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Abstract

Fuzzy semigroup is an algebraic extension of semigroup. It has found
application in fuzzy coding theory, fuzzy finite state machines and
fuzzy languages. In this paper, a comprehensive literature review on
fuzzy semigroup theory is realized. We will begin with a review of
fuzzy groups which heavily inspired the notion of fuzzy semigroups
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1 Introduction
Semigroup theory is a thriving field of modern abstract algebra. As the name

suggests, a semigroup is a generalization of a group; because a semigroup need
not in general have an element which has an inverse. The earliest major contri-
butions to the theory of semigroups are strongly motivated by comparisons with
groups and rings. Semigroup theory can be considered as one of the most suc-
cessful off-springs of ring theory in the sense that the ring theory gives a clue
how to develop the ideal theory of semigroups. The algebraic structure enjoyed
by a semigroup is a non-empty set together with an associative binary operation.
However, the fuzzy algebraic structures and their extensions are very important.
Nowadays, a lot of extensions of fuzzy algebraic structures have been introduced
by many authors and have been applied to real life problems in different fields of
science.

Many crisp concepts of algebraic structures have been extended to the non-
classical structures. Fuzzy groups were first considered by Rosenfeld (1971). In
1971, he defined fuzzy subgroup and established some of its properties. His def-
inition of fuzzy group is a turning point for pure mathematicians. Since then, the
study of fuzzy algebraic structure has been pursued in many directions such as
groups, rings, modules, vector space and so on. Aktas and Cagman (2007) gave
a definition of soft groups and derived their basic properties. Rough groups were
defined by Biswas and Nanda (1994), and some other authors have studied the al-
gebraic properties of rough set as well. Demirci (2001) introduced the concept of
smooth groups by using fuzzy binary operation. Multigroups were first described
by Marty and several scholars put forth different definitions in an attempt to gener-
alize group concept (see Dresher and Ore (1938), Griffiths (1938), Schein (1987)
Barlotti and Strambach (1991), Nazmul et al. (2013), Tella and Daniel (2013)).

Moreover, the algebraic extensions of a semigroup have been been studied by
many authors. Among others are the notion of ternary semigroups known to Ba-
nach (cf. Los (1955)) who is credited with an example of a ternary semigroup
which does not reduce to a semigroup. kazim and Naseeruddin (1972) intro-
duced left almost semigroups (LA-semigroups). The structure is also known as
AG-groupoid and modular groupoid and has a variety of applications in topology,
matrices, flock theory, finite mathematics and geometry. Sen (1981) introduced
the concept of Γ-semigroups as a generalization of semigroups.

The purpose of this paper is to promote research and disseminate fuzzy profi-
ciency by presenting a comprehensive and up to date literature review of the fuzzy
semigroup theory.
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2 A brief review of fuzzy groups
The important concept of a fuzzy set put forth by Zadeh (1965) has opened

up keen insights and applications in a wide range of scientific fields. Since then,
many papers on fuzzy sets appeared showing the importance of the concept and
its applications to logic, set theory, group theory, groupoids and topology.

The study of fuzzy algebraic structures started in the pioneering paper of
Rosenfeld (1971). Rosenfeld introduced the notion of fuzzy groups and success-
fully extended many results from groups to fuzzy groups. Though some other def-
initions of fuzzy groups are available in the literature (for example, Anthony and
Sherwood (1979) redefined the fuzzy groups in terms of a t-norm which replaced
the minimum operation), Rosenfeld’s definition seems to be the most conventional
and accepted one.

Most of the recent contributions in the field are the validations of Rosenfeld’s
definition where a fuzzy subset A of a group X is called a fuzzy subgroup of X
if and only if µA(xy) ≥ min{µA(x), µA(y)} and µA(x−1) ≥ µA(x). Das (2014)
defined a level subgroup of a fuzzy subgroup A of a group X as an ordinary sub-
group At of X , where t ∈ [0, 1].

Wu (1981) studied fuzzy normal subgroup. Also, fuzzy normal subgroups
were studied by Liu (1982) and Kumar et al. (1992). In line with this, Ajmal and
Jahan (2012) introduced the notion of a characteristic fuzzy subgroup of a group
and related results.

Mukherjee and Bhattacharya (1984) introduced the concept of fuzzy cosets
and their relation with fuzzy normal subgroups. Moreover, the authors proved
fuzzy generalizations of some important theorems like Lagranges and Cayleys
theorems. Also, the authors initiated the notions of a fuzzy normalizer of a fuzzy
subgroup and fuzzy solvable in Mukherjee and Bhattacharya (1986) and Mukher-
jee and Bhattacharya (1987).

The effect of group homomorphism on fuzzy groups was studied by Rosen-
feld Rosenfeld (1971) and proved that a homomorphic image of a fuzzy subgroup
is a fuzzy subgroup provided the fuzzy subgroup has

∨
-property, while a homo-

morphic pre image of a fuzzy subgroup is always a fuzzy subgroup. Anthony and
Sherwood Anthony and Sherwood (1979) later proved that even without the

∨
-

property the homomorphic image of a fuzzy subgroup is a fuzzy subgroup. Sidky
and Mishref (1990) proved that if f : X −→ Y is a group homomorphism and
A is a fuzzy subgroup of X ”with respect to a continuous t-norm T , then f(A)

9
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is a fuzzy subgroup of Y with respect to T ”. Since
∧

is a continuous t-norm
(Anthony and Sherwood), it follows that f(A) ∈ FG(Y ) whenever A ∈ X . It
was proved by Akgul (1988) that f−1(B) is a fuzzy subgroup of X whenever
B is a fuzzy subgroup of Y . Fang (1994) introduced the concepts of fuzzy ho-
momorphism and fuzzy isomorphism by a natural way, and study some of their
properties. Ajmal (1994) defined a notion of ’containment’ of an ordinary kernel
of a group homomorphism in a fuzzy subgroup and provided the long-awaited so-
lution of the problem of showing a one-to-one correspondence between the family
of fuzzy subgroups of a group, containing the kernel of a given homomorphism,
and the family of fuzzy subgroups of the homomorphic image of the given group.
Yong (2004) constructed a quotient group induced by a fuzzy normal subgroup
and proved the corresponding isomorphism theorems.

Demirci and Racasens (2004) initiated fuzzy equivalence relation associated
with a fuzzy subgroup and showed that a fuzzy subgroup is normal if only if the
operation of the group is compatible with its associated fuzzy equivalence rela-
tion. kondo (2004) modified the idea of Demirci and Recasens and defined a
fuzzy congruence on a group.

Ngcibi et al. (2010) obtained a formula for the group Zpm × Zpn when n =
1, 2, 3 and Sehgal et al. (2016) extended the concept for all values of n.

3 A tour of semigroup theory
The term semigroup was first coined in a French group theory textbook

(de Seguier (1904)) with a more stringent definition than the modern one, be-
fore being introduced to the English-speaking mathematical world by Leonard
Dickson the following year Dickson (1905). Three decades after, the only semi-
group theory being done was that done in near-obscurity (at least from the Western
perspective) by a Russian mathematician, Anton Kazimirovich Suschkewitsch.
Suschkewitsch (1928) was essentially doing semigroup theory before the rest of
the world knew that there was such a thing, thus many of his results were redis-
covered by later researchers who were unaware of his achievements.

The study of semigroups exploded after the publication of a series of highly
influential papers in the early 1940s. Ree (1940) obtained the structure of finite
simple semigroups and proved that the minimal ideal (Green’s relation) of a finite
semigroup is simple. Clifford (1941) introduced semigroups admitting relative
inverses. Dubreil (1941) studied semigroup theory from the concept of lattice of
equivalence relations on sets. Preston (1954) defined and developed the concept of
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inverse semigroups. Furthermore, Preston described congruences on completely
0-simple semigroup and free inverse semigroups were also studied by the author
(see Preston (1961) and Preston (1973)). Munn (1955), having carried out re-
search in a different direction, introduced the notion of semigroup algebras.

kimura (1957) studied semigroups very widely and vividly and carried studies
on idempotent semigroups. He further researched idempotent semigroups which
satisfies some identities. Moreover, idempotent semigroups was earlier studied by
McLean (1954).

Yamada (1997) analyzed idempotent semigroups. Green (1951) authored a
classical paper on the structure of semigroups and with Rees to study those semi-
groups in which xr = x. (Green and Rees, 1952)

For over three decades, Howie (1976)-Howie (1995) worked on embedding
theorems for semigroups in his book Howie (1976). He collaborated with Munn
and Weirert and edited a proceeding of the conference on semigroups and their ap-
plications. Howie et al. (1992). His contributions to semigroup theory is very sig-
nificant. In this period of three decades, semigroup theorists like Petrich (1973)-
Petrich (1984), McAlister and McFadden (1974)-McAlister (1974), Alan (1998),
Lawson (1998) and Lajos (1971) have done lots of research on special class of
semigroups in the vein of inverse semigroups, free semigroups, etc. and their
properties. Okninski (1998) published a book on semigroups of matrices.

Several researchers have worked on the types of semigroup mentioned earlier
and developed more properties with applications across a broad spectrum of ar-
eas (see Eilenberg (1974), Eilenberg (1976), Hopcropt and Ullman (1979), Howie
(1991), Lallement (1979), Straubing (1994)).

