p− 2)I −

(
n− p+ 2

n− p

)
Cµ(X ′X)

]
β (57)

Utilizing (54), (55), (56) and (57) in (53), we obtain the result (43) of the Theorem
2.
Now, using (53) we get

(bMSR − β)(bMSR − β)′ = σ2h∗1h
∗′
1 + σ3(h∗1h

∗′
2 + h∗2h

∗′
1 )

+ σ4(h∗1h
∗′
1 + h∗2h

∗′
2 + h∗3h

∗′
1 ) (58)

Here, we see that

E(h∗1h
∗′
1 ) =

(
v

v − 2

)
(X ′X)−1 (59)

E(h∗1h
∗′
2 ) = 0 (60)

E(h∗1h
∗′
3 ) =

6

(v − 4)(n− p)

[
(X ′X)−1X ′(In ∗M)Xµ

+ k(n− p)C−1(X ′X)−1X ′(In ∗M)XN2

]
− µ− k(n− p)C−1N2 (61)
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E(h∗2h
∗′
2 ) = µ

[
6

v − 4
θ +

(
n− p+ 2

n− p

)
I

]
+ k2C−2ββ′

[ 6

v − 4
trM(In ∗M) + (n− p)(n− p+ 2)

]
(62)

Utilizing (59), (60), (61) and (62) in (58), we obtain the result (44) of the Theorem
2. Similarly, we can obtain the result (45) of the Theorem 2.

4 Comparison of the Estimators

4.1 The comparison the risk functions of OLS and SMR esti-
mators

On comparison the risk functions of OLS and SMR estimators. We observe
that up to order o(σ2) of approximations, both the estimators have same risk and
for higher order of approximation, we see that

Risk(b0)−Risk(bSMR) =

σ4
[ 6

v − 2

( 2

n− p
tr(X ′X)−1X ′(In ∗M)XµL− θtrµL

)
+
(n− p− 2

n− p

)
trµL

]
(63)

If we choose L = (X ′X), then expression (63) becomes

Risk(b0)−Risk(bSMR)

= σ4
[ 6

v − 2

( 2

n− p
tr(X ′X)−1X ′(In ∗M)X(X ′X)−1R′Ω−1R

− θtr(X ′X)−1R′Ω−1R
)

+

(
n− p− 2

n− p

)
tr(X ′X)−1R′Ω−1R

]
(64)

Since, the expression (64) is positive semi-definite, so bSMR dominates b0 and as
v →∞, expression (64) reduces to

Risk(b0)−Risk(bSMR) = σ4

(
n− p− 2

n− p

)
tr(X ′X)−1R′Ω−1R (65)

Which is positive semi-definite. Thus, bSMR dominates b0, so long as n− p > 2.

11
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4.2 The comparison the risk functions of OLS and MSR esti-
mators

On comparison the risks of OLS and MSR, we see that up to order o(σ2)
of approximations, both the estimators have same risk and for higher order of
approximations, we find that bMSR dominates bo so long as (65) is positive semi-
definite and if we choose k to satisfy,

0 < k <
2(n− p)

T

C

β′Aβ

[
tr(X ′X)−1L− 2C−1β′Lβ +

6

(n− p)(v − 4)(
tr(X ′X)−1X ′(In ∗M)X(X ′X)−1L− 2C−1β′X ′(In ∗M)X(X ′X)−1Lβ

)]
(66)

Where

T =

[
6

v − 4
(trM(In ∗M)) + (n− p)(n− p+ 2)

]
(67)

If we choose L = (X ′X), then the above condition of dominance becomes

0 < k <
2(n− p)

T

[
p− 2 +

6

(n− p)(v − 4)

(
tr(X ′X)−1X ′(In ∗M)X

− 2C−1β′X ′(In ∗M)Xβ
)]

(68)

And as v →∞, condition (68) reduces to

0 < k <
2

n− p+ 2
(p− 2); p > 2 (69)

Which is well known condition of dominance of stein-rule estimator over the least
squares estimator.

4.3 The comparison the risk functions of SMR and MSR esti-
mators

On comparing the risk function associated with the estimators SMR and MSR
respectively, we observe that the estimator MSR dominates the estimator SMR
so long as (30 )holds and as v → ∞ and again by choosing L = (X ′X), the
condition of dominance becomes (69).
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5 Simulation Results
The proposed estimator bSMR is more efficient than OLSE under given lin-

ear model. Although, theoretically the results are drawn in equation (65), the
proposed Stein-mixed Regression (SMR) estimator bSMR is more efficient than
ordinary least square estimator b0 under condition n − p > 2. In this section, we
perform simulations for exact equation (65) under conditions n−p > 2, n > p > j
with sigma equal to one.

Each result is based on 100,000 simulations runs using MATLAB. The result
shown for n = 10, 11, 12, 13, 14, 15 in Table 1, 2, 3 & 4. The main finding of our
numerical evaluation is following:-

1. The simulation results strongly support the theoretical findings.
2. The simulation result also explains the strength keep on increasing as we go for
large value of n, p and j.
3. The results are independent of value of sigma.
4. Hence, bSMR is more efficient than b0 under condition n− p > 2.
5. The simulation results also reveals that bMSR is also more efficient over b0 (as
it also depends on (65) under condition at (69)).

Figure 1: Average dominance condition for difference between n & p

Based on simulation study, the dominance of bSMR has been proven over b0
under certain set of conditions. Further, the behavior of dominance is studied for
various combination of different values of n, p and j. The average dominance is
derived based on probability for different combination of n, p and j; when σ = 1.
The figure 1 depicts average dominance keeps on decreasing with increase in gap

13
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Figure 2: Dominance behavior for different values of p; when n=10 & j=5

Figure 3: Average dominance condition for given value of p & j for n=20

between n and p. The figure 2 also depicts a decreasing trend with increase in
value of p, when n = 10 and j = 5. Similarly, figure 3 shows the behavior of
dominance condition for different value of p and j for fixed value of n equal to
20.
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Table 1: Average Value of Dominance for different values of n and p for j = 2
sigma = 1.

j=2 n=10 n=11 n=12 n=13 n=14 n=15

p=3 0.67823 0.67492 0.67793 0.67688 0.67390 0.67539

p=4 0.67300 0.67079 0.66877 0.66903 0.66816 0.66654

p=5 0.67187 0.66562 0.66558 0.66668 0.66416 0.66691

p=6 0.66660 0.66642 0.66755 0.66509 0.66370 0.66186

p=7 0.66755 0.66497 0.66408 0.65994 0.66305 0.65982

p=8 - 0.66816 0.66611 0.66010 0.66261 0.66156

p=9 - - 0.66861 0.66352 0.66143 0.66036

Remark: No value for dominance where n− p 6 2.
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Table 2: Average Value of Dominance for different values of n and p for j = 3
sigma = 1.

j=3 n=10 n=11 n=12 n=13 n=14 n=15

p= 4 0.70809 0.70806 0.70722 0.70725 0.70806 0.70611

p= 5 0.70570 0.70449 0.70581 0.70385 0.70381 0.70162

p= 6 0.70612 0.70319 0.70252 0.69998 0.70281 0.70205

p= 7 0.70651 0.70266 0.70281 0.70253 0.69810 0.69816

p= 8 - 0.70735 0.70167 0.70011 0.70183 0.69960

p= 9 - - 0.70592 0.70486 0.70001 0.70028

p=10 - - - 0.70784 0.70426 0.70033

p=11 - - - - 0.70692 0.70500

Remark: No value for dominance where n− p 6 2.
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Table 3: Average Value of Dominance for different values of n and p for j = 4
sigma = 1.

j=4 n=10 n=11 n=12 n=13 n=14 n=15

p= 5 0.74738 0.74891 0.74713 0.74538 0.74603 0.74668

p= 6 0.74694 0.74586 0.74771 0.74337 0.74335 0.74346

p= 7 0.75060 0.74841 0.74539 0.74412 0.74366 0.74381

p= 8 - 0.74740 0.74561 0.74405 0.74213 0.74607

p= 9 - - 0.74752 0.74623 0.74547 0.74207

p=10 - - - 0.74601 0.74774 0.74091

p=11 - - - - 0.74832 0.74426

p=12 - - - - - 0.74612

Remark: No value for dominance where n− p 6 2.
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Table 4: Average Value of Dominance for different values of n and p for j = 5
sigma = 1.

j=5 n=20 n=25 n=30 n=35 n=40 n=45 n=50

p = 5 0.78748 0.78793 0.78713 0.78373 0.78562 0.78336 0.78686

p=10 0.78359 0.78228 0.78284 0.78158 0.77898 0.77644 0.78005

p=15 0.78586 0.78143 0.77689 0.78072 0.77643 0.77454 0.77655

p=20 - 0.78350 0.78017 0.77976 0.77657 0.77576 0.77628

p=25 - - 0.78453 0.78062 0.77884 0.77852 0.77563

p=30 - - - 0.78408 0.78044 0.77743 0.77703

p=35 - - - - 0.78478 0.77772 0.77486

p=40 - - - - - 0.78208 0.77728

Remark: No value for dominance where n− p 6 2.

References

[1] Chaturvedi, A. and Shukla, G., Stein-rule estimation in linear models with
non-scalar error covariance matrix, Sankhya, Series B, 52, (1990), 293-304.

[2] Chaturvedi, A. ,Wan, A. T. K. and Singh, S. P., Stein-rule restricted regres-

18



Some improved MR estimators & their Comparison when disturbance terms
follow Multivariate t-distribution

sion estimator in a linear regression model with non-spherical disturbances,
Communications in Statistics, Theory and Methods, 30, (2001), 55-68.

[3] Giles, A.J., Pretesting for linear restriction in a regression model with spher-
ically symmetric distributions, Journal of Econometrics, 50, (1991), 377-
398.

[4] Judge, G. G. and Bock, M. E., The Statistical Implications of Pre-Test and
Stein-Rule Estimators in Econometrics, North Holland, Amsterdam, 1978.

[5] Kadane, J.B.,Comparison of k-class Estimators When disturbance are small,
Econometrica, 39, (1971), 723-737.

[6] Ohtani, K. and Wan, A. T. K., On the sampling performance of an improved
Stein inequality restricted estimator, Australian and New Zealand Journal of
Statistics, 40, (1998), 181-187.

[7] Rao, C. R., Linear Statistical Inference and Its Applications, 2nd Edition.
John Wiley,New York, 1973 .

[8] Shalabh and Wan, A. T. K., Stein-rule estimation in mixed regression models,
Biometrical Journal, 42, (2000) 203-214.

[9] Sutradhar, B.C. and Ali, M.M., Estimation of parameters of regression with a
Multivariate t-error variable, Communication Statistics - Theory and Meth-
ods, A 15, (1986), 429-450.

[10] Sutradhar, B.C., Testing Linear Hypothesis with t - Error Variable, Sankhya:
The Indian Journal of Statistics, Series B (1960-2002), 50(2), (1988), 175-
180.

[11] Theil, H., Principles of Econometrics, Vol. 1. Wiley, New York, 1971.

[12] Zellner, A., Bayesian and non-Bayesian analysis of regression model with
multivariate t-error terms, Journal of the American Statistical Association,
71, (1976), 400-405.

19



20



Ratio Mathematica
Vol. 32, 2017, pp. 21–35

ISSN: 1592-7415
eISSN: 2282-8214

On a Functional Equation Related to
Information Theory

P. Nath1, D.K. Singh2∗

1Department of Mathematics, University of Delhi, Delhi - 110007, India

pnathmaths@gmail.com
2Department of Mathematics, Zakir Husain Delhi College (University of Delhi)

Jawaharlal Nehru Marg, Delhi - 110002, India

dhiraj426@rediffmail.com, dksingh@zh.du.ac.in

Received on: 28-05-2017. Accepted on: 15-06-2017. Published on: 30-06-2017

doi: 10.23755/rm.v32i0.332

c©P. Nath and D.K. Singh

Abstract

The main aim of this paper is to obtain the general solutions of the
functional equation (1.3) without imposing any regularity condition on the
mappings appearing in it. To do so, the general solutions of the functional
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in information theory. Thus, indeed, is the reason to consider (1.3).
Keywords: Functional equation; additive mapping; multiplicative mapping.
2010 AMS subject classifications: 39B22, 39B52, 94A15, 94A17.

∗Corresponding author

21



P. Nath and D.K. Singh

1 Introduction

For n = 1, 2, . . ., let Γn = {(p1, . . . , pn) : 0 6 pi 6 1, i = 1, . . . , n;
n∑
i=1

pi =

1}, denote the set of all discrete n-component complete probability distributions
with non-negative elements. Let I = {x ∈ R : 0 6 x 6 1} = [0, 1], R denoting
the set of all real numbers.

The axiomatic characterization of the non-additive entropy of degree α (see
[2]) defined as

Hα
n (p1, . . . , pn) = (21−α − 1)−1

(
n∑
i=1

pαi − 1

)
, α 6= 1

leads to the study of the functional equation
n∑
i=1

m∑
j=1

f(piqj) =
n∑
i=1

f(pi) +
m∑
j=1

f(qj) + λ
n∑
i=1

f(pi)
m∑
j=1

f(qj) (1.1)

in which f : I → R is an unknown mapping, (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈
Γm, λ 6= 0, λ ∈ R and n, m being positive integers.

By a general solution of a functional equation, we mean a solution obtained
without imposing any condition such as differentiability, continuity, continuity
at a point, measurability, boundedness, monotonicity etc on a(the) mapping(s)
appearing in the functional equation under consideration.

The general solutions of (1.1), for fixed integers n > 3,m > 3 and (p1, . . . , pn) ∈
Γn, (q1, . . . , qm) ∈ Γm have been obtained in [5].