In a conference, Meakin (2005) delivered a lecture on groups and semigroups
exploring their connections and contrasts. He clearly acknowledged that in the
past several decades, group theory and semigroup theory have developed in differ-
ent directions. Cayley’s theorem enables one to view groups as groups of permu-
tations of some set while semigroups are represented as semigroups of functions
from a set to itself. However, significant research has been carried out both in
group theory and semigroup theory beyond the early viewpoints. In reality, sev-
eral concepts in modern semigroup theory are closely related to group theory. For
instance, automata theory and formal language theory turn out to be related (see
Hopcropt and Ullman (1979), Howie (1991)).

Very recently, Gould and Yang (2014) presented a piece of research work ti-
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tled ”Every group is a maximal subgroup of a naturally occurring free idempo-
tent generated semigroup”. The structures of generalized inverse semigroups by
kudryavtseva and Lausa (2014) is also a recent work on inverse semigroups. Hag-
gins (1992) carried out a research on permutations of a semigroup that maps to
inverses. The variety of unary semigroups with associate inverse subsemigroup
by Billhardt et al. (2014) is however an additional view on inverse subsemigroups.
Thus, semigroup theory has developed rapidly to become the extremely prolific
area of research for scholars.

4 Development of fuzzy semigroup theory
In this section, we systematically provides research work done on fuzzy semi-

group analogue of some basic notions from semigroup theory as well as record
some elementary properties and applications of fuzzy semigroups.

4.1 Fuzzy Semigroup
The study of fuzzy algebraic structures started with the introduction of the

concepts of fuzzy subgroup (subgroupoid) and fuzzy (left, right) ideal in the pi-
oneering paper by Rosenfeld Rosenfeld (1971). In 1979, fuzzy semigroups were
introduced by ((Kuroki (1981), Kuroki (1982)), which is a generalization of clas-
sical semigroups. He had published a series of papers Kuroki (1981)-Kuroki
(1997), in which he laid the foundation of an algebraic theory of semigroup in
the fuzzy framework. In literature, many related works vis-á-vis fuzzy ideals of
semigroups can be found in (Lajos (1979), Mclean and Kummer (1992), Xue-
Ping et al. (1992), Ahsan et al. (1995), Zhi-Wen and Xue-Ping (1995), Dib and
Galhum (1997), Xiang-Yun (1999b), Das (1999), Xiang-Jun (2001b)-Xiang-Jun
(2002), Ahsan et al. (2001), Lee and Shun (2001), Ahsan et al. (2002), Jun and
Seok-Zun (2016a)-Jun and Seok-Zun (2016b), kazanci and Yamak (2008), Zhan
and Jun (2010), khan et al.).

Shen (1990) initiated the concepts of fuzzy regular subsemigroups, fuzzy
weakly regular subsemigroups fuzzy completely regular subsemigroups, fuzzy
weakly completely regular subsemigroup and investigated some of their alge-
braic properties. Based on the definition of fuzzy regular subsemigroup given
by Shen (1990), Xue-Ping and Wang-Jin (1993) defined fuzzy (left, intra-) regular
subsemigroup in semigroups and studied some related properties. Furthermore,
point-wise depiction of fuzzy regularity of semigroups was introduced by Zhi-
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Wen and Xue-Ping (1993). They also proposed the concept of a fuzzy weakly
left (right, intra-) regular subsemigroup and exhibited some algebraic properties.
Shabir et al. (2010) in the twentieth century characterized regular semigroups by
(α, β) - fuzzy ideals.

Samhan (1993) discussed the fuzzy congruence relation generated by a given
fuzzy relation on a semigroup. He also studied the lattice of fuzzy congruence
relation on a semigroup and gave some lattice theoretic properties. Kuroki (1997)
introduced the notion of a quotient semigroup induced by a fuzzy congruence re-
lation on a semigroup and obtained homomorphism theorems with respect to the
fuzzy congruence. Earlier before his published paper in Kuroki (1997), Kuroki
(1995) studied fuzzy congruences on T ∗- pure semigroups. Moreover, he had
earlier proposed the concept of an idempotent-separating fuzzy congruence on in-
verse semigroups before Das (1997) developed fuzzy congruences in an inverse
semigroup and established some important results. The notions of fuzzy kernel
and fuzzy trace of a fuzzy congruence on an inverse semigroup were introduced
by Al-Thurkair (1993). He established a one-to-one correspondence between
fuzzy congruence pair and fuzzy congruences on an inverse semigroup. Xiang-
Yun (1999a) introduced fuzzy Rees congruences on semigroups and obtained that
a homomorphic image of a fuzzy Rees congruences semigroup is a fuzzy Rees
congruences semigroup. Tan (2001) studied fuzzy congruences on a regular semi-
group. Zhang (2000) introduced the concept of fuzzy group congruences on a
semigroup and investigated some of its properties. Two years after, he examined
fuzzy congruences on completely 0-simple semigroups. Recently, Ma and Tian
(2011) introduced the notion of fuzzy congruence triple on a completely simple
semigroup and used it to characterize fuzzy congruence on a completely simple
semigroup.

The concept of fuzzy semiprimality in a semigroup as an extension of semipri-
mality in a semigroup was introduced by Kuroki (1982). He described a semi-
group that is a semilattice of simple semigroups in terms of fuzzy semiprimal-
ity. Kuroki (1993) characterized a completely regular semigroup and a semi-
group that is semilattice of groups in terms of fuzzy semiprime quasi-ideals.
Xiang-Jun (2000) defined and studied prime fuzzy ideals of a semigroup. Sub-
sequently, Xiang-Jun (2001a) introduced and studied the quasi-prime and weakly
quasi-prime fuzzy left ideals of a semigroup. kehayopulu et al. (2001) worked on
characterization of prime and semiprime ideals of semigroups in terms of fuzzy
subsets. Shabir (2015) characterized semigroups in which each fuzzy ideal is
prime. kazanci and Yamak (2009) defined ϕ-semiprime fuzzy ideals of a fuzzy
semigroup and described all of ϕ-semigroups in which every ϕ-fuzzy ideal is
ϕ-semiprime. Manikantan and Peter (2015) proposed some new kind of fuzzy
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subsets of a semigroup by using fuzzy magnified translation, fuzzy translation,
fuzzy multiplication and extension of a fuzzy subset and obtained some results on
fuzzy semiprime ideals of semigroups.

Among other authors who reported work done on fuzzy semigroup are Liza-
soain and Gomez (2017) who showed that the direct of two fuzzy transformation
is again a fuzzy transformation semigroup if and only if the lattice is distributive.
Budimirovic et al. (2014) introduced fuzzy semigroups with respect to a fuzzy
equality. Sen and Choudhury (2006) studied the intersection graphs of fuzzy semi-
groups and showed related results.

4.2 Elemantary Properties of Fuzzy Semigroup

Here, we refer readers to Mordeson et al. (2003) for more details.

4.2.1 Fuzzy set

Let S be a non empty set. A fuzzy set in S is a function f : S −→ [0, 1].

4.2.2 Semigroup

A semigroup is an algebraic structure (S, .) consisting of a non empty set
together with an associative binary operation ” · ”.

4.2.3 Fuzzy ideals in semigroups

Let S be a semigroup and f, g be two fuzzy subsets of S. The product of f ◦ g
is defined by

f ◦ g (x) =

{ ∨
x=yz{f(y) ∧ g(z)}, if ∃ y, z ∈ S such that x = yz,

0, otherwise.

for all x ∈ S.

A fuzzy subset f of S is called a fuzzy subsemigroup of S if f(ab) ≥ f(a)
∧
f(b)

for all a, b ∈ S, and is called a fuzzy left (right) ideal of S if f(ab) ≥ f(b) (f(ab) ≥
f(a)) for all a, b ∈ S. A fuzzy subset f of S is called a fuzzy two-sided ideal (or
a fuzzy ideal) of S if it is both a fuzzy left and a fuzzy right of S.

14
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Lemma 4.1. Let f be a fuzzy subset of a semigroup S. Then the following prop-
erties hold.

(i) f is a fuzzy subsemigroup of S if and only if f ◦ f ⊆ f .

(ii) f is a left ideal of S if and only if S ◦ f ⊆ f .

(iii) f is a right ideal of S if and only if f ◦ S ⊆ f .

(iv) f is a two-sided ideal of S if and only if S ◦ f ⊆ f and f ◦ S ⊆ f .

Proof. See Mordeson et al. (2003)

Lemma 4.2. Let S be a semigroup. Then the following properties hold.

(i) Let f and g be two fuzzy subsemigroups of S. Then f ∩g is a fuzzy subsemi-
group of S.

(ii) Let f and g be (left, two-sided) ideal of S. Then f ∩ g is also a fuzzy left
(right two-sided) ideal of S.

Proof. See Mordeson et al. (2003)

Lemma 4.3. If f is a fuzzy left (right) ideal of S. Then f ∪ (S ◦ f) (f ∪ (f ◦ S))
is a fuzzy two-sided ideal of S.

Proof. See Mordeson et al. (2003)

4.2.4 Fuzzy regular subsemigroup and homomorphism

If f is a fuzzy subsemigroup of S and ∀ x ∈ S, there exists x′ ∈ Rx such that
f(x

′
) ≥ f(x) provided f(x) 6= 0, then f is called a fuzzy regular subsemigroup

of S.

Proposition 4.1. f is a fuzzy regular subsemigroup of S if and only if ∀ t ∈ (0, 1],
ft is a regular subsemigroup of S provided ft 6= ∅.

Proof. See Mordeson et al. (2003)

Proposition 4.2. If f is a fuzzy regular subsemigroup of S, then f ◦ f = f .
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Proof. See Mordeson et al. (2003)

Proposition 4.3. Let α be a semigroup surjection homomorphism from S onto T .

(i) If f is a fuzzy regular subsemigroup of S, then α(f) is a fuzzy regular sub-
semigroup of T .

(ii) If g is a fuzzy regular subsemigroup of T , then α−1(g) is a fuzzy regular
subsemigroup of S.

Proof. See Mordeson et al. (2003)

4.2.5 Fuzzy congruences on semigroups and fuzzy factor semigroups

A fuzzy equivalence relation on a semigroup S which is compatible is called
a fuzzy congruence relation on S.

Theorem 4.1. Let µ and ν be fuzzy congruences on semigroup S. Then the fol-
lowing conditions are equivalent.

(i) µ ◦ ν is a fuzzy congruence.

(ii) µ ◦ ν is a fuzzy equivalence.

(iii) µ ◦ ν is fuzzy symmetric.

(iv) µ ◦ ν = ν ◦ µ.

Proof. See Mordeson et al. (2003)

Let µ be a fuzzy congruence on S. Then S/µ = {µa | a ∈ S}, where
µa = µ(a, x) for all x ∈ S.

Theorem 4.2. The binary relation ∗ on S/µ is well-defined.

Proof. See Mordeson et al. (2003)

Theorem 4.3. Let µ be a fuzzy congruence on a semigroup S. Then
µ−1(1) = {(a, b) ∈ S × S | µ(a, b) = 1} is a congruence on S.

Proof. See Mordeson et al. (2003)
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4.3 Applications of Fuzzy Semigroups
There are some important areas in which the fuzzy semigroup-theoretic ap-

proach is quite substantial and more completely utilized. The most significant
such areas are the theories of fuzzy codes, fuzzy finite state machines and fuzzy
languages. For greater details on the subject, the readers are also directed to the
monograph by Mordeson et al. (2003).

4.3.1 Fuzzy codes

Let X be an alphabet with 1 ≤| X |< ∞ and X∗(X+) is the free monoid
(semigroup) generated by X with operation of concatenation. If A is a fuzzy
submonoid of X∗ and B ∈ FP(X∗) such that B ⊆ A, then B is its fuzzy base
with B(e) = 0 and

(B1) ∀ x ∈ Supp(A)\e, B∗(x) ≥ A(x);

(B2) ∀ x ∈ Supp(A)\e, xiyj ∈ X∗, i = 1, ..., n; j = 1, ...,m and
x = xi...xn = y1...ym,

∧
{B(x1), ..., B(xn), B(y1), ..., B(yn)} ∝

∧
{[m =

n], [x1 = y1], ..., [xn = yn} ≥ A(x), where e and FP(X∗) denote the
empty string and the class of all fuzzy subsets of X∗. This explains the
origin of the concept. A fuzzy code A over X+ is such that A 6= ∅ and A is
a fuzzy base of A∗.

4.3.2 Fuzzy finite state machine

A fuzzy finite state machine is an ordered triple M = (Q,X, µ), where Q and
X are non-empty finite sets and µ : Q × X × X −→ [0, 1]. The elements of Q
are called states and those of X are called inputs. However, a fuzzy finite state
machine can be regarded as a finite state machine when M ⊆ {0, 1}.

Fuzzy finite state machines can be divided into four categories:

(i) M is called a deterministic fuzzy finite state if µ is a partial fuzzy function.

(ii) M is called a non-deterministic fuzzy finite state if µ is a fuzzy relation.

(iii) M is called a complete deterministic fuzzy finite state if µ is a complete
partial fuzzy function.

(iv) M is called a complete non-deterministic fuzzy finite state if µ is a complete
fuzzy relation.
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4.3.3 Fuzzy languages

A fuzzy formal language or a fuzzy language µ : T ∗ −→ [0, 1] can serve to
indicate the degree of meaningfulness of each string in T ∗, namely, for x ∈ T ∗,
µ(x) near 1 implies that x is meaningful and µ(x) near 0 implies that x is not
meaningful. A language L is defined to be a sequential fuzzy language if there is
a finite fuzzy automata Af and a cut-point t such that L is the set of coded words
that yield at least one path from the initial state to a final state of Af whose fuzzy
measure is greater than t.

5 Conclusion
We have presented a comprehensive literature survey on the concept of fuzzy

semigroups with some basic properties outlined and significant notable applica-
tions highlighted. For future research, we can hybridize non-classical structures
to study their algebraic structures in semigroups.
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1 Introduction
The stability of a communication network composed of processing nodes and

communication links are of prime importance to network designers. As the net-
work begins losing links or nodes, eventually there will be a decrease to certain
extent in its effectiveness. Thus, communication networks must be constructed as
stable as possible; not only with respect to the initial disruption, but also with re-
spect to the possible reconstruction of the network. In the analysis of vulnerability
of a communication network we often consider the following quantities: 1. the
number of members of the largest remaining group within mutual communication
can still occur, 2. the number of elements that are not functioning.

The communication network can be represented as an undirected graph. Con-
sequently, a number of other parameters have recently been introduced in order
to attempt to cope up with this difficulty. Tree, mesh, hypercube and star graphs
are popular communication networks. If we think of graph as modeling a net-
work, there are many graph theoretical parameters used in the past to describe the
stability of communication networks. Most notably, the vertex-connectivity and
edge-connectivity have been frequently used. The best known measure of reliabil-
ity of a graph is its vertex-connectivity. The difficulty with these parameters is that
they do not take into account what remains after the graph has been disconnected.
To estimate these quantities, the concept of integrity was introduced by Barefoot
et al. in [6] as a measure of the stability of a graph.
The integrity of a graph G is defined in [6] as

I(G) = min
S⊂V (G)

{|S|+m(G− S)},

where m(G − S) denotes the order of the largest component of G − S. In [6],
the authors have compared integrity, connectivity, toughness and binding number
for several classes of graphs. In 1987, Barefoot et al. [7] have investigated the
integrity of trees and powers of cycles. In 1988, Goddard et al. [14] have obtained
integrity of the join, union, product and composition of two graphs. The integrity
of a small class of regular graphs was studied by Atici et al. [1].The authors in
[3, 20] have studied the integrity of cubic graphs. For more details on integrity of
a graph refer to [2, 4, 5, 11–13, 15].

In this paper, we are concerned with nontrivial, simple, finite, undirected
graphs. Let G be a graph with a vertex set V (G) and an edge set E(G) such
that |V (G)| = n and |E(G)| = m. The degree of a vertex dG(v) is the number
of edges incident to it in G. The symbol dxe denotes the smallest integer that
is greater than or equal to x and bxc denotes the greatest integer smaller than or
equal to x. For undefined graph theoretic terminologies and notations refer to [16]
or [17].
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2 Preliminaries

2.1 Basic results on integrity
In this subsection, we review some of the known results about integrity of

graphs.

Theorem 2.1. [5] The integrity of

(i) complete graph Kn, I(Kn) = n,

(ii) null graph Kn, I(Kn) = 1,

(iii) star K1,b, I(K1,b) = 2,

(iv) path Pn, I(Pn) = d2
√
n+ 1e − 2,

(v) cycle Cn, I(Cn) = d2
√
ne − 1,

(vi) complete bipartite graph Ka,b, I(Ka,b) = 1 +min{a, b},
(vii) wheel Wn, I(Wn) = d2

√
n− 1e.

3 Generalized transformation graphs
Sampathkumar and Chikkodimath [19] defined the semitotal-point graph T2(G)

as the graph whose vertex set is V (G)∪E(G), and where two vertices are adjacent
if and only if (i) they are adjacent vertices of G or (ii) one is a vertex of G and
other is an edge of G incident with it. Inspired by this definition, Basavanagoud
et al. [9] introduced some new graphical transformations. These generalize the
concept of semitotal-point graph.

Let G = (V,E) be a graph, and let α, β be two elements of V (G) ∪ E(G).
We say that the associativity of α and β is + if they are adjacent or incident in G,
otherwise is −. Let xy be a 2-permutation of the set {+, }. We say that α and β
correspond to the first term x of xy if both α and β are in V (G), whereas α and β
correspond to the second term y of xy if one of α and β is in V (G) and the other is
in E(G). The generalized transformation graph Gxy of G is defined on the vertex
set V (G) ∪ E(G). Two vertices α and β of Gxy are joined by an edge if and only
if their associativity in G is consistent with the corresponding term of xy.

We denote the complement of the generalized transformation graph Gxy by
Gxy.

In view of above, one can obtain four graphical transformations of graphs,
since there are four distinct 2-permutations of {+,−}. Note that G++ is just the
semitotalpoint graph T2(G) of G, whereas the other generalized transformation
graphs are G+−, G−+ and G−−.
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Figure 1: GraphG, its generalized transformationGxy and their complementsGxy

The generalized transformation graph Gxy, introduced by Basavanagoud et
al. [9], is a graph whose vertex set is V (G) ∪ E(G), and α, β ∈ V (Gxy). The
vertices α and β are adjacent in Gxy if and only if (a) and (b) holds:

(a) α, β ∈ V (G), α, β are adjacent in G if x = + and α, β are nonadjacent in
G if x = −

(b) α ∈ V (G) and β ∈ E(G), α, β are incident in G if y = + and α, β are
nonincident in G if y = −

An example of generalized transformation graphs and their complements are shown
in Figure 1. The vertex v of Gxy corresponding to a vertex v of G is referred to as
a point vertex. The vertex e of Gxy corresponding to an edge e of G is referred to
as a line vertex.
For more details on generalized transformation graphs, refer to [8–10, 17–19].