Losonczi [4] considered the functional equation
n∑
i=1

m∑
j=1

fij(piqj) =
n∑
i=1

hi(pi) +
m∑
j=1

kj(qj) + λ
n∑
i=1

hi(pi)
m∑
j=1

kj(qj) (1.2)

with (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm, λ 6= 0, λ ∈ R, fij : I → R,
hi : I → R, kj : I → R, i = 1, . . . , n; j = 1, . . . ,m, as unknown mappings.
He found the measurable (in the sense of Lebesgue) solutions of (1.2) for all
(p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm by taking n > 3, m > 3 as fixed integers,
in Theorem 6 on p-69 in [4]. For the last more than two decades, the general
solutions of (1.2) for all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm, n > 3, m > 3
being fixed integers, are still not known so far.

The main aim of this paper is to obtain the general solutions of the functional
equation

n∑
i=1

m∑
j=1

h(piqj) =
n∑
i=1

h(pi) +
m∑
j=1

kj(qj) + λ

n∑
i=1

h(pi)
m∑
j=1

kj(qj) (1.3)
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which contains m + 1 unknown real-valued mappings h and kj (j = 1, . . . ,m),
each defined on I = [0, 1]; λ ∈ R, λ 6= 0 and n > 3, m > 3 being fixed integers.
These general solutions have been obtained without making use of the difference
operatorDr

i suggested on p-58 by Losonczi [4]. This paper is an improved version
of the manuscript [9]. Nath and Singh [8] have also obtained the general solutions
of

n∑
i=1

m∑
j=1

F (piqj) =
n∑
i=1

G(pi) +
m∑
j=1

Hj(qj) + λ

n∑
i=1

G(pi)
m∑
j=1

Hj(qj)

with F : I → R, G : I → R, Hj : I → R, j = 1, . . . ,m; λ 6= 0, (p1, . . . , pn) ∈
Γn, (q1, . . . , qm) ∈ Γm, n > 3, m > 3 being fixed integers.

The functional equation (1.3) is a special case of (1.2). A particular case of
(1.3) is the following

n∑
i=1

m∑
j=1

h(piqj) =
n∑
i=1

h(pi) +
m∑
j=1

k(qj) + λ
n∑
i=1

h(pi)
m∑
j=1

k(qj)

in which h : I → R, k : I → R and (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm.
Nath and Singh [7] have obtained its general solution(s) for fixed integers n > 3,
m > 3.

Let us define the mappings f : I → R and gj : I → R, j = 1, . . . ,m as

f(x) = x+ λh(x); gj(x) = x+ λ kj(x) (1.4)

for all x ∈ I . Then (1.3) reduces to the Pexider type functional equation
n∑
i=1

m∑
j=1

f(piqj) =
n∑
i=1

f(pi)
m∑
j=1

gj(qj) . (1.5)

We would like to mention that Kannappan and Sahoo [3] have obtained the general
solutions of (1.3) and (1.5) on an open domain. In our case, the process of finding
the general solutions of (1.5), for fixed integers n > 3, m > 3, needs determining
the general solutions of the functional equation

n∑
i=1

m∑
j=1

ϕ(piqj) =
n∑
i=1

ϕ(pi)
m∑
j=1

ϕ(qj) +m(n− 1)ϕ(0)
n∑
i=1

ϕ(pi) (1.6)

where ϕ : I → R and n > 3, m > 3 are fixed integers. This task has been
accomplished in section 3. The corresponding general solutions of (1.5) and (1.3)
have been investigated in sections 4 and 5 respectively. At the end of section 5, we
have analysed the importance of the solutions of functional equation (1.3) from
information-theoretic point of view. Section 2 contains some known definitions
and results needed for the subsequent development of this paper.
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2 Some preliminary results
In this section, we mention some known definitions and results.

A mapping a : I → R is said to be additive on I or on the unit triangle
∆ = {(x, y) : 0 6 x 6 1, 0 6 y 6 1, 0 6 x + y 6 1} if it satisfies the equation
a(x + y) = a(x) + a(y) for all (x, y) ∈ ∆. A mapping A : R → R is said to be
additive on R if it satisfies the equation A(x + y) = A(x) + A(y) for all x ∈ R,
y ∈ R. It is known [1] that if a mapping a : I → R is additive on I , then it has
a unique additive extension A : R → R in the sense that A is additive on R and
A(x) = a(x) for all x ∈ I .

A mapping M : I → R is said to be multiplicative if M(pq) = M(p)M(q)
holds for all p ∈ I , q ∈ I .

Result 2.1. [5] Let n > 3 be a fixed integer and c be a given constant. Suppose

that a mapping ψ : I → R satisfies the functional equation
n∑
i=1

ψ(pi) = c for all

(p1, . . . , pn) ∈ Γn. Then there exists an additive mapping b : R → R such that

ψ(p) = b(p)− 1

n
b(1) +

c

n
for all p ∈ I .

Result 2.2. [4] Let d be a given real constant and ψj : I → R, j = 1, . . . ,m, be

mappings which satisfy the functional equation
m∑
j=1

ψj(qj) = d for all (q1, . . . , qm) ∈

Γm,m > 3 being a fixed integer. Then there exists an additive mapping a : R→ R

and real constants cj (j = 1, . . . ,m) such that ψj(p) = a(p) + cj for all p ∈ I

with a(1) +
m∑
j=1

cj = d.

3 The functional equation (1.6)

In this section, we prove:

Theorem 3.1. Let n > 3, m > 3 be fixed integers and ϕ : I → R be a map-

ping which satisfies the functional equation (1.6) for all (p1, . . . , pn) ∈ Γn and

(q1, . . . , qm) ∈ Γm. Then ϕ is of the form

ϕ(p) = a(p) + ϕ(0) (3.1)
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where a : R→ R is an additive mapping with


(i) a(1) = −nmϕ(0) if ϕ(1) + (n− 1)ϕ(0) 6= 1

or

(ii) a(1) = 1− nϕ(0) if ϕ(1) + (n− 1)ϕ(0) = 1

(3.2)

or

ϕ(p) = M(p)−B(p) (3.3)

where B : R → R is an additive mapping with B(1) = 0 and M : I → R is a

multiplicative mapping which is not additive and M(0) = 0, M(1) = 1.

Proof. Let us put p1 = 1, p2 = . . . = pn = 0 in (1.6). We obtain

[ϕ(1) + (n− 1)ϕ(0)− 1]

[
m∑
j=1

ϕ(qj) +m(n− 1)ϕ(0)

]
= 0 (3.4)

for all (q1, . . . , qm) ∈ Γm. We divide our discussion into two cases.

Case 1. ϕ(1) + (n− 1)ϕ(0) 6= 1.

In this case, (3.4) reduces to
m∑
j=1

ϕ(qj) = −m(n−1)ϕ(0) for all (q1, . . . , qm) ∈

Γm. By Result 2.1, there exists an additive mapping a : R → R such that ϕ is of

the form (3.1) with a(1) as in (3.2)(i). Thus, we have obtained the solution (3.1)

satisfying (i) in (3.2).

Case 2. ϕ(1) + (n− 1)ϕ(0)− 1 = 0.

Let us write (1.6) in the form

m∑
j=1

{
n∑
i=1

ϕ(piqj)− ϕ(qj)
n∑
i=1

ϕ(pi)−m(n− 1)ϕ(0)qj

n∑
i=1

ϕ(pi)

}
= 0 .
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By Result 2.1, there exists a mapping A1 : Γn × R → R, additive in the second

variable, such that
n∑
i=1

ϕ(piq)− ϕ(q)
n∑
i=1

ϕ(pi)−m(n− 1)ϕ(0) q
n∑
i=1

ϕ(pi) (3.5)

= A1(p1, . . . , pn; q)− ϕ(0)
n∑
i=1

ϕ(pi) + nϕ(0)

valid for all (p1, . . . , pn) ∈ Γn and q ∈ I with

A1(p1, . . . , pn; 1) = mϕ(0)

[
n∑
i=1

ϕ(pi)− n

]
. (3.6)

Let x ∈ I and (r1, . . . , rn) ∈ Γn. Putting successively q = xrt, t = 1, . . . , n in

(3.5), adding the resulting n equations so obtained and then substituting the value

of
n∑
t=1

ϕ(xrt) calculated from (3.5), we get the equation

n∑
i=1

n∑
t=1

ϕ(xpirt)− [ϕ(x) +m(n− 1)ϕ(0)x− ϕ(0)] (3.7)

×
n∑
i=1

ϕ(pi)
n∑
t=1

ϕ(rt)− n2 ϕ(0)

= A1(p1, . . . , pn;x) +m(n− 1)ϕ(0)x
n∑
i=1

ϕ(pi)

+A1(r1, . . . , rn;x)
n∑
i=1

ϕ(pi) .

The symmetry of the left hand side of (3.7), in pi and rt, i = 1, . . . , n; t = 1, . . . , n

gives rise to the equation

[A1(p1, . . . , pn;x) +m(n− 1)ϕ(0)x]

[
n∑
t=1

ϕ(rt)− 1

]
(3.8)

= [A1(r1, . . . , rn;x) +m(n− 1)ϕ(0)x]

[
n∑
i=1

ϕ(pi)− 1

]
.

Case 2.1.
n∑
t=1

ϕ(rt)− 1 vanishes identically on Γn.
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In this case, by Result 2.1, there exists an additive mapping a : R → R such

that ϕ is of the form (3.1) but now a(1) is as in (3.2)(ii).

Case 2.2.
n∑
t=1

ϕ(rt)− 1 does not vanish identically on Γn.

Then, there exists a probability distribution (r∗1, . . . , r
∗
n) ∈ Γn such that[

n∑
t=1

ϕ(r∗t )− 1

]
6= 0 . (3.9)

Setting rt = r∗t , t = 1, . . . , n in (3.8) and using (3.9), we obtain the equation

A1(p1, . . . , pn;x) = B(x)

[
n∑
i=1

ϕ(pi)− 1

]
−m(n− 1)ϕ(0)x (3.10)

where B : R → R is defined as B(x) =

[
n∑
t=1

ϕ(r∗t )− 1

]−1

[A1(r
∗
1, . . . , r

∗
n;x) +

m(n − 1)ϕ(0)x] for all x ∈ R. It can be easily verified that B : R → R is an

additive mapping with B(1) = mϕ(0). From (3.5), (3.10), B(1) = mϕ(0) and

the additivity of B : R→ R, it follows that
n∑
i=1

[M(piq)−M(q)M(pi) + n(m− 1)ϕ(0)M(q) pi] = 0 (3.11)

where M : I → R is defined as

M(x) = ϕ(x) +B(x) +m(n− 1)ϕ(0)x− ϕ(0) (3.12)

for all x ∈ I . From (3.12), it is easy to see that M(0) = 0 as B(0) = 0. Applying

Result 2.1 on (3.11), there exists a mapping E : R × I → R, additive in the first

variable such that

M(pq)−M(p)M(q) + n(m− 1)ϕ(0)M(q) p = E(p, q)− 1

n
E(1, q) (3.13)

for all p ∈ I , q ∈ I . The substitution p = 0 in (3.13) and the use of M(0) = 0

gives E(1, q) = 0 for all q ∈ I . Consequently,

M(pq)−M(p)M(q) + n(m− 1)ϕ(0)M(q) p = E(p, q) (3.14)
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for all p ∈ I , q ∈ I . Since E(1, q) = 0, therefore E(1, 1) = 0. Now, putting

p = q = 1 in equation (3.14), we obtain

M(1)[1−M(1) + n(m− 1)ϕ(0)] = 0 . (3.14a)

We prove that M(1) 6= 0. To the contrary, suppose that M(1) = 0. Putting

q = 1 in (3.14) and using M(1) = 0, we get M(p) = E(p, 1) for all p ∈ I .

So, M is additive on I . Also, if we put x = 1 in (3.12), use M(1) = 0 and

ϕ(1) + (n− 1)ϕ(0) = 1, we obtain n(m− 1)ϕ(0) = −1. Now from (3.9), (3.12)

and the additivity of M on I , we have 1 6=
n∑
t=1

ϕ(r∗t ) = 1 a contradiction. Hence

M(1) 6= 0. Now, from (3.14a), it follows that

M(1)− 1 = n(m− 1)ϕ(0) . (3.15)

Our next task is to prove that M : I → R, defined by (3.12), is not additive. To

the contrary, suppose that M is additive. Now from (3.9), (3.12), the additivity of

M on I and (3.15), we have

1 6=
n∑
t=1

ϕ(r∗t ) = M(1)− n(m− 1)ϕ(0) = 1

a contradiction. Hence M : I → R is not additive.

Now we prove that, indeed, M(1)− 1 = 0. If possible, suppose [M(1)− 1] 6=

0. Putting q = 1 in (3.14) and using (3.15), we obtain

[M(1)p−M(p)] = [M(1)− 1]−1E(p, 1)

for all p ∈ I . Since p 7−→ E(p, 1) is additive on I , it follows that

p 7−→M(1)p−M(p) must also be additive on I . But p 7−→M(1)p is additive on

I . Hence M is additive on I contradicting the fact that M is not additive. Hence

M(1)− 1 = 0, that is, M(1) = 1.
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Now, from (3.15), it follows that ϕ(0) = 0. Consequently, equation (3.14)

reduces to the equation

M(pq)−M(p)M(q) = E(p, q) (3.16)

for all p ∈ I , q ∈ I and (3.12) reduces to (3.3) for all p ∈ I with B(1) = 0.

The left hand side of (3.16) is symmetric in p and q. Hence E(p, q) = E(q, p)

for all p ∈ I , q ∈ I . Consequently, E is also additive on I in the second variable.

We may assume that E(p, ·) has been extended additively to the whole of R.

Let p ∈ I , q ∈ I , r ∈ I . From (3.16), we have

E(pq, r) +M(r)E(p, q) = M(pqr)−M(p)M(q)M(r) (3.17)

= E(qr, p) +M(p)E(q, r) .

We prove that E(p, q) = 0 for all p ∈ I , q ∈ I . If possible, suppose there exists a

p∗ ∈ I and a q∗ ∈ I such that E(p∗, q∗) 6= 0. Then, (3.17) gives

M(r) = [E(p∗, q∗)]−1{E(q∗r, p∗) +M(p∗)E(q∗, r)− E(p∗q∗, r)}

from which it follows that M is additive on I contradicting the fact that M is not

additive. Hence E(p, q) = 0 for all p ∈ I , q ∈ I . Now, from (3.16), it follows that

M(pq) = M(p)M(q) for all p ∈ I , q ∈ I . Thus, M : I → R is a multiplicative

mapping which is not additive and M(0) = 0, M(1) = 1.