4 Main results
In this section, we determine the integrity of semitotal point graph(G++) of

some standard families of graphs. Also, the integrity of generalized transforma-
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tion graphs G+−, G−+, G−−, G++, G+−, G−+ and G−− are obtained. Then, we
calculate integrity of semitotal point graph of cartesian product and composition
of some graphs

4.1 Integrity of generalized transformation graphs
Theorem 4.1. For a graph Pn (n ≥ 4),

I(P++
n ) =

{
d2
√
2ne − 2, if n is odd,

d2
√
2n− 1e − 1, if n is even.

Proof. Let S be a subset of V (P++
n ). The number of remaining components after

removing |S| = r vertices is given in Table 1 and Table 2.
Case 1. Suppose n is even. The number of vertices in P++

n is 2n− 1. If r vertices
are removed from graph P++

n , then one of the connected components has at least
2n−1−r

r
vertices. So, the order of the largest component is m(P++

n −S) ≥ 2n−1−r
r

.
So

I(P++
n ) ≥ min

{
r +

2n− 1− r
r

}
.

The function r + 2n−1−r
r

takes its minimum value at r =
√
2n− 1. If we substi-

tute the minimum value in the function, then we have I(P++
n ) = 2

√
2n− 1 − 1.

Since the integrity is integer valued, we round this up to get a lower bound. So the
integrity of P++

n is, I(P++
n ) = d2

√
2n− 1e − 1.

Number of removing vertices 1 2 3 ... r
Number of remaining components 1 2 3 ... r

Table 1: n is even

Number of removing vertices 1 2 3 ... r
Number of remaining components 2 3 4 ... r + 1

Table 2: n is odd

Case 2. Suppose n is odd. Since the number of vertices in P++
n is 2n − 1 and

m(P++
n −S) ≥ 2n−1−r

r+1
, we have I(P++

n ) ≥ min{r+ 2n−1−r
r+1

}. After the required
elementary arithmetical operations, we get

I(P++
n ) = d2

√
2ne − 2.

31



Bommanahal Basavanagoud, Shruti Policepatil

Example 4.1. Consider a graph P5 and its semitotal point graph P++
5 .

Let S = {a, b} ⊂ V (P++
5 ) (see Figure 2) such that |S| = 2 andm(P++

5 −S) = 3.
So, I(P++

5 ) = 5.

b b bb b

b b b bbc bc bc bcbc bc bc bc
P++
5 :

P++
5 − S :

b b b b

b b

bc bc

bcbc

a b

Figure 2: Graph P++
5 − S.

Theorem 4.2. For a cycle Cn of length n ≥ 4,

I(C++
n ) =

{ ⌈
n
2

⌉
+ 3, if n(≤ 7) is odd and n(≤ 16) is even,⌈

n
3

⌉
+ 5, if n(≥ 9) is odd and n(≥ 18) is even.

Proof. C++
n has 2n vertices and 3n edges. Let S ⊂ V (C++

n ).
Case 1. Suppose n(≤ 7) is odd and n(≥ 16) is even.
Choose a set S in such a way that it is an independent set of vertices of Cn. It is
clear that |S| =

⌈
n
2

⌉
= β0(Cn) and m(C++

n − S) = 3. So, I(C++
n ) =

⌈
n
2

⌉
+ 3.

Case 2. Suppose n(≥ 9) is odd and n(≤ 18) is even.
Choose a set S in such a way that it is an independent set of vertices of Cn having
distance 3 in between them. It is clear that |S| =

⌈
n
3

⌉
and m(C++

n − S) = 5. So,
I(C++

n ) =
⌈
n
3

⌉
+ 5.

Example 4.2. Consider a graph C6 and its semitotal point graph C++
6 .

Let S = {a, b, c} ⊂ V (C++
6 ) (see Figure 3) such that |S| = 3 andm(C++

6 −S) =
3. So, I(C++

6 ) = 6.

Theorem 4.3. For a complete graph Kn of order n ≥ 2,

I(K++
n ) = n+ 1.

Proof. K++
n has n(n+1)

2
vertices and 3n(n−1)

2
edges. Let S ⊂ V (K++

n ) be a set
containing all the vertices of Kn. So, |S| = n. The removal of vertices from K++

n

leaves a totally disconnected graph with n(n−1)
2

vertices. Hence,m(K++
n −S) = 1.

Therefore, |S| +m(K++
n − S) = n + 1 is minimum for above set S. Then it is

clear that, I(K++
n ) = n+ 1.
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b

b

b

b

b

b

b b

b b

bbbc

bc

bc bc

bc

bc

C++
6 :

a

bc

b b b

b b b

b b b

bc

bc

bc bc

bc

bc
C++

6 − S:

Figure 3: Graph C++
6 − S.

Example 4.3. Consider a graph K4 and its semitotal point graph K++
4 .

Let S = {a, b, c, d} ⊂ V (K++
4 ) (see Figure 4). It is clear that m(K++

4 − S) = 1.
So, I(K++

4 ) = 5.

b

b b

b

b

b

b

b
b

b b

K++
4 :

bc

bc

bc
bc

bc bc

K++
4 − S:

b b b

b b b

bc

bc bc

bc bc

bc

a

b

c d

Figure 4: Graph K++
4 − S.

Corolary 4.1. I(Kp) = I(K++
q ) if and only if p = q + 1.

Theorem 4.4. For a complete bipartite graph Ka,b of order a+ b,

I(K++
a,b ) = 2min{a, b}+ 1.

Proof. K++
a,b has 2ab vertices and 3ab edges. Let us select S in such a way that it

should contain minimum number of vertices among two partite sets of Ka,b. So,
|S| = min{a, b}. The deletion of vertices of S from K++

a,b results in union of stars
K1,min{a,b}. Hence,m(K++

a,b −S) = min{a, b}+1. The value of |S|+m(K++
a,b −S)

whose sum is minimum for chosen S. Therefore, I(K++
a,b ) = 2min{a, b}+1.

Example 4.4. Consider a graph K2,3. Let S = {a, b} ⊂ V (K++
2,3 ) (see Figure 5).

It is clear to write |S| = 2 and m(K++
2,3 − S) = 3. So, I(K++

2,3 ) = 5.

Corolary 4.2. I(Ka1,b1) = I(K++
a2,b2

) if and only if min{a1, b1} = 2min{a2, b2}.
K2,2 andK1,2 are the smallest graphs satisfying above condition such that I(K2,2) =
I(K++

1,2 ).
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b

b b

b

b

b b

bb

b

b

bc

bc bc

bc

bc

bc

K++
2,3 :

b b b

b b b

b b b

bc

bc

bc

bc

bc

bc

K++
2,3 − S:

a

b

Figure 5: Graph K++
2,3 − S.

Theorem 4.5. For a star K1,b of order b+ 1,

I(K++
1,b ) = 3.

Proof. K++
1,b has 2b + 1 vertices and 3b edges. Let S ⊂ V (K++

1,b ) containing a
central vertex of K1,b. So, |S| = 1. The removal of a vertex of set S from K++

1,b

results in graph bK2. Hence, m(K++
1,b − S) = 2. The value |S|+m(K++

1,b − S) is
minimum for the chosen S. Therefore, I(K++

1,b ) = 3.

Remark 4.1. The values of integrity of star graph and integrity of semitotal point
graph of star graph are never same, since I(K1,b) = 2 and I(K++

1,b ) = 3.

Example 4.5. Consider a graph K1,3. Let S = {a} ⊂ V (K++
1,3 ) (see Figure 6). It

is clear to write |S| = 1 and m(K++
1,3 − S) = 2 So, I(K++

1,3 ) = 3

b

b

b b

b

b bbc

bc

bc
K++

1,3 : K++
1,3 − S:

b b

b b

b b

bc

bc

bc

a

Figure 6: Graph K++
1,3 − S.

Theorem 4.6. For a wheel Wn of order n ≥ 5,

I(W++
n ) =

⌈
n− 1

2

⌉
+ 5.
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Proof. W++
n has 3n− 2 vertices and 6(n− 1) edges. Let S ⊂ V (W++

n ).
Case 1. Suppose n is odd
Clearly, the order of an outer cycle of wheel is n− 1, which is even. Choose a set
S1 in such a way that it is an independent set of vertices of Cn−1. It is clear that
|S1| = n−1

2
= β0(Cn−1).

Case 2. Suppose n is even
Clearly, the order of an outer cycle of wheel is n − 1, which is odd. Let S2 be
an independent set of vertices of Cn−1 such that |S2| = n−2

2
. Let v1 be a vertex

of V (Cn−1) \ S2 such that v1 is adjacent to a vertex of S2 as well as to a vertex
V (Cn) \ S2. Let us take S1 = S2 ∪ {v} and hence |S1| = n

2
.

Combining the above two cases we get, |S1| =
⌈
n−1
2

⌉
, for all n, Let v2 be a central

vertex of Wn. Let us define a set S in such a manner that S = S1 ∪ {v2}. It is to
be noted that |S| =

⌈
n−1
2

⌉
+ 1. The deletion of vertices of set S from W++

n gives
a graph whose components are P4’s and K1’s. Hence, m(W++

n −S) = 4. The set
S defined in this manner gives minimum value of |S|+m(W++

n −S). Therefore,
I(W++

n ) =
⌈
n−1
2

⌉
+ 5.

Corolary 4.3. I(Wp) = I(W++
q ) if and only if d2√p− 1e =

⌈
q−1
2

⌉
+ 5.

W11 and W5 are the smallest graphs which satisfy the above condition such that
I(W11) = I(W++

5 ).

Example 4.6. Consider a graph W7. Let S = {a, b, c, d} ⊂ V (W++
7 ) (see Figure

7). It is clear to write |S| = 4 and m(W++
7 − S) = 4. So, I(W++

7 ) = 8

b

b b

b b

b

b

b bb

b b

bb

b

b
b

b

b
b

bc

bc bc

bc

bcbc

bc

bc

bc
bc

bc

bc
W++

7 : W++
7 − S:

b

b

b b

b

b

b b

b

b

b b

b bb

bc

bc bc

bc

bc

bc bc bc bc

bc

bc bc

a

c d

b

Figure 7: Graph W++
7 − S.

Theorem 4.7. For a connected graph G � K1,b of order n and size m,

I(G+−) = n+ 1.

Proof. For an (n,m) graph G, G+− has n+m vertices and m(n− 1) edges. The
n vertices have degree m and m vertices have n − 2 in G+−. Let S ⊂ V (G+−).
Consider a set S consisting a vertices of G+− which corresponds to the vertices of
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a graph G. Then it is clear that |S| = n. The removal of the vertices of set S from
G+− results in a null graph Km. Hence, m(G+− − S) = 1. |S|+m(G+− − S) is
minimum for above chosen S. Therefore, I(G+−) = n+ 1..

Theorem 4.8. For a star K1,b (b ≥ 3),

I(K+−
1,b ) = b+ 1.

Proof. For a star K1,b of order b+1 and size b, the graph K+−
1,b has 2b+1 vertices

and b2 edges. Let S ⊂ V (K+−
1,b ). Choose as set S in such a way that it should

contain the pendant vertices ofK1,b. So, |S| = b. The deletion of the vertices of set
S fromK+−

1,b results in null graphKb+1. So,m(K+−
1,b −S) = 1. |S|+m(K+−

1,b −S)
is minimum for above chosen S. Therefore, I(K+−

1,b ) = b+ 1.

The column 2 and 4 of Table Table 3 shows integrity of basic graphs and
integrity of transformation graph G+− of graphs with same structure.

G I(G) G+− I(G+−) G−+ I(G−+) G−− I(G−−)
P6 4 P+−

3 4 P−+3 4 P−−3 4
P10 5 P+−

10 11 P−+10 8 P−−10 11
C5 4 C+−

3 4 C−+3 4 C−−3 4
C7 5 C+−

7 8 C−+7 8 C−−7 8
Kn n K+−

n n+ 1 K−+n n+ 1 K−−n n+ 1
K5,5 6 K+−

2,3 6 K−+2,3 6 K−−2,3 6

K5,6 6 K+−
5,6 12 K−+5,6 12 K−−5,6 12

K1,b 2 K+−
1,b b+ 1 K−+1,b b+ 2 K−−1,b b+ 1

W8 6 W+−
5 6 W−+

5 6 W−−
5 6

W9 6 W+−
9 10 W−+

9 10 W−−
9 10

Table 3:

Theorem 4.9. For a connected graph G � K1,b of order n and size m,

I(G−+) = n+ 1.

Proof. For an (n,m) graphG, G−+ has n+m vertices and n(n−1)
2

+m edges. The
n vertices have degree 2 in G−+. Let S ⊂ V (G−+). Consider a set S consisting
a vertices of G−+ which corresponds to the vertices of a graph G. Then it is clear
that |S| = n. The removal of the vertices of set S fromG−+ results in a null graph
Km. Hence, m(G−+ − S) = 1. The value |S| + m(G−+ − S) is minimum for
above chosen S. Therefore, I(G−+) = n+ 1.

36



Integrity of generalized transformation graphs

The column 2 and 6 of Table 3 shows integrity of basic graphs and integrity of
transformation graph G−+ of graphs with same structure.

Theorem 4.10. For a star K1,b (b ≥ 3),

I(K−+1,b ) = b+ 1.

Proof. The proof is similar to that of Theorem 4.8.

Theorem 4.11. For a connected graph G � K1,b of order n and size m,

I(G−−) = n+ 1.

Proof. For an (n,m) graph G, G−− has n + m vertices and n(n−1)
2

+ m(n − 3)
edges. Let S ⊂ V (G−−). Consider a set S consisting a vertices of G−− which
corresponds to the vertices of a graphG. Then it is clear that |S| = n.Deleting the
vertices of set S from G−− results in a null graph Km. Hence, m(G−− − S) = 1.
|S| +m(G−− − S) is minimum for above chosen S. Therefore, I(G−−) = n +
1.

Theorem 4.12. For a star K1,b(b ≥ 3),

I(K−−1,b ) = b+ 1.

Proof. For a star K1,b of order b+1 and size b, the graph K−−1,b has 2b+1 vertices.
Let S ⊂ V (K−−1,b ). Choose as set S in such a way that it should contain the
pendant vertices of K1,b. So, |S| = b. The deletion of the vertices of set S from
K−−1,b results in null graph Kb+1. So, m(K−−1,b − S) = 1. |S| + m(K−−1,b − S) is
minimum for above chosen S. Therefore, I(K−−1,b ) = b+ 1.

The column 2 and 8 of Table 3 shows integrity of basic graphs and integrity of
transformation graph G−− of graphs with same structure.

Theorem 4.13. For any connected graph G of order n and size m ≥ 2,

I(G++) = n+m− 2.

Proof. For a connected graph G of order n and size m ≥ 2, G++ has order
n + m. Let S ⊂ V (G++). Consider a set S containing all the vertices and
edges of G except one edge and its incident vertices. So, |S| = n +m − 3. The
removal of the vertices of set S from G++ gives 3K1. Hence, m(G++ − S) = 1.
The value |S| +m(G++ − S) is minimum for the selected subset S. Therefore,
I(G++) = n+m− 2..
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Theorem 4.14. For any connected graph G of order n and size m ≥ 2,

I(G+−) = n+m− 2.

Proof. For a connected graph G of order n and size m ≥ 2, G+− has order
n + m. Let S ⊂ V (G+−). Consider a set S containing all the vertices and
edges of G except one edge and two nonincident vertices(adjacent vertices). So,
|S| = n + m − 3. The removal of the vertices of set S from G+− gives 3K1.
Hence, m(G+− − S) = 1. The value of |S| +m(G+− − S) is minimum for the
selected subset S. Therefore, I(G+−) = n+m− 2..

Corolary 4.4. The integrity of

(i) path Pn, I(P++
n ) = I(P+−

n ) = 2n− 3,

(ii) cycle Cn, I(C++
n ) = I(C+−

n ) = 2n− 2,

(iii) complete graph Kn, I(K++
n ) = I(K+−

n ) = n(n+1)
2
− 2,

(iv) complete bipartite graph Ka,b, I(K++
a,b ) = I(K+−

a,b ) = a+ b+ ab− 2,

(v) star K1,b, I(K++
1,b ) = I(K+−

1,b ) = 2b− 1,

(vi) wheel Wn, I(W++
n ) = I(W+−

n ) = 3n− 4.

The Table 4 shows integrity of basic graphs and integrity of transformation
graphs G++ and G+− of graphs with same structure.

G I(G) G++ and G+− I(G++) = I(G+−)

P4 3 P++
3 and P+−

3 3

P5 3 P++
5 and P+−

5 7

C5 4 C++
3 and C+−

3 4

C6 4 C++
6 and C+−

6 10

Kn n K++
n and K+−

n
n(n+1)

2
− 2

K8,8 9 K++
2,3 and K+−

2,3 9

K8,9 9 K++
8,9 and K+−

8,9 87

K1,b 2 K++
1,b and K+−

1,b 2b− 1

W27 11 W++
5 and W+−

5 11

W28 11 W++
28 and W+−

28 80

Table 4:
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Theorem 4.15. For any connected graph G of order n and size m,

I(G−+) = min{n+m− 1,m+ I(G)}.

Proof. For a connected graph G of order n and size m, G−+ has order n + m.
Let S1 ⊂ V (G−+). Choose a set S1 containing the edges of G. So, |S1| =
|E(G)| = m. The removal of elements of set S1 from a graph G−+ gives a graph
G. Consider the value |S1|+ I(G) = m+ I(G).
Choose a set S2 ⊂ V (G−+) consisting of all the elements of G−+ except an edge
and two incident vertices. So, |S2| = n + m − 3. The removal of elements of
set S2 from G−+ gives K2 ∪ K1. Hence, m(G−+ − S2) = 2. Consider, |S2| +
m(G−+ − S2) = n+m− 1.
The minimum value among m + I(G) and n + m − 1 gives integrity of G−+.
Therefore, I(G−+) = min{n+m− 1,m+ I(G)}.