4 The functional equation (1.5)

In this section, we prove:

Theorem 4.1. Let n > 3, m > 3 be fixed integers and f : I → R, gj : I → R,

j = 1, . . . ,m be mappings which satisfy the functional equation (1.5) for all
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(p1, . . . , pn) ∈ Γn and (q1, . . . , qm) ∈ Γm. Then, any general solution of (1.5), for

all p ∈ I , is of the form{
f(p) = b(p)

gj any arbitrary real-valued mapping
(4.1)

or 
f(p) = [f(1) + (n− 1) f(0)] a(p) + f(0),

[f(1) + (n− 1) f(0)] 6= 0

gj(p) = a(p) + A∗(p) + gj(0)

(4.2)

or {
f(p) = f(1)[M(p)−B(p)] , f(1) 6= 0

gj(p) = M(p)−B(p) + A∗(p) + gj(0)
(4.3)

where b : R → R, a : R → R, A∗ : R → R, B : R → R are additive mappings

with 
(i) b(1) = 0
(ii) B(1) = 0
(iii) a(1) = 1− nf(0)[f(1) + (n− 1)f(0)]−1

(iv) A∗(1) = −
m∑
j=1

gj(0) + nmf(0)[f(1) + (n− 1)f(0)]−1

(4.4)

and M : I → R is a multiplicative mapping which is not additive and M(0) = 0,

M(1) = 1.

Proof. Put p1 = 1, p2 = . . . = pn = 0 in (1.5). We obtain

m∑
j=1

[f(qj) + (n− 1)f(0)] = [f(1) + (n− 1) f(0)]
m∑
j=1

gj(qj) (4.5)

for all (q1, . . . , qm) ∈ Γm.

Case 1. f(1) + (n− 1) f(0) = 0 .

Then, (4.5) reduces to the equation
m∑
j=1

f(qj) = −m(n−1) f(0). Put q1 = 1, q2 =

. . . = qm = 0 in this equation and using the fact f(1) + (n−1) f(0) = 0, we have
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f(0) = 0 = f(1). Hence
m∑
j=1

f(qj) = 0. By Result 2.1, there exists an additive

mapping b : R → R such that f(p) = b(p) with b(1) = 0. Consequently, for all

(p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm, it is easy to verify that
n∑
i=1

m∑
j=1

f(piqj) =

n∑
i=1

f(pi) = b(1) = 0. Now, from (1.5), it follows that gj (j = 1, . . . ,m) are,

indeed, arbitrary real-valued mappings. Thus, we have obtained the solution (4.1)

of (1.5) where b(1) is given by (4.4)(i).

Case 2. f(1) + (n− 1) f(0) 6= 0.

In this case, (4.5) can be written in the form
m∑
j=1

{
gj(qj)− [f(1) + (n− 1) f(0)]−1[f(qj) + (n− 1) f(0)]

}
= 0 . (4.6)

By Result 2.2, there exists an additive mapping A∗ : R→ R such that

gj(p) = [f(1) + (n− 1) f(0)]−1[f(p)− f(0)] + A∗(p) + gj(0) (4.7)

for j = 1, . . . ,m with A∗(1) given by (iv) in (4.4). The elimination of
m∑
j=1

gj(qj)

from equations (1.5) and (4.6) gives the equation
n∑
i=1

m∑
j=1

f(piqj) = [f(1) + (n− 1) f(0)]−1

n∑
i=1

f(pi)
m∑
j=1

f(qj) (4.8)

+ [f(1) + (n− 1) f(0)]−1m(n− 1) f(0)
n∑
i=1

f(pi)

valid for all (p1, . . . , pn) ∈ Γn and (q1, . . . , qm) ∈ Γm. Define a mapping ϕ : I →

R as

ϕ(x) = [f(1) + (n− 1) f(0)]−1 f(x) (4.9)

for all x ∈ I . Then (4.8) reduces to the functional equation (1.6) with ϕ(1)+(n−

1)ϕ(0) = 1. So, we need to consider only those solutions of (1.6) which satisfy

the requirement ϕ(1) + (n− 1)ϕ(0) = 1.
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The solutions (3.1) (with (3.2)(ii)) and (3.3) of (1.6) satisfy the condition

ϕ(1) + (n − 1)ϕ(0) = 1. Making use of (4.9), (4.7), (3.1) (with (3.2)(ii)) and

(3.3), the solutions (4.2) and (4.3) can be obtained in which B(1), a(1) and A∗(1)

are given respectively by (ii), (iii) and (iv) in (4.4).

5 The functional equation (1.3)

In this section, we prove:

Theorem 5.1. Let n > 3, m > 3 be fixed integers and h : I → R, kj : I → R,

j = 1, . . . ,m be mappings which satisfy the functional equation (1.3) for all

(p1, . . . , pn) ∈ Γn and (q1, . . . , qm) ∈ Γm and λ 6= 0. Then, any general solution

of (1.3), for all p ∈ I , is of the form h(p) =
1

λ
[b(p)− p]

kj any arbitrary real-valued mapping
(5.1)

or 
h(p) =

1

λ

{
[λ(h(1) + (n− 1)h(0)) + 1] a(p)− p

}
+ h(0),

[λ(h(1) + (n− 1)h(0)) + 1] 6= 0

kj(p) =
1

λ

{
a(p) + A∗(p)− p

}
+ kj(0)

(5.2)

or 
h(p) =

1

λ

{
[λh(1) + 1][M(p)−B(p)]− p

}
, [λh(1) + 1] 6= 0

kj(p) =
1

λ

{
M(p)−B(p) + A∗(p)− p

}
+ kj(0)

(5.3)

where b : R → R, a : R → R, A∗ : R → R, B : R → R are additive mappings
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with

(i) b(1) = 0

(ii) B(1) = 0

(iii) a(1) = 1− λnh(0)[λ(h(1) + (n− 1)h(0)) + 1]−1

(iv) A∗(1) = −λ
m∑
j=1

kj(0)+λnmh(0)[λ(h(1) +(n− 1)h(0))+ 1]−1

(5.4)

and M : I → R is a multiplicative mapping which is not additive and M(0) = 0,

M(1) = 1.

Proof. From (1.4) and the solutions of the functional equation (1.5) i.e., (4.1),

(4.2), (4.3) with (4.4); we obtain respectively the solutions (5.1), (5.2), (5.3) with

(5.4); of the functional equation (1.3). The details are omitted.

Remarks. The object of this remark is to point out the importance of various

solutions of Theorem 5.1 from information-theoretic point of view.

1. The summand
n∑
i=1

h(pi) of the mapping h appearing in (5.1) is independent

of the probabilities p1, . . . , pn. The solution (5.1) may be of some importance in

information theory provided kj is chosen as a suitable mapping of probability p,

p ∈ I .

2. In solution (5.2), the summands
n∑
i=1

h(pi) and
m∑
j=1

kj(qj) are independent

of the probabilities p1, . . . , pn and q1, . . . , qm respectively. So, this solution does

not seem to be of any relevance in information theory.

3. In solution (5.3)

n∑
i=1

h(pi) =
1

λ

{
β1

n∑
i=1

M(pi)− 1
}
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and

m∑
j=1

kj(qj) =
1

λ

{ m∑
j=1

M(qj)− 1
}

+ β2

where

β1 = λh(1) + 1

β2 = nmh(0)[λ(h(1) + (n− 1)h(0)) + 1]−1 .

If β1 = 1 and β2 = 0, then
n∑
i=1

h(pi) = Lλn(p1, . . . , pn) and
m∑
j=1

kj(qj) = Lλm(q1, . . . , qm)

where (see Nath and Singh [6])

Lλt (x1, . . . , xt) =
1

λ

[ t∑
i=1

M(xi)− 1
]
. (5.5)

The non-additive measure of entropy Hα
t (x1, . . . , xt) = (21−α− 1)−1(

t∑
i=1

xαi − 1),

α 6= 1, is a particular case of (5.5) when λ = 21−α − 1, α > 0, α 6= 1 and

M : I → R is of the form M(p) = pα, p ∈ I , α 6= 1, α > 0, 0α := 0, 1α := 1.

References
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Abstract

Quasi-order hypergroups were introduced by Jan Chvalina in 90s of the
twentieth century. He proved that they form a subclass of the class of all
hypergroups, i.e. structures with one associative hyperoperation fulfilling the
reproduction axiom. In this paper a theorem which allows an easy descrip-
tion of all quasi-order hypergroups is presented. Moreover, some results
concerning the relation of quasi-order and upper quasi-order hypergroups
are given. Furthermore, the transformation hypergroups acting on tolerance
spaces are defined and an example of them is mentioned.
Keywords. Quasi-order hypergroup, order hypergroup, tolerance relation,
transformation semihypergroup, transformation hypergroup.
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The applications of mathematics in other disciplines, for example, in informat-
ics, play a key role and they represent, in the last decades, one of the purpose, of the
study of the experts of hyperstructures theory all over the world. Hyperstructure
theory was introduced in 1934 by the French mathematician Marty [16], at the 8th
Congress of Scandinavian Mathematicians, where he defined hypergroups based
on the notion of hyperoperation, began to analyze their properties, and applied
them to groups. In the following decades and nowadays, a number of different
hyperstructures are widely studied from the theoretical point of view and for their
applications to many subjects of pure and applied mathematics by many mathe-
maticians. In a classical algebraic structure, the composition of two elements is
an element, while in an algebraic hyperstructure, the composition of two elements
is a set. Several books have been written on hyperstructure theory, see [6, 10, 17].
A recent book on hyperstructures [9] points out on their applications in rough
set theory, cryptography, codes, automata, probability, geometry, lattices, binary
relations, graphs and hypergraphs. Another book [10] is devoted especially to
the study of hyperring theory. Several kinds of hyperrings are introduced and
analyzed. The volume ends with an outline of applications in chemistry and
physics, analyzing several special kinds of hyperstructures: hyperstructures and
transposition hypergroups.

Hypergroups in the sense of Marty [16] form the largest class of multivalued
systems that satisfies group-like axioms. It should be noted that various prob-
lems in non-commutative algebra lead to the introduction of algebraic systems in
which the operations are not single-valued. The motivation for generalization of
the notion of group resulted naturally from various problems in non-commutative
algebra, another motivation for such an investigation came from geometry. Hy-
pergroups have been used in algebra, geometry, convexity, automata theory, com-
binatorial problems of coloring, lattice theory, Boolean algebras, logic etc., over
the years. Over the following decades, new and interesting results again appeared,
but it is above all that a more luxuriant flourishing of hyperstructures has been
seen in the last 20 years. It is not surprising that hypergroups as well as hyper-
groupoids, quasi-hypergroups, semihypergroups, hyperfields, hyper vector spaces,
hyperlattices etc. have been studied.

The most complete bibliography up to 2002 can be found in the monograph
of Pierguilio Corsini and Violeta Leoreanu: Applications of Hyperstructure The-
ory [9]. Another comprehensive list of literature is in monograph [17] and updated
information is included in web site: http://aha.eled.duth.gr.

In the paper [2] special types of hypergroups, so called quasi-order hypergroups
(QOHG) and order hypergroups (OHG), were introduced (cf. also [6, 9, 14, 5]).

First of all recall some basic terms and definitions. A hyperoperation “◦” on
a nonempty set H is a mapping from H ×H to P∗(H) (all nonempty subsets of
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H). The hypergroupoid is a pair (H, ◦). The quasi-hypergroup is a hypergroupoid
if the reproduction axiom (a ◦H = H = H ◦ a for any a ∈ H) is fulfilled. The
quasi-hypergroup (H, ◦) is called a hypergroup if moreover the hyperoperation
“◦” is associative

(
(a◦ b)◦ c = a◦ (b◦ c) for any a, b, c ∈ H

)
. Here for nonempty

A,B ⊆ H we put A ◦ B =
⋃

a∈A, b∈B
a ◦ b. We denote a ◦ B instead of {a} ◦ B,

a ∈ H . See, e.g. [5, 6, 9, 7, 11].
Let (H, ∗) and (H ′, ?) be hypergroupoids. Then a mapping f : H −→ H ′ is

called inclusion homomorphism if it satisfies the condition:

f(x ∗ y) ⊆ f(x) ? f(y) for all pairs x, y ∈ H.

Let X be a set and τ be a tolerance relation (i.e., reflexive and symmetric
binary relation)—see [1]. Then the pair (X, τ) is a tolerance space.

Definition 1. The hypergroup (H, ◦) is called a quasi-order hypergroup—cf.
[2, 4, 9]—if

(i) a ∈ a3 = a2 for any a ∈ H , (1)
(ii) a ◦ b = a2 ∪ b2 for any a, b ∈ H . (2)

The hypergroup (H, ◦) is called an order hypergroup if moreover

(iii) a2 = b2 implies a = b for any a, b ∈ H . (3)

Using the methods occurring in [2, 4] the following theorem characterizing all
quasi-order hypergroups can be proved. For the prove see [13]. (By a2 we mean
a ◦ a.)

Theorem 1. Let (H, ◦) is a quasi-order hypergroup. Denote K(a) = a2 for any
a ∈ H . Then the system of sets K(a) fulfills the following conditions:

(i) a ∈ K(a) for any a ∈ H , (4)
(ii) if b ∈ K(a) then K(b) ⊆ K(a). (5)

Conversely, if any system of subsets K(a) of the set H , a ∈ H , fulfills (4) and
(5), then there exists the only hyperoperation “◦” on H such that a ◦ a = K(a)
and (H, ◦) is a quasi-order hypergroup.

With respect to (3) the following corollary evidently holds:

Corollary 1. Under the assumptions of Theorem 1 the quasi-order hypergroup
(H, ◦) is an order hypergroup if and only if for a 6= b there is K(a) 6= K(b).