Corolary 4.5. The integrity of

(i) path Pn(n ≥ 3), I(P−+n ) = n+ d2
√
n+ 1e − 3,

(ii) cycle Cn(n ≥ 4), I(C−+n ) = n+ 2dne − 1,

(iii) complete graph Kn, I(K−+n ) = n(n+1)
2
− 1,

(iv) complete bipartite graph Ka,b(a, b ≥ 2), I(K−+a,b ) = ab+ 1 +min{a, b},

(v) star K1,b(b ≥ 2), I(K−+1,b ) = b+ 2,

(vi) wheel Wn(n ≥ 5), I(W−+
n ) = 2n+ d2

√
n− 1e − 2.

The column 2 and 4 Table 5 shows integrity of basic graphs and integrity of
transformation graphs G−+ of graphs with same structure.

Theorem 4.16. For any connected graph G of order n and size m,

I(G−−) = m+ I(G).

Proof. Let G be an (n,m) graph. Then G−− is a graph of order n + m. Let
S1 ⊂ V (G−−). Consider a set S1 containing all the edges of G. So, |S| = |E| =
m. The removal of the vertices of set S1 from G−− gives a graph G. Therefore,
I(G−−) = m+ I(G).

Corolary 4.6. The integrity of

(i) path Pn, I(P−−n ) = n− 3 + d2
√
n+ 1e,
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G I(G) G−+ I(G−+) G−− I(G−−)

P6 4 P−+3 4 P−−3 4

P7 4 P−+7 10 P−−7 10

C13 7 C−+4 6 C−−4 7

C14 7 C−+14 21 C−−14 21

Kn n K−+n
n(n+1)

2
− 1 K−−n

n(n+1)
2

K8,9 9 K−+2,3 9 K−−2,3 9

K9,9 9 K−+9,9 91 K−−9,9 91

K1,b 2 K−+1,b b+ 2 K−−1,b 2b+ 1

W32 12 W−+
5 12 W−−

5 12

W33 12 W−+
33 76 W−−

33 76

Table 5:

(ii) cycle Cn, I(C−−n ) = n− 1 + d2√ne,

(iii) complete graph Kn, I(K−−n ) = n(n+1)
2

,

(iv) complete bipartite graph Ka,b, I(K−−a,b ) = ab+ 1 +min{a, b},

(v) star K1,b, I(K−−1,b ) = 2b+ 1,

(vi) wheel Wn, I(W−−
n ) = 2n− 2 + d2

√
n− 1e.

The column 2 and 6 of Table 5 shows integrity of basic graphs and integrity of
transformation graphs G−− of graphs with same structure.

4.2 Integrity of semitotal point graph of combination of basic
graphs

Definition 4.1. [16] The product G × H of two graphs G and H is defined as
follows:
Consider any two points u = (u1, u2) and v = (v1, v2) in V = (V1, V2). Then u
and v are adjacent in G×H whenever [u1 = v1 and u2 adj v2] or [u2 = v2 and
u1 adj v1].
If G and H are (n1,m1) and (n2,m2) graphs respectively. Then, G × H is
(n1n2, n1m2 + n2m1) graph.
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Theorem 4.17. For a graph K2 × Pn (n ≥ 3),

I
(
(K2 × Pn)

++
)
=


7, if n = 3,
11, if n = 5,
5n−7

2
, if n is odd and n ≥ 7,

5n−2
2
, if n is even.

Proof. The graph (K2 × Pn)
++ has 5n− 2 vertices and 3(3n− 2) edges.

Let S ⊂ V
(
(K2 × Pn)

++
)
. The proof includes the following cases.

Case 1. Suppose n is odd and n ≥ 7.
Choose a set S containing the two internal vertices adjacent to corresponding
central vertices of each of two Pn’s in K2 × Pn. So, |S| = 4. The deletion of
vertices of set S from (K2 × Pn)

++ results in a graph with components of orders
1, 7, 5(n−3)

2
. Hence, m

(
(K2 × Pn)

++ − S
)
= 5(n−3)

2
, since n ≥ 7. The value of

|S|+m
(
(K2 × Pn)

++ − S
)

for this set S is 5n−7
2

and it is minimum.
Therefore, I

(
(K2 × Pn)

++
)
= 5n−7

2
.

Case 2. Suppose n is even.
Let S be a set containing the two internal vertices which are central vertices of
each of two Pn’s in K2 × Pn. So, |S| = 4. The removal of vertices of set S from
(K2 × Pn)

++ results in a graph with components of orders 1, 5(n−2)
2

. Hence, we
can writem

(
(K2×Pn)

++−S
)
= 5(n−2)

2
. The value of |S|+m

(
(K2×Pn)

++−S
)

for the above set S is minimum.
Therefore, I

(
(K2 × Pn)

++
)
= 5n−2

2
.

Case 3. Suppose n = 3, 5.
By direct calculation using the definition of integrity, the result follows.

Theorem 4.18. For a graph K2 × Cn (n ≥ 4),

I
(
(K2 × Cn)

++
)
=


2
⌈
n
2

⌉
+ 7, if n is even,

2
⌈
n
2

⌉
+ 7, if n is odd and n ≤ 7,

2
⌈
n
3

⌉
+ 12, if n is odd and n ≥ 9.

Proof. The graph (K2 × Cn)
++ has 5n vertices and 9n edges.

Let S ⊂ V
(
(K2 × Cn)

++
)
.

Case 1. Suppose n is even.
Let S1 be an independent set of vertices of Cn such that |S1| = β0(Cn) =

n
2
.

Case 2. Suppose n is odd.
Let S ′ be an independent set Cn such that |S ′| = β0(Cn) =

n−1
2

. Let v1 be a vertex
of V (Cn) \ S ′ such that v1 is adjacent to a vertex of S ′ as well as to a vertex of
V (Cn) \ S ′. Let S1 = S ′ ∪ {v1}.
Combining the above two cases we get, S1 =

⌈
n
2

⌉
. Choose a set S consisting of

vertices of two Cn’s of K2 × Cn such that |S| = 2|S1| = 2
⌈
n
2

⌉
. The removal of
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vertices of set S from (K2 × Cn)
++ results in a graph with components of orders

1, 7. Hence, m
(
(K2×Cn)

++−S
)
= 7. The value of |S|+m

(
(K2×Cn)

++−S
)

for the above set S is minimum.
Therefore, I((K2 × Cn)

++) = 2
⌈
n
2

⌉
+ 7.

Case 3. Suppose n(≥ 9) is odd.
Let S be an independent set of vertices of two Cn’s in a manner that the distance
between the selected vertices is 3. Then, |S| = 2

⌈
n
3

⌉
. The removal of vertices

of set S from (K2 × Cn)
++ results in a disconnected graph with components of

orders 1, 12. Hence, m
(
(K2×Cn)

++−S
)
= 12. Therefore, I

(
(K2×Cn)

++
)
=

2
⌈
n
3

⌉
+ 12.

Theorem 4.19. For a graph K2 ×K1,b (b ≥ 2),

I
(
(K2 ×K1,b)

++
)
= 7.

Proof. The semitotal point graph (K2×K1,b)
++ has 5b+3 vertices and 3(3b+1)

edges.
Let S be a subset of V

(
(K2 × K1,b)

++
)
. Choose S such that it contains the

two vertices corresponding to central vertices of each of two stars of K2 × K1,b.
Clearly, |S| = 2. The removal of vertices of S from (K2 × K1,b)

++ results in a
graph with components of orders 1, 5. Hence,m

(
(K2×K1,b)

++−S
)
= 5. This set

S gives least value of |S|+m
(
(K2×K1,b)

++−S
)
. Therefore, I

(
(K2×K1,b)

++
)
=

7.

Theorem 4.20. For a graph Kp ×Kq (p = q ≥ 2),

I
(
(Kp ×Kq)

++
)
= pq + 1.

Proof. The semitotal point graph (Kp×Kq)
++ has pq(p+q)

2
vertices and 3pq(p+q−2)

2

edges.
Select a set S such that the elements of it correspond to all the vertices ofKp×Kq.
So, |S| = pq. The removal of vertices of S from (Kp ×Kq)

++ results in a totally
disconnected graph with 3pq(p+q−2)

2
vertices. Clearly, m

(
(Kp ×Kq)

++ − S
)
= 1.

Therefore, I
(
(Kp ×Kq)

++
)
= pq + 1.

Definition 4.2. [16] The corona G ◦ H of graphs G and H is a graph obtained
from G and H by taking one copy of G and |V (G)| copies of H and then joining
by an edge each vertex of the i’th copy of H is named (H, i) with the i’th vertex
of G.

If G and H are (n1,m1) and (n2,m2) graphs respectively. Then, G ◦H is
(n1(1 + n2),m1 + n1m2 + n1n2) graph.
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Theorem 4.21. For a graph K2 ◦ Pn (n ≥ 3),

I
(
(K2 ◦ Pn)

++
)
=


7, if n = 3,
10, if n = 5,
3(n+1)

2
, if n is odd and n ≥ 7,

3(n
2
+ 1), if n is even.

Proof. The graph (K2 ◦ Pn)
++ has 6n+ 1 vertices and 3(4n− 1) edges.

Let S ⊂ V
(
(K2 ◦ Pn)

++
)
. The proof includes the following cases.

Case 1. Suppose n is odd and n ≥ 7.
Choose a set S containing the two internal vertices adjacent to corresponding
central vertices of each of two Pn’s and the two vertices of K2 in K2 ◦ Pn. So,
|S| = 6. The removal of vertices of S results in a graph with components of
orders 1, 4, 3(n−1)

2
. Hence, m

(
(K2 ◦ Pn)

++ − S
)
= 3(n−1)

2
, since n ≥ 7. The

value of |S| + m
(
(K2 ◦ Pn)

++ − S
)

for this set S is 5n−7
2

is least. Therefore,
I
(
(K2 ◦ Pn)

++
)
= 5n−7

2
.

Case 2. Suppose n is even.
Choose a set S containing the two internal vertices which are central vertices of
each of two Pn’s and the two vertices of K2 in K2 ◦ Pn. So, |S| = 6. The
removal of vertices of S from (K2 ◦ Pn)

++ results in a graph with components
of orders 1, 3(n−2)

2
. Clearly, we can write m

(
(K2 ◦ Pn)

++ − S
)
= 3(n−2)

2
. The

value of |S| +m
(
(K2 ◦ Pn)

++ − S
)

for the above set S is minimum. Therefore,
I
(
(K2 ◦ Pn)

++
)
= 3(n

2
+ 1).

Case 3. Suppose n = 3, 5.
By direct calculation using the definition of integrity, we can obtain the result.

Theorem 4.22. For a graph K2 ◦ Cn (n ≥ 4),

I
(
(K2 ◦ Cn)

++
)
= 2

⌈n
2

⌉
+ 6.

Proof. The graph (K2 ◦ Cn)
++ has 7n+ 2 vertices and 15n edges.

Let S ⊂ V
(
(K2 ◦ Cn)

++
)
.

Case 1. Suppose n is even.
Let S1 be an independent set of vertices of Cn such that |S1| = β0(Cn) =

n
2
.

Case 2. Suppose n is odd.
Let S ′ be an independent set of vertices of Cn such that |S ′| = β0(Cn) =

n−1
2

. Let
v1 be a vertex of V (Cn) \ S ′ such that v1 is adjacent to a vertex of S ′ as well as to
a vertex of V (Cn) \ S ′. Let S1 = S ′ ∪ {v1} and |S1| = n+1

2
.

Combining the above two cases we get, S1 =
⌈
n
2

⌉
. Choose a set S2 consisting

of vertices of two Cn’s of K2 ◦ Cn such that |S2| = 2|S1| = 2dn
2
e. Select a

set S3 consisting of the vertices of K2 of K2 ◦ Cn. So, S = S2 ∪ S3. Hence,
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|S| = 2
⌈
n
2

⌉
+ 2. The removal of vertices of set S from (K2 ◦ Cn)

++ results in a
graph with components of orders 1, 4. Hence, m

(
(K2 ◦ Cn)

++ − S
)
= 4. The

value of |S|+m
(
(K2 ◦ Cn)

++ − S
)

for the above set S is minimum. Therefore,
I
(
(K2 ◦ Cn)

++
)
= 2

⌈
n
2

⌉
+ 6.

Theorem 4.23. For a graph Kp ◦Kq,

I
(
(Kp ◦Kq)

++
)
= pq + p+ 1.

Proof. The semitotal point graph of Kp ◦Kq has p(q+1) vertices and p
2
[p+ q(q+

1)−1] edges. Let S be a subset of V
(
(Kp◦Kq)

++
)
. Choose S such that it contains

vertices of Kp and vertices of p copies of Kq of Kp ◦Kq. So |S| = p(q + 1). The
removal of vertices of set S from (Kp ◦ Kq)

++ results in a totally disconnected
graph with p

2
[p + q(q + 1) − 1] vertices. Clearly, m

(
(Kp ◦ Kq)

++ − S
)
= 1.

Therefore, I
(
(Kp ◦Kq)

++
)
= pq + p+ 1.

5 Conclusion
In this paper, we have computed the integrity of generalized transformation

graphs in terms of elements of a graph G. Also, integrity of semitotal point graph
of combinations of basic graphs are obtained. Finally, we have established the
relation between integrity of basic graphs and integrity of their generalized trans-
formation graphs. We conclude that integrity of generalized transformation graphs
are greater than or equal to integrity of graphs that have same structure.
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Abstract 

In the present paper, we have introduced the concept of 

differentiated vacations in a retrial queueing model with state- 

dependent arrival rates of customers. The arrival rate of customers is 

different in various states of the server. The vacation types are 

differentiated by means of their durations as well as the previous 

state of the server. In type I vacation, the server goes just after 

providing service to at least one customer whereas in type II, it 

comes after remaining free for some time. In a steady state, we have 

obtained the system size probabilities and other system performance 

measures. Finally, sensitivity and cost analysis of the proposed 

model is also performed. The probability generating function 
technique, parabolic method and MATLAB is used for this purpose. 

Keywords: Retrial queue; Markov process; differentiated vacations; 

exponential distribution etc. 
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1. Introduction 

Retrial queues have wide applications in communication system, 

production system, computer networking system, telecommunication etc. 

Retrial queues are characterized by the fact that arriving customers on finding 

the server busy, leave the system and join the retrial group to complete their 

request for service after a random time period. A good survey on retrial queues 

have been done by Falin,Templeton [5] and Artalejo,Gomez-coral [1]. 

In queueing theory, many situations occur where arrival rate of customers 

depends upon the different states of server such as busy state, idle state or on 

vacation state etc. Singh et al.[14] studied M/G/1 queueing model with state 

dependent arrival of customers. Batch arrival queueing system under retrial 

policy with state dependent admission is analysed by Bagyam and chandrika 

[2]. Niranjan et al. [12] did the pioneer work on state dependent arrival in bulk 

retrial queues with Bernoulli feedback and multiple vacations. 

Nowadays, Retrial queueing system with server vacation has become 

increasingly important due to wide applications in research area. In queueing 

system with vacation, server becomes unavailable from service station for 

random period of time due to some reasons like server breakdown, 

maintenance of server, service provided by server in secondary service station 

when primary station is empty or simply going for break etc. The time period 

during which the server is not available for primary customers is known as 

vacation.  In single vacation queueing model, server goes for vacation of 

random time duration whenever there is no customer in the system and returns 

to the system after vacation completion. The idea of queueing system with 

server vacation was first discussed by Levy and Yechiali [9]. Doshi [3] had 

performed good survey on queueing model with vacation. Later on Takagi 

[16], Tian and Zhang [18] did the pioneer work on vacation queueing system.  

In multiple vacation system, if server finds no customer in system on returning 

from vacation, then server immediately goes for another vacation otherwise 

server will serve the customers. Servi and Finn [13] introduced the concept of 

working vacation queueing system in which server works at slow rate during 

vacation period rather than completely stopping the service during vacation. In 

queueing literature, lot of work have been done on queueing model with 

working vacation by many researchers [8,23]. Li and Tian [10] analysed 

M/M/1 queueing model with working vacation and interruption.  Retrial 

queueing model with working vacation was first studied by Do [4]. Later on Li 
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et al. and Tao et al. [11,17] did pioneer work on retrial queueing model with 

working vacation and interruption. 

In differentiated vacation queueing model, server takes vacation I i.e. vacation 

of longer duration after serving all the customers in system and vacation II i.e. 

vacation of shorter duration will be taken by server if there is no customer in 

system after completing the type I vacation. The concept of differentiated 

vacations in queuing literature was first introduced by Ibe and Isijola [6]. In 

this paper they considered two types of vacations with different durations. 

Further they extended their model by introducing the concept of vacation 

interruption [7]. M/M/1 single server queue with m kinds of differentiated 

working vacations was analyzed by Zhang and Zhou [22]. Vijayashree and 

Janani [21] performed transient solution of M/M/1 queueing system with 

differentiated vacation. Suranga Sampath and Liu [15] studied the customer’s 

impatience behaviour on M/M/1 queueing system subject to differentiated 

vacation. Unni and Mary [19] studied queueing system with multiple servers 

under differentiated vacations. Further they extended their work by 

introducing differentiated working vacation [20]. 

In this paper, we have extended the concept of differentiated vacations to 

queueing system under classical retrial policy considering the state dependent 

arrival of customers. The organization of rest of the paper into different 

sections is as follows. The model description is given in section 2. Section 3 is 

devoted to steady state equations and solutions. The closed form expressions 

for some of the performance measures are derived in section 4. Section 5 

represents the effect of various parameters on some important system 

performance measures graphically. Conclusion and future scope is discussed 

in section 6. 

 

2. Model description 

The model is outlined as follows. 

1. Customers arrive according to Poisson process but with different rates 

depending on the present state of the server. The different arrival rates of 

customers are λ, α, γ, δ in busy, free, vacation I, vacation II states of the 

server, respectively.  

2. The arriving customers are served on FCFS basis. If server is free in active 

period, the arriving customer is immediately served otherwise due to 

unavailability of waiting space in service area, he has to join a free pool of 
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infinite capacity known as orbit to wait for the service. From the orbit, 

customers retry for their turn with classical rate β. For convenience, the 

service time is supposed to follow exponential distribution with parameter 

μ. 

3. As soon as the last customer is served i.e. system gets empty, the server 

leaves for type I vacation. At the end of type I vacation, if system is still 

empty, the server goes on type II vacation otherwise returns to active state 

to serve the waiting customers. On completion of vacation II, if there is a 

customer waiting in the system, server returns to free state in normal active 

period otherwise again goes on vacation II repeatedly. The vacation I is 

assumed to be of longer duration than vacation II. The time period of both 

vacations is assumed to follow exponential distribution with parameters 

𝑣1,𝑣2  respectively. 