It is easy to show that if R is a quasi-ordering on a set H , then the pair (H, ◦),
where a ◦ b = R(a) ∪ R(b), a, b ∈ H , is a quasi-order hypergroup. (R(x) is
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an upper end of an element x ∈ H , i.e. the set {a ∈ H; aRx for each element
a ∈ H}). See e.g. [3, 11].

In [3] J. Chvalina introduced the concept of an upper quasi-order and upper
order hypergroup.

Definition 2. A hypergroup (H, ◦) is said an upper quasi-order (upper order)
hypergroup if there exists a quasi-ordering (ordering) R such that a ◦ b = R(a) ∪
R(b) for a, b ∈ H .

It can be shown that the classes of all quasi-order hypergroups and upper
quasi-order hypergroups coincide. The same is true for the classes of all order
hypergroups and upper order hypergroups. See [2, Theorem 1] or [9, Proposition
2 on p. 96]. These results can be easily proved using Theorem 1.

As we will need the above mentioned result of Prof. Jan Chvalina several
times in this text we recall its formulation:

Proposition 1. [9, Proposition 2 on p. 96] A hypergroupoid (H, ·) is a (quasi)-
order hypergroup if and only if there exists a (quasi)-ordeg ρ on the set H , such
that

∀(a, b) ∈ H ×H, a · b = ρ(a) ∪ ρ(b),

where ρ(a) = {x ∈ H, a ρ x}.

Theorem 2. Every quasi-order (order) hypergroup is an upper quasi-order (upper
order) hypergroup.

Proof. Let (H, ◦) be a quasi-order hypergroup. Let us define a relation R on
H as follows: aR b iff b ∈ a2 for each a, b ∈ H . Evidently aR b iff b2 ⊆ a2.
Then (4) and (5) imply that R is a quasi-ordering. Moreover, R(a) = a2. Thus
a ◦ b = a2 ∪ b2 = R(a) ∪R(b).

If (H, ◦) is even an order hypergroup, then by Corollary 1 there is
R(a) 6= R(b) for a 6= b, a, b ∈ H . Thus R is an ordering.

In [12] a more general concept of subquasi-order hypergroup is introduced. It
is an open question whether a similar representation result as in Theorem 1 can be
found for this generalization.

Now let us recall the definition of a transformation hypergroup. It was intro-
duced in [15].

Recall first that tolerance relation is a reflective and symmetric relation on a set.
This relation yields the concept of singularity in abstract mathematical expressions.
This relation namely in connection with other structures moves corresponding
mathematical theories to useful applications. Many publications are devoted to
systematic investigation to tolerances on algebraic structures compatible with
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all operations of corresponding algebras. A certain survey of important results
including valuable investment can be found in [1]. Tolerance space is a set
endowed with a tolerance relation.

Definition 3. Let X be a set, (G, •) be a hypergroup and π : X × G → X a
mapping such that π(π(x, t), s) ∈ π(x, t • s), where

π(x, t • s) = {π(x, u);u ∈ t • s)}

for each x ∈ X , s, t ∈ G.
Then the triple T = (X,G, π) is called a discrete transformation hypergroup

or an action of the hypergroup G on the phase set X . The mapping π is also
usually said to be simply an action.

More generally, it is possible to consider the situation, where the phase space
X is endowed with some additional structure. The interesting case is given in the
following definition.

Definition 4. Let (X, τ) be a tolerance space (so called phase tolerance space),
(G, •) be a semihypergroup (so called phase semihypergroup) and π : X×G→ X
a mapping such that

(i) π(π(x, t), s) ∈ π(x, t • s), where π(x, t • s) = {π(x, u);u ∈ t • s)} for each
x ∈ X , s, t ∈ G;

(ii) if x, y ∈ X are such that x τ y, then π(x, g) τ π(y, g) holds for any g ∈ G.

Then T = (X,G, π) is a transformation semihypergroup with phase tolerance
space. If, moreover, the pair (G, •) is a hypergroup (so called phase hypergroup),
then the triple T = (X,G, π) is a transformation hypergroup with phase tolerance
space.

In case the tolerance τ is trivial, i.e., x τ y if and only if x = y, the preceding
definition coincides in fact with Definition 3.

Let us consider a discrete transformation hypergroup T = (X,G, π). It is
possible to assign to each transformation hypergroup a commutative, extensive
hypergroup with the support X (i.e., phase set of T ) as follows:

Let us define for arbitrary pair of elements x, y ∈ X a binary hyperoperation
� : X ×X →P∗(X) in this way:

x� y = π(x,G) ∪ π(y,G) ∪ {x, y},

where π(x,G) = {π(x, u), u ∈ G} and similarly for π(y,G).
In the following we will need the next Lemma. The proof can be found in [4].
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Lemma 1. A hypergroupoid (H, ·) such that a ∈ a3 ⊂ a2, a · b = a2 ∪ b2 for any
a, b ∈ H is a quasi-order hypergroup.

Proposition 2. The pair (X,�) is an extensive, commutative hypergroup.

The extensivity and commutativity of the hyperoperation is evident, so the pair
(X,�) is an extensive, commutative hypergroupoid. The conditions of Lemma 1
are satisfied too, so (X,�) is an extensive, commutative hypergroup.

Remark 1. Even in case when T is a transformation semihypergroup we can
assign a commutative, extensive hypergroup to this semihypergroup by the above
described way.

The considered mapping is a functorial assignment which is described in the
following way:

The above defined assignment determines a functor F from the category DTH
of all discrete transformation hypergroups into the categoryAH of all commutative
(abelian) hypergroups.

The functor F = (FO, Fm) (O-as objects, m-as morphisms) is defined as
follows: FO(T ) = (X,�); Fm(hX , hG) = hX . Consider Ti = (Xi, Gi, πi) ∈
DTH where (Xi,�i) are hypergroups, i = 1, 2 and the morhpisms hX : X1 → X2.
Then

hX(x�1 y) = h
(
π(x,G) ∪ π(y,G) ∪ {x, y}

)
=
{
π(hX(x), hG(g), g ∈ G1)

}
∪
{
π(hX(y), hG(g), g ∈ G1)

}
∪
{
hX(x), hX(y)

}
⊆

π(hX(x), G2) ∪ π(hX(y), G2) ∪ {hX(x), hX(y)}
= hX(x)�2 hX(y)

holds for all x, y ∈ X1.

Theorem 3. The pair (X,�) is a quasi-order hypergroup determined by T ,
shortly quasi-order T -hypergroup.

Proof. Let us define on (X,�) a binary relation “ρ” as follows:

x ρ y ⇔ ∃u ∈ G such that, π(x, u) = y or x = y.

This relation is evidently reflexive. We will show, that it is transitive as well.
Let

1) x = y and y = z, then x = z and x ρ z,
2) x = y and π(y, v) = z, then π(x, v = z) so x ρ z,
3) π(x, u) = y and y = z, then π(x, u = z) so x ρ z,

42



Quasi-Order Hypergroups determinated by T -Hypergroups

4) π(x, u) = y and π(y, v) = z, then z = π(y, v) = π(π(x, u), v). From
Definition 4 we have π(π(x, u), v) ∈ π(x, u� v), thus there exists w ∈ u� v
such that z = π(x,w). Hence we have x ρ z. So ρ is a quasi-order. It is well
known that ρ2 = ρ ⊃ diag(X), where diag(X) = {(x, x);x ∈ X}.

Now for any pair of elements x, y ∈ X we get x � y = ρ(x) ∪ ρ(y). So
according Proposition 1 the pair (X,�) is a quasi-order hypergroup determined
by T . Shortly it is a quasi-order T -hypergroup.
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[14] Š. Hošková, J. Chvalina, The unique square root condition for quasi-order
hypergroups and the corresponding reflector for the category of all order-
hypergroups, Proc. of 3th International Conference Aplimat 2004, Bratislava,
471–476, Slovakia.
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Abstract

In this paper, the definitions of soft Γ -module, soft Γ - module ho-
momorphism and soft Γ -exactness are introduced with the aid of the con-
cept of soft set theory introduced by Molodtsov. In the meantime, some of
their properties and structural characteristics are investigated and discussed.
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1 Introduction
In the real world, there are some various uncertainties but classical mathemat-

ical tools is not convenient for modeling these. Uncertain and unclear data which
are contained by economy, engineering, environmental science, social science,
medical science, business administration and many other fields are common. Al-
though many diverse theories such as probability theory, soft set theory, intuition-
istic fuzzy soft set theory and rough set theory are known and these present ad-
vantageous mathematical approaches for modeling of uncertainties, each of these
theories have their inherent diffuculties.

In 1999, Molodstov [1] developed soft set theory which is considered a math-
ematical tool for working with uncertainties. Since the emergence of soft set
theory attracts attention and especially recently works on the soft set theory is
progressing rapidly. Maji et al. [2] described some operations on soft sets and
these operations are used soft sets of decision making problems. Chen et al. [3]
offered a new definition for decrease of parametrerization on soft sets. They made
comparasion between this definition and concept of restriction of property in the
rough set theory. In theory, Maji et al. [4] worked various operator on soft set.
Kong et al. [5] developed definition of parametrerization reduction on soft set.
Zou and Xiao suggested some approach of data analysis in case of insufficent
information on soft set. Jiang et al. presented a unique approach of the semantic
decision making by means of ontological thinking and ontology-based soft sets.

Besides studies on classic module theory have continued and interesting re-
sults have been discovered recently. Macias Diaz et al. [6] studied on modules
which are isomorphic to relatively divisible or pure submodules of each other.
Abuhlail et al. [7] presented on topological lattices and their applications to mod-
ule theory. On the other hand, Ameri et al. [8] investigated gamma module and
Davvaz et al. [9] studied tensor product of gamma modules.

As for soft module theory, Sun et al. [10] presented the notion of soft set
and soft module. Xiang [11] worked soft module theory. T.Shah et al. [12]
defined the notion of primary decomposition in a soft ring and soft module, and
derived some related properties. Erami et al. [13] gave the concept of a soft MV-
module and soft MV- submodule. In these days, there are some studies reletad
with soft sets. Ali et al. [14] investigated some new operations in soft set theory
and Pei et al. [15] studied from soft sets to information systems. Xiao et al. [16]
presented research on synthetically evaluating method for business competitive
capacity based on soft set. Aktaş et al. [17] showed soft sets and soft groups and
Acar et al. [18] also showed soft sets and soft rings.

The main purpose of this paper is to deal with algebraic structure of Γ− mod-
ule by applying soft set theory. The concept of soft Γ−module is introduced, their
characterization and algebraic properties are investigated by giving some several
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examples. In addition to this, soft Γ− homomorphism , soft Γ− isomorphism and
their properties are introduced. After all, we make inferences that images of soft
Γ− homomorphisms and inverse images of soft Γ− homomorphisms are soft Γ−
homomorphisms. Furthermore soft Γ− exactness is investigated and illustrated
with a related example.

2 Preliminaries
In this section, preliminary informations will be required to soft Γ− modules.

First of all we give basic concepts of soft set theory.

Definition 2.1. [18] Let X denotes an initial universe set and E is a set of pa-
rameters. The power set of X is denoted by P (X). A pair of (F,E) is called a
soft set over X if and only if F is a mapping from E into the set of all subsets of
X , i.e, F : E → P (X).

Definition 2.2. [18] Let (F,A) and (G,B) be two soft sets over a common uni-
verse X .

i) If A⊆̃ B and F (a) ⊆̃ G (a) for all a ∈ A then we say that (F,A) is a soft
subset of (G,B), denoted by (F,A) ⊆̃ (G,B).

ii) If (F,A) is a soft subset of (G,B) and (G,B) is a soft subset of (F,A),
then we say that (F,A) is a soft equal to (G,B), denoted by (F,A) =̃ (G,B) .

Example 2.1. Let X = M2(Z3) denotes an initial universe set, i.e, 2 × 2 ma-

trices with Z3 terms and E = {
[
0 0
0 0

]
,

[
1 0
0 1

]
}is a set of parameters. Then

F : E → P (X) where F (

[
0 0
0 0

]
) = {

[
0 1
1 1

]
,

[
2 1
0 2

]
}, F (

[
1 0
0 1

]
) = {

[
2 0
0 2

]
}.

Clearly,(F,E) is called a soft set over X .

Definition 2.3. [18] Let (F,A) and (G,B) be two soft sets over a common uni-
verse X . The intersection of (F,A) and (G,B) is defined as the soft set (H,C)
satisfying the following conditions:

i) C = A ∩B.
ii) For all c ∈ C, H (c) = F (c) or G (c) .
In this case, we write (F,A) ∩̃ (G,B) = (H,C) .

Definition 2.4. [18] Let (F,A) and (G,B) be two soft sets over a common uni-
verseX . The union of (F,A) and (G,B) is defined as the soft set (H,C) satisfying
the following conditions:

i) C = A ∪B.

47



S. Onar, S. Yavuz and B. A. Ersoy

ii) For all c ∈ C,

H (c) =


F (c) if c ∈ A−B,
G(c) if c ∈ B − A,
F (c) ∪G(c) if c ∈ A ∩B.


This is denoted by (F,A) ∪̃ (G,B) = (H,C) .

Definition 2.5. [18] If (F,A) and (G,B) are two soft sets over a common uni-
verse X , then (F,A) AND (G,B) denoted by (F,A) ∧̃ (G,B) is defined as
(F,A) ∧̃ (G,B) = (H,C), where C = A × B and H (x, y) = F (x) ∩ G (y),
for all (x, y) ∈ C.

Definition 2.6. Let {(Fi, Ai) : i ∈ I} be a non- empty family soft sets. The
∧−intersection of a non-empty family soft sets is defined by (ψ, Y ) = ∧̃i∈I(Fi, Ai)
where (ψ, Y ) is a soft set, Y =

∏
i∈I
Ai and ψ(y) = ∩i∈IFi(y) for every y =

(yi)i∈I ∈ Y.

Definition 2.7. [18] If (F,A) and (G,B) are two soft sets over a common universe
X , then (F,A)OR (G,B) denoted by (F,A) ∨̃ (G,B) is defined as (F,A) ∨̃ (G,B) =
(H,C), where C = A×B and H (x, y) = F (x) ∪G (y), for all (x, y) ∈ C.

Definition 2.8. Let {(Fi, Ai) : i ∈ I} be a non- empty family soft sets. The
∨−union of a non-empty family soft sets is defined by (ψ, Y ) = ∨̃i∈I(Fi, Ai)
where (ψ, Y ) is a soft set, Y =

∏
i∈I
Ai and ψ(y) = ∪i∈IFi(y) for every y =

(yi)i∈I ∈ Y.

On the other hand we will introduce modules and soft modules, then we will
study some properties and theories of soft modules such as trivial soft module,
whole soft module, the concepts of soft submodule and soft module homomor-
phisms.

Definition 2.9. [10] Let R be a ring with identity. M is said to be a left R-
module if left scalar multiplication λ : R ×M → M via (a, x) 7→ ax satisfying
the axioms ∀r, r1, r2, 1 ∈ R;m,m1,m2 ∈M :

i) M is an abelian group,
ii) r(m1 +m2) = rm1 + rm2, (r1 + r2)m = r1m+ r2m,
iii) (r1r2)m = r1(r2m),
iv) 1m = m.
Left R−module is denoted by RM or M for short. Similarly we can define

right R- module and denote it by MR.
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Example 2.2. Let R = M2(Z) and M = {
[
a
b

]
|a, b ∈ Z}. Then M is module on

R.

Definition 2.10. [10] Let M be a left R- module, A be a any nonempty set and
(F,A) is a soft set over M. (F,A) is said to be a soft module over M if and only
if F (x) is submodule over M , for all x ∈ A.

Definition 2.11. [10] Let (F,A) be a soft module over M then
i) (F,A) is said to be a trivial soft module over M if F (x) = 0 for all x ∈

A,where 0 is zero element of M.
ii) (F,A) is said to be an whole soft module over M if F (x) = M for all

x ∈ A.

Proposition 2.1. [10] Let (F,A) and (G,B) be two soft modules over M.
1) (F,A) ∩̃ (G,B) is a soft module over M.
2) (F,A) ∪̃ (G,B) is a soft module over M if A ∩B = ∅.

Definition 2.12. [10] If (F,A) and (G,B) be two soft modules over M, then
(F,A) + (G,B) is defined as (H,A×B), where H (x, y) = F (x) + G (y) for
all (x, y) ∈ A×B.

Proposition 2.2. [10] Assume that (F,A) and (G,B) are two soft modules over
M.Then (F,A) + (G,B) is soft module over M.

Definition 2.13. [10] Suppose that (F,A) and (G,B) be two soft modules overM
and N respectively. Then (F,A)× (G,B) = (H,A×B) is defined as H(x, y) =
F (x)×G(y) for all (x, y) ∈ A×B.

Proposition 2.3. [10] Let (F,A) and (G,B) be two soft modules over M and N
respectively. Then (F,A)× (G,B) is soft module over M ×N.

Definition 2.14. [10] Let (F,A) and (G,B) be two soft modules over M.Then
(G,B) is soft submodule of (F,A) if

i) B ⊂ A,
ii) G(x) < F (x),∀ x ∈ B.

This is denoted by (G,B)<̃(F,A).

Proposition 2.4. [10] Let (F,A) and (G,B) be two soft modules over M.We say
that (G,B) is soft submodule of (F,A) if G(x) ⊆ F (x),∀x ∈ A.

Definition 2.15. [10] Assume that E = {e}, where e is unit of A.Then every soft
module (F,A) over M at least have two soft modules (F,A) and (F,E) called
trivial soft submodule.
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Proposition 2.5. [10] Let (F,A) and (G,B) are two soft modules over M and
(G,B) is soft submodule of (F,A). If f : M → N is a homomorphism of module,
then (f(F ), A) and (f(G), B) are all soft modules over N and (f(G), B) is soft
submodule of (f(F ), A).

Definition 2.16. [10] Let (F,A) and (G,B) be two soft modules over M and N
respectively, f : M → N, g : A→ B be two functions. Then we say that (f, g) is
a soft homomorphism if the following conditions are satisfied:

i) f : M → N is a homomorphism of module,
ii) g : A→ B is a mapping,
iii) For all x ∈ A, f(F (x)) = G(g(x)).
We say that (F,A) is a soft homomorphic to (G,B) which denoted by (F,A) −̃ (G,B).

In this definition, if f is an isomorphism from M to N and g is a one-to-one map-
ping from A onto B, then we say that (F,A) is a soft isomorphism and that (F,A)
is a soft isomorphic to (G,B), this is denoted by (F,A) =̃ (G,B) .

Finally, we will define Γ- ring and Γ- module and their homomorphisms which
are basic definitions for soft Γ- module.

Definition 2.17. [8] Let R and Γ be additive abelian groups. Then we say that R
is a Γ- ring if there exists a mapping:

. : R× Γ×R→ R
(r1, γ, r2)→ r1γr2

such that for every a, b, c ∈ R and α, β ∈ Γ,the following hold:
i) (a+ b)αc = aαc+ bαc,
ii) a(α + β)c = aαc+ aβc,
iii) aα(b+ c) = aαb+ aαc,
iv) (aαb)βc = aα(bβc).

Definition 2.18. [8] A subset A of a Γ- ring R is said to be a right ideal of R if
A is an additive subgroup of R and AΓR ⊆ A,where AΓR = {aαc| a ∈ A,α ∈
Γ, r ∈ R}.

A left ideal of R is defined in a similar way. If A is both right and left ideal,
we say that A is an ideal of R.

Definition 2.19. [8] If R and S are Γ- rings, then a pair (θ, ϕ) of maps from R
into S is called a homomorphism from R into S if

i) θ(x+ y) = θ(x) + θ(y),
ii) ϕ is an isomorphism on Γ,
iii) θ(xγy) = θ(x)ϕ(γ)θ(y).

Definition 2.20. [8] Let R be a Γ- ring. A left Γ- module R is an additive abelian
group M together with a mapping . : R × Γ × M → M such that for all
m,m1,m2 ∈M and γ, γ1, γ2 ∈ Γ, r, r1, r2 ∈ R the following hold:
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i) rγ(m1 +m2) = rγm1 + rγm2,
ii) (r1 + r2)γm = r1γm+ r2γm,
iii) r(γ1 + γ2)m = rγ1m+ rγ2m,
iv) r1γ1(r2γ2m) = (r1γ1r2)γ2m.
A right Γ - module R is defined in analogous manner.

Example 2.3. Let R = {
[
k m

]
|k,m ∈ Z2}, i.e, 1 × 2 matrices and Γ =

{
[
0
0

]
,

[
1
0

]
} ∈ Z2, where Γis 2 × 1 matrices. Then we say that R is a Γ- ring.

Similarly, R and Γ are same if we choose M = {
[
0 0

]
,
[
1 1

]
}, then M is Γ -

module R.

Definition 2.21. [8] Presume that (M,+) be an Γ - module R . A nonempty
subset N of (M,+) is said to be a left Γ - submodule R of M if N is a subgroup
of M and RΓN ⊆ N,where RΓN = {rγn |γ ∈ Γ, r ∈ R, n ∈ N}, that is for all
n1, n2 ∈ N and for all γ ∈ Γ, r ∈ R;n1 − n2 ∈ N and rγn ∈ N. In this case we
write N ≤M.

Example 2.4. In previous example, let N = {
[
0 0

]
} ⊂M and H : N → P (M)

be a set valued function defined by H(a) = {b ∈M |R(a, α, b)⇔ aαb ∈
[
0 0

]
}

for all a ∈ N.H is clear that H(
[
0 0

]
) = (

[
0 0

]
) is Γ - submodule R of M..

Definition 2.22. [8] Let M and N be arbitrary Γ - module R . A mapping f :
M → N is a homomorphism of Γ - module R if for all x, y ∈ M and ∀r ∈
R, ∀γ ∈ Γ we have

i) f(x+ y) = f(x) + f(y),
ii) f(rγx) = rγf(x).
A homomorphism f is monomorphism if f is one-to-one and f is epimorphism

if f is onto. f is called isomorphism if f is both monomorphism and epimorphism.
We denote the set of all RΓ- homomorphisms from M into N by HomRΓ

(M,N)
or shortly by HomRΓ

(M,N). In particular M = N we denote Hom(M,M) by
End(M).

Definition 2.23. [18] Let M be a nonempty set and a Γ−module. The pair (F,A)
is a soft set over M . The set Supp(F,A) = {x ∈ A : F (x) 6= ∅} is called a
support of the soft set (F,A). The soft set (F,A) is non-null if Supp(F,A) 6= ∅.

3 Soft Γ- Modules
In this section, firstly we will define soft Γ− modules, then we will give some

operations on this modules.Throughout the section, M is a Γ−module.
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Definition 3.1. Let (F,A) be a non-null soft set overM . Then, (F,A) is said to be
a soft Γ−module overM if F (a) is a Γ−submoduleM such that F : A→ P (M),
(i.e. a→ F (a)) for all a ∈ A, y ∈ Supp(F,A).

Example 3.1. For consider the additively abelian groups Z6 = {0, 1, 2, 3, 4, 5}
and Γ = {0, 2}. Let . : Z6×Γ×Z6 → Z6, (m1,Γ,m2) = m1Γm2. Hence Z6 is a
Γ− module. Let A = Z6 and F : A→ P (M) be a set valued function defined by

f(0) = f(2) = f(4) = Z6,

f(1) = f(3) = f(5) = {0, 3}

are Γ−submodule of Z6. Hence (F,A, ) is a soft Γ−module over Z6.

Example 3.2. Let M is a Γ− module and (F,A) be a soft set over M.F : A →
P (M) is defined by F (x) = {y ∈ M | xαy = 0} for all x ∈ A,α ∈ Γ. It is clear
that (F,A) is a soft Γ− module.

Example 3.3. For consider the additively abelian groups

M = R = {
[
0 0

]
,
[
1 0

]
,
[
0 1

]
,
[
1 1

]
} ⊆ (Z2)1×2

and Γ = {
[
0
0

]
,

[
1
0

]
} ⊆ (Z2)2×1

with addition defined as matrice addition. It is trivial thatR is a Γ− ring. AlsoM
is a Γ− module over R. Let N = {

[
0 0

]
} ⊆ M and H : N → P (M) be a set

valued function defined by H(a) = {b ∈ M | R(a, α, b) ↔ aαb ∈
[
0 0

]
,∀α ∈

Γ} for all a ∈ N. It is clear that H(
[
0 0

]
) = {

[
0 0

]
} are sub Γ− module of

M. Hence (H,N) is soft Γ− module of M.

Theorem 3.1. Let (F,A) and (G,B) are two soft Γ−modules over M . Then
(F,A) ∩̃ (G,B) is a soft Γ−module over M if it is non-null.

Proof. By definition, we have that (F,A) ∩̃ (G,B) = (H,C) where H(c) =
F (x) ∩G(y) for all c ∈ C. We assume that (H,C) is a non-null soft set over M .
If c ∈ Supp(H,C), then H(c) = F (x)∩G(y) 6= ∅. We know that (F,A) , (G,B)
are both soft Γ−module over M , and so, the nonempty sets F (x) and G(y) are
both Γ−submodule over M . Thus, H(c) is a Γ−submodule over M for all c ∈
Supp(H,C). In this position, (H,C) = (F,A) ∩̃ (G,B) is a soft Γ−module over
M . 2

Theorem 3.2. Let (F,A) and (G,B) are two soft Γ−modules over M . Then
(F,A) ∪̃ (G,B) is a soft Γ−module over M if A ∩B = ∅.
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Proof. By definition, we have that (F,A) ∪̃ (G,B) = (H,C) where H(c) =
F (x) ∩ G(y) for all c ∈ C. Note first that (H,C) is a non-null owing to the fact
that Supp(H,C) = Supp (F,A) ∪̃ (G,B) . Suppose that c ∈ Supp(H,C).Then
H(c) 6= ∅ so we have F (x), G(y) 6= ∅. From the hypothesisA∩B = ∅,we follow
thatH(c) = F (x)∩G(y).On the other hand F (x)∩G(y) is a soft Γ−module over
M , we conclude that (H,C) is a soft Γ−module over M for all c ∈ Supp(H,C).
Consequently (F,A) ∪̃ (G,B) = (H,C) is a soft Γ−module over M . 2

On the other hand, union of two soft Γ− modules is not always soft Γ− mod-
ule. We will explain this situation with following example.

Example 3.4. Let M = Z6 = {0, 1, 2, 3, 4, 5} is a MΓ−module, Γ = {0, 1}, A =
Z2 = {0, 1} and B = Z3 = {0, 1, 2} such that F (0) = F (1) = {0, 2, 4}, G(0) =
G(1) = G(2) = {0, 3}A∩B = {0, 1}. If this condition is hold, then (F,A) ∪̃ (G,B)
is not a soft Γ−module over M. Indeed, H(1) = {0, 2, 3, 4} /∈ P (M).

Definition 3.2. If (F,A) and (G,B) are two soft Γ−modules overM , then (F,A)
AND (G,B) denoted by (F,A) ∧̃ (G,B) is defined as (F,A) ∧̃ (G,B) = (H,C),
where C = A×B and H (x, y) = F (x) ∩̃G (y), for all (x, y) ∈ C.

Theorem 3.3. Suppose that (F,A) and (G,B) are two soft Γ−modules over M .
Then (F,A) ∧̃ (G,B) is soft Γ−module over M if it is non-null.

Proof. Using definition, we have that (F,A) ∧̃ (G,B) = (H,C) where
C = A×B and H (x, y) = F (x) ∩̃G (y), for all (x, y) ∈ C. Then the hypothesis,
(H,C) is a non-null soft set overM . Since (H,C) is a non-null, Supp (H,C) 6= ∅
and so, for (x, y) ∈ Supp (H,C) , H (x, y) = F (x) ∩̃G (y) 6= ∅. We assume that
t1, t2 ∈ F (x) ∩̃G (y) . In this position

i) If t1, t2 ∈ F (x) = {y : R(x, y)} we have that xt1 ∈ A, xt2 ∈ A. This
implies that x(t1 + t2) ∈ A.

ii) If t1, t2 ∈ G (y) = {y1 : R(y, y1)} we have that yt1 ∈ B, yt2 ∈ B. This
implies that y(t1 + t2) ∈ B.

Hence F (x) ∩̃G (y) is a Γ− submodule. By the definition of soft Γ− mod-
ule, (F,A) and (G,B) are soft Γ−modules over M . F (x) , G (y) are also Γ−
submodule over M. Furthermore H (x, y) = F (x) ∩̃G (y) is a Γ− submodule
over M for all (x, y) ∈ (H,C) = (F,A) ∧̃ (G,B) . Hence (F,A) ∧̃ (G,B) is soft
Γ−module over M. 2

Definition 3.3. If (F,A) and (G,B) are two soft Γ−modules overM , then (F,A)
OR (G,B) denoted by (F,A) ∨̃ (G,B) is defined as (F,A) ∨̃ (G,B) = (H,C),
where C = A×B and H (x, y) = F (x) ∪̃G (y), for all (x, y) ∈ C.

Theorem 3.4. Suppose that (F,A) and (G,B) are two soft Γ−modules over M .
Then (F,A) ∨̃ (G,B) is soft Γ−module over M.
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Proof. Using definition, we have that (F,A) ∨̃ (G,B) = (H,C), where
C = A × B and H (x, y) = F (x) ∪̃G (y), for all (x, y) ∈ C. Assume that
c ∈ Supp(H,C). Then H(c) 6= ∅ and so we have that F (x) 6= ∅, G(y) 6= ∅.
By assumption, F (x) ∪̃G (y) is a soft Γ− module of M for all c ∈ Supp(H,C).
Consequently (F,A) ∨̃ (G,B) = (H,C) is a soft Γ−module over M. 2

Definition 3.4. Let (F,A) and (G,B) are two soft Γ−modules over M . Then
(F,A) +̃ (G,B) = (H,A × B) is defined as H(x, y) = F (x) + G(y) for all
(x, y) ∈ A×B.

Theorem 3.5. Suppose that (F,A) and (G,B) are two soft Γ−modules over M .
Then (F,A) +̃ (G,B) is soft Γ−module over M.

Proof. By the definition we write (F,A) +̃ (G,B) = (H,A × B) and
H(x, y) = F (x) + G(y) for all (x, y) ∈ A × B. Let (x, y) ∈ Supp(H,A ×
B).Then, H(x, y) 6= ∅ and so we have F (x) 6= ∅, G(y) 6= ∅. By taking into
account, (F,A) and (G,B) are two soft Γ−modules over M , it follows that
F (x) + G(y) is a soft Γ−module over M for all (x, y) ∈ Supp(H,A × B).
Hence (F,A) +̃ (G,B) is soft Γ−module over M. 2

Definition 3.5. Let (F,A) and (G,B) are two soft Γ−modules over M. Then
(F,A) ×̃ (G,B) = (H,A × B) is defined as H(x, y) = F (x) × G(y) for all
(x, y) ∈ A×B.

Theorem 3.6. Suppose that (F,A) and (G,B) are two soft Γ−modules over M .
Then (F,A) ×̃ (G,B) is soft Γ−module over M.

Proof. By the definition we write (F,A) ×̃ (G,B) = (H,A × B) and
H(x, y) = F (x) × G(y) for all (x, y) ∈ A × B. Let (x, y) ∈ Supp(H,A × B).
Then, H(x, y) 6= ∅ and so we have F (x) 6= ∅, G(y) 6= ∅. By taking into account,
(F,A) and (G,B) are two soft Γ−modules overM , it follows that F (x)×G(y) is
a soft Γ−module overM for all (x, y) ∈ Supp(H,A×B).Hence (F,A) ×̃ (G,B)
is soft Γ−module over M . 2

Definition 3.6. Let (F,A) and (G,B) are two soft Γ−modules over M . Then
(G,B) is called a soft Γ−submodule of (F,A) if

i) B ⊆ A,
ii) ∀b ∈ Supp(G,B), g(b) is a Γ−submodule of F (b) .
This denoted by (G,B) ⊂ (F,A) . From the definition, it is easily deduced

that if (G,B) is a soft Γ−submodule of (F,A) , then Supp(G,B) ⊂ Supp(F,A).

Theorem 3.7. Let (F,A) and (G,B) be two soft Γ−modules overM and (F,A)⊆̃
(G,B) . Then (G,B) ⊂ (F,A) .
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Proof. Straight forward. 2

Corolary 3.1. Let (F,A) be a soft Γ−module over M and {(Fi, Ai) : i ∈ I} be a
nonempty family of soft Γ−submodules of (F,A) .Then,

i) ∩̃i∈I(Fi, Ai) is a soft Γ−submodule of (F,A) if it is non-null.
ii) ∪̃i∈I(Fi, Ai) is a soft Γ−submodule of (F,A) , if Ai∩Aj = ∅ for all i, j ∈ I

and if it is non-null.
iii) If Fi(ai) ⊆ Fj(aj) or Fj(aj) ⊆ Fi(ai) for all i, j ∈ I, ai ∈ Ai, then

∨̃i∈I(Fi, Ai) is a soft Γ−submodule of ∨̃i∈I (F,A) .
iv) ∧̃i∈I(Fi, Ai) is a soft Γ−submodule of ∧̃i∈I (F,A) .

v) The cartesian product of the family
∏̃
i∈I

(Fi, Ai) is a soft Γ−submodule of∏̃
i∈I

(F,A) .

vi)
∑̃

i∈I(Fi, Ai) is a soft Γ−submodule of
∑̃
i∈I

(F,A) .

Proof. Similar to the proof of Theorems 3.5, 3.6, 3.9, 3.11, 3.13 and 3.15. 2

4 Soft Γ−Module Homomorphism
In this section, firstly we will define trivial and whole soft Γ−modules over

Γ−module M , homomorphism of Γ−modules and their properties. Moreover
we will study soft Γ−module homomorphism and soft Γ−module isomorphism.
Throughout the section, M is a Γ−module.

Definition 4.1. Let (ρ,A) and (σ,B) be two soft Γ−modules over Γ−module M
and Γ−module M1 respectively. Let f : M → M1 and g : A → B be two
functions. The following conditions:

i) f is an epimorphism of Γ−module,
ii) g is a surjective mapping,
iii) f(ρ(y)) = σ(ρ(y)) for all y ∈ A,
were satisfied by the pair (f, g), then (f, g) is called soft Γ−module homo-

morphism.
If there exists a soft Γ−module homomorphism between (ρ,A) and (σ,B), we

say that (ρ,A) is soft homomorphic to (σ,B), and is denoted by (ρ,A) ∼ (σ,B).
If there exists a soft Γ−module isomorphism between (ρ,A) and (σ,B), we say
that(ρ,A) is soft isomorphic to (σ,B), and is denoted by (ρ,A)−̃(σ,B).

Definition 4.2. Let (F,A) be soft Γ−module over M .
i) (F,A) is called the trivial soft Γ−module over M if F (a) = {0} for all

a ∈ A.
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ii) (F,A) is called the whole soft Γ−module over M if F (a) = M for all
a ∈ A.

Definition 4.3. Let M and M1 be two Γ−modules and m : M →M1 a mapping
of Γ−module. If (F,A) and (G,B) are soft sets over M and M1 respectively,
then

i) (m(F ), A) is a soft set over M1 where m(F ) : A → P (M1), m(F )(a) =
m(F (a)) for all a ∈ A.

ii) (m−1(G), B) is a soft set overM wherem−1(G) : B → P (M), m−1(G)(b) =
m−1(G(b)) for all b ∈ B.

Corolary 4.1. Let m : M →M1 be an onto homomorphism of Γ−module. Then
following statements can be given.

i) (F,A) be soft Γ−module over M , then (m(F ), A) is a soft Γ−module over
Γ−module M1.

ii) (G,B) be soft Γ−module over Γ−module M1, then (m−1(G), B) is a soft
Γ−module over M .

Proof. i) Since (F,A) is a soft Γ−module over M , it is clear that (m(F ), A)
is a non-null soft set overM1. For every y ∈ Supp(m(F ), A) we havem(F )(y) =
m(F (y)) 6= ∅.Hencem(F (y)) which is the onto homomorphic image of Γ−module
F (y) is a Γ−module of M1 for all y ∈ Supp(F (m), A). That is (m(F ), A) is a
soft Γ−module over Γ−module M1.

ii) It is easy to see that Supp(m−1(G), B)⊆ Supp(G,B). By this way let y ∈
Supp(m−1(G), B).Then, G(y) 6= ∅. Hence m−1(G(y)) which is homomorphic
inverse image of Γ−module G(y), is a soft Γ−module over M for all y ∈ B. 2

Theorem 4.1. Let m : M →M1 be a homomorphism of Γ−module and (F,A),
(G,B) be two soft Γ−modules over Γ−module M and Γ−module M1 respec-
tively. Then following statements can be given.

i) If F (a) = ker (m) for all a ∈ A,then (m(F ), A) is the trivial soft Γ−module
over M1.

ii) Ifm is onto and (F,A) is whole, then (m(F ), A) is the whole soft Γ−module
over M1.

iii) If G(b) = m(M) for all b ∈ B,then (m−1(G), B) is the whole soft
Γ−module over M .

iv) If m is injective and (G,B) is trivial, then (m−1(G), B) is the trivial soft
Γ−module over M.

Proof. i) By using F (a) = ker (m) for all a ∈ A. Then m(F )(a) = m(F (a))
= {0M1} for all a ∈ A. Hence (m(F ), A) is soft Γ−module over M1.
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ii) Suppose that m is onto and (F,A) is whole. Then F (a) = M for all a ∈ A
and so m(F )(a) = m(F (a)) = m(M) = M1 for all a ∈ A. Hence (m(F ), A) is
whole soft Γ−module over M1.

iii) If we use hypothesisG(b) = m(M) for all b ∈ B,we can writem−1(G)(b) =
m−1(G(b)) = m−1(m(M)) = M for all b ∈ B. It is clear that, (m−1(G), B) is
the whole soft Γ−module over M.

iv) Suppose that m is injective and (G,B) is trivial. Then, G(b) = {0} for all
b ∈ B,so m−1(G)(b) = m−1(G(b)) = m−1({0}) = ker m = {0M} for all b ∈ B.
Consequently, (m−1(G), B) is the trivial soft Γ−module over M. 2

Theorem 4.2. Let m : M →M1 be a homomorphism of Γ−module and (F,A),
(G,B) be two soft Γ−modules over M . If (G,B) is soft Γ−submodule of (F,A),
then (m(G), B) is soft Γ−submodule of (m(F ), A).

Proof. Suppose that y ∈ Supp (G,B). Then y ∈ Supp (F,A) .We know
that B ⊆ A and G(y) is a Γ−submodule F (y) for all y ∈ Supp (G,B). From
the expression hypothesis m is a homomorphism, m(G)(y) = m(G(y)) is a
Γ−submodule ofm(F )(y) = m(F (y)) and therefore (m(G), B) is soft Γ−submodule
of (m(F ), A). 2

Theorem 4.3. Let m : M →M1 be a homomorphism of Γ−module and (F,A),
(G,B) be two soft Γ−modules over M . If (G,B) is soft Γ−submodule of (F,A),
then (m−1(G), B) is soft Γ−submodule of (m−1(F ), A).

Proof. Let y ∈ Supp(m−1(G), B). B ⊆ A and G(y) is a Γ−submodule of
F (y) for all y ∈ B. Since m is a homomorphism, m−1(G)(y) = m−1(G(y)) is a
Γ−submodule of m−1(G(y)) = m(G)(y) for all y ∈ Supp(m−1(G), B). Hence
(m−1(G), B) is soft Γ−submodule of (m−1(F ), A). 2

5 Soft Γ− Exactness
In this section, we will introduce maximal and minimal soft Γ−submodules.

Then, we will investigate short exact and exact sequence of Γ−modules. Finally,
we will explain soft Γ−exactness and some their basic theories. Throughout this
section M is Γ−module.

Definition 5.1. Let (F,A) and (G,B) be two soft Γ−modules overM and (G,B)
be soft Γ−submodule of (F,A) . We say (G,B) is maximal soft Γ−submodule of
(F,A) if G(x) is a maximal Γ−submodule of F (x) for all x ∈ B. We say (G,B)
is minimal soft Γ−submodule of (F,A) if G(x) is a minimal Γ−submodule of
F (x) for all x ∈ B.
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Proposition 5.1. Let (F,A) be a soft Γ−module over M.

i) If {(Gi, Bi) |i ∈ I} is a nonempty family of maximal soft Γ−submodules of
(F,A) , then

⋂
i∈I (Gi, Bi) is maximal soft Γ−submodule of (F,A) .

ii) If {(Gi, Bi) |i ∈ I} is a nonempty family of minimal soft Γ−submodules of
(F,A) , then

∑
i∈I (Gi, Bi) is minimal soft Γ−submodule of (F,A) .

Proof. straight forward. 2

Corolary 5.1. Let (F,A) be a soft Γ−module over M and f : M → N be a
homomorphism if F (x) = ker f for all x ∈ A, then (f(F ), A) is the rivial soft
Γ−module over N. Similarly, let (F,A) be an whole soft Γ−module over M and
f : M → N be an epimorphism, then (f(F ), A) is a whole soft Γ−module over
N.

Definition 5.2. The homomorphism sequence of Γ−modules ... → Mn−1 →fn−1

Mn →fn Mn+1 → ... is called exact sequence of Γ−modules if Imfn−1 = Kerfn
for all n ∈ N and we call the exact sequence of Γ−modules form as 0→M1 →f

M →g M2 → 0 the short exact sequence of Γ−modules.

Proposition 5.2. Let (F,A) be a trivial soft Γ−module over Γ−module M1 and
(G,B) be a whole soft Γ−module over Γ−module M2 if 0 → M1 →f→
M →g→ M2 → 0 is a short exact sequence, then 0 → F (x) →f̃ M →g̃→
G(y)→ 0 is a short exact sequence for all x ∈ A, y ∈ B.

Proof. F (x) = 0, ∀x ∈ A since (F,A) is a trivial soft Γ−module over
Γ−module M1,so f̃ is a monomorphism. G(y) = M2,∀y ∈ B since (G,B) is
a whole soft Γ−module over Γ−module M2.g : M → M2 is an epimorphism
as 0 → M1 →f→ M →g→ M2 → 0 is a short exact sequence, so g̃ is an
epimorphism. 2

Proposition 5.3. Let (F,A) be a trivial soft Γ−module over Γ−module M1 and
(G,B) be a whole soft Γ−module over Γ−moduleM if 0→M1 →f→M →g→
M2 → 0 is a short exact sequence, then 0 → f(F )(x) →f̃ M →g̃ g(G)(y) → 0
is a short exact sequence for all x ∈ A, y ∈ B.

Proof. F (x) = 0, ∀x ∈ A since (F,A) is a trivial soft Γ−module over
Γ−module M1.Kerf = 0, so Kerf = F (x),∀x ∈ A,consequently (f(F ), A)
is trivial soft Γ−module over M. (G,B) is a whole soft Γ−module over M and
g : M → M2 is an epimorphism, so (g(G), B) is a whole soft Γ−module over
M2, thus 0→ f(F )(x)→f̃ M →g̃ g(G)(y)→ 0 is a short exact sequence for all
x ∈ A, y ∈ B. 2
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Definition 5.3. Let (F,A), (G,B) and (H,C) are three soft Γ−modules over
Γ−modules M,N and K respectively. Then we say soft Γ− exactness at (G,B) ,
if the following conditions are satisfied:

i) M →f1 N →f2 K is exact,
ii) A→g1 B →g2 C is exact,
iii) f1(F (x)) = G(g1(x)) for all x ∈ A,
iv) f2(G(x)) = H(g2(x)) for all x ∈ B,
which is denoted by (F,A)→(f1,g1) (G,B)→(f2,g2) (H,C).

In this definition, if every (Fi, Ai), i ∈ I is soft Γ− exact, then we say that
(Fi, Ai)i∈I is soft Γ− exact.

Proposition 5.4. Let (F,A) and (G,B) are two soft Γ−modules over Γ−modules
M and N respectively. If (F,A)→(f,g) (G,B)→ 0 is soft Γ− exact, then (f, g)
is soft Γ− homomorphism. In particular, if 0 → (F,A) →(f,g) (G,B) → 0 is
soft Γ− exact, then (f, g) is soft Γ−isomorphism.

Proof. Since (F,A) →(f,g) (G,B) → 0 is soft Γ− exact, we have M →f

N → 0 and A →g B → 0 are exact. Thus f and g are epimorphisms, it is clear
that (f, g) is homomorphism. If 0→ (F,A)→(f,g) (G,B)→ 0 is soft Γ− exact,
then 0 → M →f N → 0 and 0 → A →g B → 0 are exact. Thus f and g are
isomorphisms, it is clear that (f, g) is soft Γ−isomorphism. 2

Definition 5.4. Let M = 0 and A = 0, then (F,A) = 0. We call (F,A) is a
zero-soft Γ− module.

Proposition 5.5. Let (F,A), (G,B) and (H,C) are three soft Γ−modules over
Γ−modules M,N and K respectively. If (F,A) →(f1,g1) (G,B) →(f2,g2) (H,C)
is soft Γ− exact with f1, g1 epimorphism and f2, g2 monomorphism, then (G,B)
is a zero-soft Γ− module.

Proof. Since (F,A)→(f1,g1) (G,B)→(f2,g2)→ (H,C) is soft Γ− exact with
f1, g1 epimorphism and f2, g2 monomorphism, we have M →f1 N →f2 K and
A→g1 B →g2 C, hence N = 0 and B = 0, it is clear that (G,B) is zero-soft Γ−
module. 2

Theorem 5.1. Let (F,A) and (H,B) are two soft Γ−modules over Γ−modules
M and N respectively. For any M ⊂ N,A ⊂ B and M ⊂ H(x) where x ∈
B. If (F,A) →(f,g) (H,B) is soft Γ−homomorphism, then 0 → (F,A) →(f,g)

(H,B) →(f1,g1) (I, B/A) → 0 is soft Γ− exact, where I(x + A) = H(x)/M for
all x ∈ B.
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Proof. We know that 0 → M →f N →f1 N/M → 0 and 0 → A →g

B →g1 B/A → 0 are exact. It is clear that M is a Γ−submodule of N, so that
N/M is a Γ−module andM is a Γ−submodule ofH(x) andH(x)/M is always a
Γ−submodule of N/M. This shows that (I, B/A) is a soft Γ−module over N/M.
For all x ∈ B/A. Define f1 : N → N/M by f1(n) = n + M, for all n ∈ N.
Meanwhile, we define g1 : B → B/A by g1(b) = b+A, for all b ∈ B. Therefore,
it gives that

f1(H(x)) = H(x) +M, I(g1(x)) = I(x+ A) = H(x) +M

for all x ∈ B, and hence f1(H(x)) = I(g1(x)).This implies

0→ (F,A)→(f,g) (H,B)→(f1,g1) (I, B/A)→ 0

is soft Γ− exact. 2

Theorem 5.2. Let (F,A2), (G,A1) and (H,A) are three soft Γ−modules over
Γ−modules M2,M1 and M respectively. If M1 and M2 are Γ−submodules of
M with M2 ⊂ M1, A1 and A2 are Γ−submodules of A with A2 ⊂ A1, where
M1 ⊂ H(x), for all x ∈ A and M2 ⊂ G(x) for all x ∈ A1. Then 0 →
(I, A1/A2) →(f1,g1) (J,A/A1) →(f2,g2) (P,A/A1) → 0 is soft Γ− exact, where
I(x + A2) = G(x)/M2, for all x ∈ A1, J(x + A2) = H(x)/M2, for all x ∈
A,P (x+ A1) = H(x)/M1, for all x ∈ A.

Proof. Since M1 and M2 are Γ−submodules of M with M2 ⊂ M1, we have
a short exact sequence 0 → M1/M2 →f1 M/M2 →f2 M/M1 → 0. Since A1

and A2 are Γ−submodules of A with A2 ⊂ A1, there is a short exact sequence
0 → A1/A2 →g1 A/A2 →g2 A/A1 → 0. It is clear that M2 is a Γ−submodule
of M1, so that M1/M2 is a Γ−module. It gives that G(x)/M2 is a Γ−module for
all x ∈ A1 from M2 is a Γ−submodule of G(x). However G(x)/M2 is always a
Γ−submodule of M1/M2. This shows that (I, A1/A2) is a soft Γ− module over
M1/M2 for all x ∈ A1/A2. It is clear that (J,A/A2) and (P,A/A1) be a soft Γ−
module over M/M2 and M/M1 respectively.

Define f1 : M1/M2 →M/M2 by f1(m1 +M1) = m+M2, for all m1 ∈M1.
Meanwhile, we define g1 : A1/A2 → A/A2 by g1(a1 +A2) = a+A2, for all a1 ∈
A1. Therefore, we have f1(I(x)) = f1(G((x)/M2) = H(x) + M2, J(g1(x)) =
J(x + A2) = H(x) + M2 for all x ∈ A1/A2, so f1(I(x)) = J(g1(x)) for all
x ∈ A1/A2.

Define f2 : M/M2 → M/M1 by f2(m + M2) = m + M1, for all m ∈ M.
Let g2 : A/A2 → A/A1 be defined by g2(a + A2) = a + A1, for all a ∈ A.
Also, we have f2(J(x)) = f2(H((x)/M2) = H(x) + M1 for all x ∈ A/A2,
so f2(J(x)) = P (g2(x)) for all x ∈ A/A2. Hence 0 → (I, A1/A2) →(f1,g1)

(J,A/A1)→(f2,g2) (P,A/A1)→ 0 is soft Γ− exact. 2
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Theorem 5.3. Let (Fi, Ai), i = 1, 2, 3, 4, 5 be a soft Γ−module over Γ−module
Mi, i = 1, 2, 3, 4, 5 respectively. If 0 → (F1, A1) →(f1,g1) (F2, A2) →(f2,g2)

(F3, A3)→ 0 and 0→ (F3, A3)→(f3,g3) (F4, A4)→(f4,g4) (F5, A5)→ 0 are soft
Γ− exact. Then 0 → (F1, A1) →(f1,g1) (F2, A2) →(f3 f2,g3 g2) (F4, A4) →(f4,g4)

(F5, A5)→ 0 is soft Γ− exact.

Proof. Since 0 → (F1, A1) →(f1,g1) (F2, A2) →(f2,g2) (F3, A3) → 0 and
0 → (F3, A3) →(f3,g3) (F4, A4) →(f4,g4) (F5, A5) → 0 are soft Γ− exact, we
have 0 → M1 →f1 M2 →f2 M3 → 0 and 0 → M3 →f3 M4 →f4 M5 → 0 are
exact. It is clear that 0 → M1 →f1 M2 →f3 f2 M4 →f4 M5 → 0 is exact. Since
0 → A1 →g1 A2 →g2 A3 → 0 and 0 → A3 →g3 A4 →g4 A5 → 0 are exact. It is
clear that 0 → A1 →g1 A2 →g3 g2 A4 →g4 A5 → 0 is exact. Since f2(F2(x)) =
F3(g2(x)) for all x ∈ A2 and f3(F3(x)) = F4(g3(x)) for all x ∈ A3. We have
f3f2(F2(x)) = f3(F3(g2(x))) = F4(g3g2(x)) for all x ∈ A2. This implies 0 →
(F1, A1)→(f1,g1) (F2, A2)→(f3 f2,g3 g2) (F4, A4)→(f4,g4) (F5, A5)→ 0 is soft Γ−
exactness. 2

6 Conclusion

In this work the theoretical point of view of soft Γ− module is discussed. The
work is focused on soft Γ−module, soft Γ−module homomorphism and soft Γ−
exactness. By using these concepts, we studied the algebraic properties of soft sets
in Γ− module structure. One could extend this work by studying other algebraic
structures.
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Abstract

Material for teaching least squares at the undergraduate level in matrix
notation is reported. The weighted least squares equations are first derived
in matrix form; equivalence with the standard results obtained by standard
algebra are then given for the weighted average and the simplest linear re-
gression. Indicators of goodness of fit are introduced and interpreted. Even-
tually a basic equation for resampling is derived.
Keywords: coefficient of determination, weighted sample mean, resam-
pling, undergraduate education.
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1 Introduction

Statistics is a never missing topic in first degree courses of scientific programs.
Very soon, often at the second year undergraduate, the basic knowledge of random
variables and distributions, is complemented by the simple linear regression, as a
necessary tool for the interpretation of experimental data gathered in the labo-
ratories. Indeed, the critical practice of linear regressions often forms students’
basic awareness of data analysis. The advent of powerful and handy softwares
on the one hand has reduced the effort required to the students for accomplish-
ing the needed calculations, on the other hand has given them the possibility to
easily perform more advanced statistical analyses [1, 2], which they cannot really
understand on the grounds of the course. One of simplest of such more advanced
analyses is the consideration of more regressors, the starting point of multivariate
data analysis [3]. Although a specific course at the last undergraduate or first grad-
uate year can be much profitable, we experienced that, provided the students have
a basic knowledge in linear algebra, the generalized least squares can be thought
at the second year undergraduate with reasonable appreciation from the class.
Reference textbooks on the matter, seemingly more diffused in the community
of econometrics [5] than in that of experimental sciences [6], are not missing.
However, we needed to compact some fundamental concepts and equations, and
still convince the students that the more general matrix form of the least squares
allows to easily retrieve the results obtainable with standard algebra. Thus, we
prepared the following material, and we presented it effectively in a 12 hours
module together with numerical exercises. Although our lessons obviously have a
significant overlap with reference textbooks, the revised simple linear regression
and the introduction of the (adjusted) weighted coefficient of determination are
not easily retrieved from any of the textbooks known to us.

2 Matrix Form of the Weighted Least Squares

We consider n measures {y1, y2, ..., yn} and for each of them, say the i-th
one, the regressors {xi1, xi2, ..., xip}, here assumed constant, which are generally
coming from different associated measures. We will assume that for each measure
the first regressor equals one, xi1 = 1, in order to take into account the so called
intercept. The linear regression model connects the above quantities by

yi =

p∑
j=1

xijβj + εi i = 1, 2, ..., n (1)
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where β1, β2, ..., βp are the parameters to be estimated and ε1, ε2, ..., εn are ran-
dom errors, assumed independent and possibly normally distributed, with mean 0
and standard deviations σ1, σ2, ..., σn. Ordinary least squares (OLS) and weighted
least squares (WLS), also called homoskedastic and heteroskedastic regressions,
are the names used to distinguish the special case of equal values for all standard
deviations from the case of different values. The equations for WLS of course
also apply to the special OLS case.

Dividing eq. 1 by σi, i.e. given zi := yi
σi

, qij :=
xij
σi

, ςi := εi
σi

, and using the
matrix notation, the model is written as

z = Qβ + ς, (2)

or, equivalently,

W
1
2y = W

1
2Xβ +W

1
2 ε,

where W is a diagonal matrix whose elements Wii := wi = σ−2
i are known as

statistical weights, z and β are column matrices of n and p elements, respectively,
Q is a matrix of dimension n× p. It should be noticed that Qβ is the expectation
value of z, i.e. Qβ =< z >.

Under these hypotheses the least squares method gives an estimate of the
model parameters by the minimization with respect to β of the functional

SS := ςT ς = (z −Qβ)T (z −Qβ) (3)

= (z −Qβ)T (z −Qβ) = zT z − 2βTQT z + βTQTQβ, (4)

where it has been considered that βTQT z = zTQβ.
The estimates of the parameters by the least squares method are the solutions

of the equations ∂SS
∂βi

= 0, for i = 1, 2, ..., p, one for each model parameter. The
computation of the derivative with respect to the vector of the parameters gives:

−QT z +QTQβ = 0, (5)

whose solution

β̂ = V QT z (6)

is, by definition, the least squares estimator of β, where V := C−1, and
C := QTQ, which we will assume always invertible.
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We note that β̂ is an unbiased estimator of β, indeed form eqs. 2 and 6 we
have

< β̂ >= V QT < z >= V QTQβ = V Cβ = β. (7)

An unbiased behavior also characterizes the weighted sample mean. Indeed,
eq. 5 for β = β̂ gives QT z = QT ẑ which, rewritten in the original variables, is
XTWy = XTWŷ. From this and from the initial hypothesis xi1 = 1, for any i,
one gets

∑
iwiyi =

∑
iwiŷi, which divided by

∑
iwi shows that the weighted

sample mean of the fitted values equals the weighted sample mean of the mea-
sures:

ȳw = ŷw. (8)

Given δ:= β̂ − β from eqs. 6 and 7 one gets

δ = V QT ς, (9)

which allows to easily compute the covariance matrix of the parameters, showing
that it coincides with V

< δδT >= V QT < ςςT > QV = V QT IQV = V,

where I denotes the identity matrix.
The standard deviations of the estimators of the parameters are given by the

square roots of the diagonal elements of V .

Using the fitted values, one can write

z = ẑ + (z − ẑ) = Qβ̂ + e,

where e is known as the vector of residuals, whose analysis is object of much
concern in literature.

The fitted values are often written as

ẑ = Qβ̂ = QV QT z =: Hz, (10)

where we have introduced the symmetric matrix H , which is known as hat matrix
as it ’puts the hat on z’. This matrix is readily verified to be idempotent, H2 =
QV QTQV QT = H , a feature which readily allows to demonstrate the useful
property of orthogonality of residuals and fitted values:

(z − ẑ)T ẑ = zT (I −H)Hz = 0.

Given
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SSE := minβSS = eT e,

the expansion 4, with ς in place of z and δ in place of β, can be rewritten as:

SSE = (ς −Qδ)T (ς −Qδ) = ςT ς−2δTQT ς + δTCδ = ςT ς − δTCδ,

where we have considered that QT ς = Cδ thanks to eq. 9.
Given SSR := δTCδ, which as SS and SSE is non-negative, the preceding

equation becomes

SSE = SS − SSR

whose interpretation is that the error in the estimation of the parameters, yielding
a nonzero SSR, reduces the sum of squares SS which could have been computed
with the expectation value 〈z〉 = Qβ.

The average of SSE can be easily computed considering that δTCδ = Tr
[
δδTC

]
,

and then

〈SSE〉 =
〈
ςT ς
〉
− Tr

[〈
δδT
〉
C
]

= n− Tr (V C) = n− p,

known as the number of degrees of freedom, denoted by ν.
Notation. In the following sxx,w, Sxx,w e sxy,w indicate respectively the sample

variance, sum of squares and weighted covariance, defined from the weighted
sample mean ȳw :=

∑
i wiyi∑
i wi

in analogous manner to the corresponding unweighted

means. We recall that their expressions are sxx,w = x2
w− x̄2

w, Sxx,w = sxx,w
∑

iwi
e sxy,w = xyw − x̄wȳw, where xy := (x1y1, ..., xnyn).

3 Indicators for the Goodness of Fit
Besides reporting the best-fit parameters and the resulting fitted values, it is

customary to give compact indicators of the goodness of fit.
A method which is widely used in the analysis of experimental data consists

in the chi-squared test: the hypothesis that the model is correct is not rejected,
at the appropriate level of significance, if SSE assumes values close to 〈SSE〉,
i.e., for any number of parameters, if χ2

r = SSE
ν

is close to 1. Values of χ2
r larger

or smaller than 1 are then considered as indicators of a poor fit or, respectively,
overfitting.

A different approach considers weighted sample means. Defining the weighted
coefficient of determination R2

w as the square of the weighted sample correlation
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coefficient syŷ,w√
syy,wsŷŷ,w

between data y and fitted values ŷ = Xβ̂ and thus limited
by 0 ≤ R2

w ≤ 1, one has that

1−R2
w =

SSE

Syy,w
=

see
syy,w

, (11)

showing that R2
w = 1 iff SSE = 0, i.e. iff all residuals are zero. Therefore the

greater the value of R2
w the better the agreement. Eq. 11 can be proven thanks

to the orthogonality relation discussed above. The vector yww
1
2 , where w

1
2 is a

column vector of elements w
1
2
i , is orthogonal to the vector of residuals z − ẑ, by

virtue of eq. 8. Therefore the orthogonality of residuals and fitted values, eq. 2,
still holds if the fitted values are translated by yww

1
2 . The vector relationship

z − yww
1
2 = (ẑ − yww

1
2 ) + (z − ẑ), (12)

graphically sketched in Figure 1, allows to assess that

Syy,w = Sŷŷ,w + SSE, (13)

whose interpretation is that Sŷŷ,w/Syy,w is the fraction of variability of the data
explained by the knowledge of Q, i.e. by the regression, and SSE/Syy,w is the
unexplained one, i.e. that coming from errors.

Still from eq. 12 one gets

Sŷy,w = (ẑ − ŷww
1
2 )T (z − yww

1
2 ) = (ẑ − ŷww

1
2 )T (ẑ − ŷww

1
2 ) = Sŷŷ,w (14)

and then

R2
w =

S2
ŷy,w

Sŷŷ,wSyy,w
=
Sŷŷ,w
Syy,w

. (15)

Insertion of eq. 15 in eq. 13 readily gives eq. 11.
In order to discourage the introduction of models too complicated for the data

examined, it has been introduced the adjusted determination coefficient

R2
a = 1− (1−R2

w)
n− 1

n− p
,

obtained substituting the unbiased variances in the rhs of eq. 11.

It often happens that standard deviations of experimental data are only ap-
proximately known. A common assumption is that the standard deviations σi are
known but for a factor k: σi = kσ̃i, with the σ̃i known a priori. If the adjustment
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w1/2yw

ẑ

ẑ −w1/2yw
z −w1/2yw

z

w1/2yw

z − ẑ

z − ẑ

Figure 1: The residuals z− ẑ are orthogonal to both the estimates ẑ and the vector
yww

1
2 .
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of k leads to a good fitting for the model, χ2
r should be close to ν. Using this

value, one gets

ν =
n∑
i=1

(yi − ŷi)2

k2σ̃2
i

,

and a trial value for k is obtained as

k =

√
1

ν

∑
(yi − ŷi)2

σ̃2
i

.

4 Basic Applications

4.1 (Weighted) mean
The model y = β1 + ε has an n × 1 matrix of relative regressors, whose i-th

element is
qi1 = w

1
2
i

Application of eq. 7 soon gives as the best fit parameter the weighted mean

β̂ = V Qz =

∑
iwiyi∑
iwi

= ȳw

and its variance is the sum of the weights: σ2
β = V11 =

∑
iwi.

4.2 WLS for a straight line
The standard linear regression considers the model y = a + bx. In the above

notation a = β1 and b = β2 and the regressor matrix is

X =

[
1 1 ... 1
x1 x2 ... xn

]T
The matrix of relative regressors will be then

Q =

[ √
w1

√
w2 ...

√
wn√

w1x1
√
w2x2 ...

√
wnxn

]T
,

the vector of relative data
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z =
[ √

w1y1
√
w2y2 ...

√
wnyn

]T
,

and

C =
∑
i

wi

[
1 x̄w
x̄w x2

w

]
,

whose inverse gives the covariance matrix of the parameters

V =
1

Sxx,w

[
x2
w −x̄w
−x̄w 1

]
.

The standard deviations of the estimators of the parameters will be then[
σâ
σb̂

]
=

[ √
V11√
V22

]
=

1√
Sxx,w

[ √
x2
w

1

]
,

and the estimated parameters will be

[
â

b̂

]
= V QT z =

1

sxx,w

[
x2
w −x̄w
−x̄w 1

] [
yw
xyw

]
=

[
ȳw − sxy,w

sxx,w
x̄w

sxy,w
sxx,w

]
,

which in case of all equal weights (homoskedastic regression) have the simpler
expression

[
ȳ − sxy

sxx
x̄ sxy

sxx

]T
.

4.3 Revised simple linear regression
We now give a simplified approach for the bivariate weighted linear regres-

sion: given 1 := [1 1 ... 1]T , we subtract yw1 from the data and from the fitted
data and, considering that yw = ŷw = a+ bx̄w, we obtain

y − yw1 = b(x− x̄w1) + ε, (16)

which, with z := W
1
2 (y − yw1), q := W

1
2 (x− x̄w1) e ς := W

1
2 ε, can be written

as in eq. 2,
z = bq + ς,

but here there is the single parameter b to be determined, as in the example of the
weighted mean.

This means that matrix C is the scalar Sxx,w readily invertible, and then V =
C−1 = 1

Sxx,w
. On the other hand, as
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qT z = (x− x̄w1)TW (y − yw1) = Sxy,w + yw
∑
i

wi(xi − x̄w) = Sxy,w,

from eq. 6, one gets again b̂ = sxy,w
sxx,w

. Writing now the model as y − bx = a1 + ε,
the example in 4.1 gives for the intercept ȳw − bx̄w, from where, replacing b with
its estimator1, one finally gets â = ȳw − b̂x̄w, as in 4.2.

It is to be considered, however, that this simplification leads to loose informa-
tion on the covariance of the a and b parameters, which should then be recover ex
post (Appendix).

4.4 Resampling and the Best-fit Parameters
A remarkable representation of the p best-fit parameters can be obtained if one

tries to determine them from the
(
n
p

)
p-elements subsets of the original set of n

measures [4]. Let S(s) be a p× n matrix obtained from the n× n identity matrix,
upon selecting the p rows whose indices form subset s, with s = 1, . . .

(
n
p

)
. Let

also M [k|v] be the matrix obtained from matrix M upon replacing its k-th column
with vector v.

For any p-elements subset s, the data needed for the WLS are stored in vector
z(s) = S(s)z and the square matrix Q(s) = S(s)Q; the best-fit parameters are

β̂(s) = Q−1
(s)z(s) = X−1

(s)W
−1/2
(s) W

1/2
(s) y(s) = X−1

(s) y(s), (17)

which shows that, for p measures, WLS and OLS give the same results.
Use of Cramer’s rule on eqs. 5 and 17 gives

β̂k =
detQTQ[k|z]

detQTQ
, (18)

and

β̂(s)k =
detQ

[k|z]
(s)

detQ(s)

=
detX

[k|y]
(s)

detX(s)

, (19)

Use of the Cauchy-Binet theorem to expand the determinants of the equation
18 leads to

β̂k =

∑
s detQ(s) detQ

[k|z]
(s)∑

s detQ(s) detQ(s)

=

∑
swsβ̂(s)k∑

sws
, (20)

which is the equation for a weighted average of the OLS results β̂(s)k with weights

ws = (detQ(s))
2. (21)

1Implicit use is made of the functional invariance of the estimator b̂.
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The above representation of the best-fit parameters is the starting point for robust
modifications of WLS, where the basic idea is to exclude from the mean the more
extreme values of β(s)k [7].

5 Conclusions
The least squares method, a fundamental piece of knowledge for students of

all scientific tracks, is often introduced considering the simple linear regression
with only two parameters to be determined. However, the availability of ever
more large data sets prompts even undergraduate students to a sounder and wider
knowledge of linear regression. Here, we have used the linear algebra formal-
ism to compact the main results of the least squares method, encompassing ordi-
nary and weighted least squares, goodness of fit indicators, and eventually a basic
equation of re-sampling, which could be used to stimulate interested students in
an even broader knowledge of data analysis. The compactness of the equations
reported above allow their introduction at the undergraduate level, provided that
basic linear algebra has been previously introduced.
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Appendix
Moments of â e b̂

Averages.
< b̂ >= <sxy,w>

sxx,w
= (x−x̄w1)TW<y−ȳw1>

sxx,w
= (x−x̄w1)TW<y>

sxx,w
= (x−x̄w1)TW<a1+bx>

sxx,w
=

b (x−x̄w1)TW (x−x̄w1)
sxx,w

= b;

< â >=< ȳw > −x̄w < b̂ >= a+ bx̄w − x̄wb = a
The estimators are then unbiased.

Variances.
We shall use the following auxiliary results:
i) Cov(yi, yj) = δijw

−1
i

ii) V ar(ȳw) = Tr(W )−1

iii) Cov(ȳw, b̂) = 0

Given d := W (x − x̄w1), we have that dT1 =
∑

i di = 0 and then Sxy,w =
dT (y − ȳw1) = dTy; Then V ar(Sxy,w) =

∑
ij didjCov(yi, yj) =

∑
i d

2
iw
−1
i

=
∑

iwi(xi − x̄w)2 = Sxx,w from which V ar(b̂) = V ar(Sxy,w)

S2
xx,w

= 1
Sxx,w

.

V ar(â) = V ar(ȳw)−x̄wCov(ȳw, b̂)+x̄2
wV ar(b̂) = Tr(W )−1+ x̄2w

Sxx,w
= x2w

Sxx,w
.

.
Cov(â, b̂) = Cov(ȳw − x̄wb̂, b̂) = Cov(ȳw, b̂)− x̄wV ar(b̂) = − x̄w

Sxx,w
.

Proof of the auxiliary results
i) Cov(yi, yj) = Cov(a + bxi + εi, a + bxj + εj) = Cov(εi, εj) = δijσ

2
i =

δijw
−1
i .

ii) V ar(ȳw) = Tr(W )−2
∑

ij wiwjCov(yi, yj) = Tr(W )−2
∑

iwi = Tr(W )−1

iii) Tr(W )Cov(ȳw, Sxy,w) =
∑

ij widjCov(yi, yj) =
∑

i di = 0 and then
Cov(ȳw, b̂) = 0.

2
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