 

3. Steady state equations and solution 

 
Denoting the probability of n customers in state k of the server by 𝑝𝑛 𝑘 and 

server states at time t by S(t) were 

 

S(t)= {

   1, 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖𝑠 𝑏𝑢𝑠𝑦 𝑖𝑛 𝑎𝑐𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑖𝑜𝑑  
2, 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖𝑠 𝑓𝑟𝑒𝑒 𝑖𝑛 𝑎𝑐𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑖𝑜𝑑
3, 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖𝑠 𝑜𝑛 𝑡𝑦𝑝𝑒 𝐼 𝑣𝑎𝑐𝑎𝑡𝑖𝑜𝑛      
4, 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖𝑠 𝑜𝑛 𝑡𝑦𝑝𝑒 𝐼𝐼 𝑣𝑎𝑐𝑎𝑡𝑖𝑜𝑛   

 

 

Let N(t) be the number of customers in the orbit at time t. Then the quasi birth-

death process is a Markovian process represented by {N(t),S(t)} with state 

space {(n, k), n ≥ 0, k=1,3,4} U {(n, 2), n ≥1}. 

 

Using Markov Process, the differential difference equations for the proposed 

model are 

𝑑

𝑑𝑡
𝑝0 1(𝑡) = 𝛽𝑝1 2(𝑡) − (𝜆 + 𝜇)𝑝0 1(𝑡)                                                                (1) 

𝑑

𝑑𝑡
𝑝𝑛 1(𝑡) = 𝜆𝑝𝑛−1 1(𝑡) + (𝑛 + 1)𝛽𝑝𝑛+1 2(𝑡) + 𝛼𝑝𝑛 2(𝑡)

− (𝜆 + 𝜇)𝑝𝑛 1(𝑡),      𝑛 ≥ 1                                                            (2) 

𝑑

𝑑𝑡
𝑝𝑛 2(𝑡) = 𝑣1𝑝𝑛 3(𝑡) + 𝑣2𝑝𝑛 4(𝑡) + 𝜇𝑝𝑛 1(𝑡) − (𝛼 + 𝑛𝛽)𝑝𝑛 2(𝑡),   𝑛 ≥ 1 (3) 
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𝑑

𝑑𝑡
𝑝0 3(𝑡) = 𝜇𝑝0 1(𝑡) − (𝛾 + 𝑣1)𝑝0 3(𝑡)                                                              (4)  

𝑑

𝑑𝑡
𝑝𝑛 3(𝑡) = 𝛾𝑝𝑛−1 3(𝑡) − (𝛾 + 𝑣1)𝑝𝑛 3(𝑡),                    𝑛 ≥ 1                          (5) 

𝑑

𝑑𝑡
𝑝0 4(𝑡) = 𝑣1𝑝0 3(𝑡) − 𝛿𝑝0 4(𝑡)                                                                           (6) 

𝑑

𝑑𝑡
𝑝𝑛 4(𝑡) = 𝛿𝑝𝑛−1 4(𝑡) − (𝛿 + 𝑣2)𝑝𝑛 4(𝑡),                      𝑛 ≥ 1                        (7) 

 

To obtain steady state equations, taking limit t → ∞ and using 

lim
𝑡→∞

 𝑝𝑛 𝑖
(t) =   𝑝𝑛 𝑖

lim
𝑡→∞

𝑑

𝑑𝑡
𝑝𝑛 𝑖

(𝑡) =  0                                      
}       𝑖 = 1, 2, 3, 4  

The steady state equations are 

(𝜆 + 𝜇)𝑝0 1 = 𝛽𝑝1 2                                                                                                  (8) 

(𝜆 + 𝜇)𝑝𝑛 1 = 𝜆𝑝𝑛−1 1 + (𝑛 + 1)𝛽𝑝𝑛+1 2 + 𝛼𝑝𝑛 2,                    𝑛 ≥ 1            (9) 

(𝛼 + 𝑛𝛽)𝑝𝑛 2 = 𝑣1𝑝𝑛 3 + 𝑣2𝑝𝑛 4 + 𝜇𝑝𝑛 1,          𝑛 ≥ 1                                    (10) 

(𝛾 + 𝑣1)𝑝0 3 = 𝜇𝑝0 1                                                                                               (11) 

(𝛾 + 𝑣1)𝑝𝑛 3 = 𝛾𝑝𝑛−1 3,                                       𝑛 ≥ 1                                        (12) 

𝛿𝑝0 4 = 𝑣1𝑝0 3                                                                                                            (13) 

(𝛿 + 𝑣2)𝑝𝑛 4 = 𝛿𝑝𝑛−1 4  ,                                  𝑛 ≥ 1                                           (14) 

Defining the probability generating functions as  

𝑃𝑖(𝑧) = ∑ 𝑝𝑛 𝑖𝑧
𝑛

∞

𝑛=0

,                            𝑖 = 1,3,4                                                     (15) 

𝑃2(𝑧) = ∑ 𝑝𝑛 2𝑧𝑛

∞

𝑛=1

                                                                                                  (16) 

Using equations (10), (11), (13)and P.G.Fs defined in(15) and (16), we get 

𝑧𝛽𝑃2
′(𝑧) + 𝛼𝑃2(𝑧)

= 𝑣1𝑃3(𝑧) + 𝑣2𝑃4(𝑧) + 𝜇𝑃1(𝑧) − (𝛾 + 2𝑣1 +
𝑣1𝑣2

𝛿
) 𝑝0 3   (17) 
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From equations (8), (9), (15) and (16) we obtain 

(𝜆 + 𝜇 − 𝜆𝑧)𝑃1(𝑧)

= 𝛽𝑃2
′(𝑧) + 𝛼𝑃2(𝑧)                                                                       (18) 

Similarly using equations (11) and (12) along with (15), we get 

(𝛾 + 𝑣1 − 𝛾𝑧)𝑃3(𝑧) = (𝛾+𝑣1)𝑝0 3 

𝑃3(𝑧) =
(𝛾+𝑣1)𝑝0 3

(𝛾 + 𝑣1 − 𝛾𝑧)
                                                                                           (19) 

On similar steps from equations (13), (14) and (15) we obtain 

P4(z) =
v1(δ + v2)

δ(δ + v2 − δz)
p0 3                                                                                   (20) 

Taking z=1 in equation (20),we obtain 

𝑃4(1) =
𝑣1(𝛿 + 𝑣2)

𝛿𝑣2
𝑝0 3                                                                                          (21) 

From equation (17)  

𝑧𝛽𝑃2
′(𝑧) + 𝛼𝑃2(𝑧) = 𝑣1𝑃3(𝑧) + 𝑣2𝑃4(𝑧) + 𝜇𝑃1(𝑧) − 𝐴𝑝0 3                          (22) 

where A = (𝛾 + 2𝑣1 +
𝑣1𝑣2

𝛿
) 

Using equations (18), (22) together, after some rearrangement of terms we 

obtain 

𝑃2
′(𝑧) +

𝛼𝜆

𝛽(𝜆𝑧 − 𝜇)
𝑃2(𝑧)

=
(𝜆 + 𝜇 − 𝜆𝑧)

𝛽(1 − 𝑧)(𝜆𝑧 − 𝜇)
(𝑣1𝑃3(𝑧) + 𝑣2𝑃4(𝑧) − 𝐴𝑝0 3)               (23) 

To solve the differential equation (23) 

Taking I. F = (λz − μ)
α

β 

P2(z) = (λz − μ)
−α

β ∫(λx − μ)
α

β
(λ + μ − λx)

β(1 − x)(λx − μ)
(v1P3(x) + v2P4(x)

z

0

− Ap0 3) dx                                                                                      (24) 

Substituting value of 𝑃2
′(𝑧) in equation (18) and solving, we get 
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𝑃1(𝑧) =
(𝛼 − 𝛼𝑧)𝑃2(𝑧) − 𝑣1𝑃3(𝑧) − 𝑣2𝑃4(𝑧) + 𝐴𝑝0 3

(𝜇 − 𝑧(𝜆 + 𝜇 − 𝜆𝑧))
                                 (25) 

On differentiating equations (19),(20) we get 

𝑃3
′(𝑧) =

𝛾(𝛾+𝑣1)𝑝0 3

(𝛾 + 𝑣1 − 𝛾𝑧)2
                                                                                      (26) 

𝑃4
′(𝑧) =

𝑣1(𝛿 + 𝑣2)

𝛿(𝛿 + 𝑣2 − 𝛿𝑧)2
𝑝0 3                                                                                                               (27) 

Again, differentiating equations (26) and (27), we get 

𝑃3
′′(𝑧) =

2𝛾2(𝛾+𝑣1)𝑝0 3

(𝛾 + 𝑣1 − 𝛾𝑧)3
                                                                                       (28) 

𝑃4
′′(𝑧) =

2𝛿𝑣1(𝛿 + 𝑣2)

(𝛿 + 𝑣2 − 𝛿𝑧)3
𝑝0 3                                                                                (29) 

Also, from equation (18), we get 

𝑃2
′(𝑧) =

(𝜆 + 𝜇 − 𝜆𝑧)𝑃1(𝑧) − 𝛼𝑃2(𝑧)

𝛽
                                                               (30) 

Taking limit 𝑧 → 1in equations (19), (20), (24), (26), (27), (28) and (29) we 

get 

𝑃3(1) =
(𝛾+𝑣1)𝑝0 3

𝑣1
                                                                                               (31) 

𝑃4(1) =
𝑣1(𝛿 + 𝑣2)

𝛿𝑣2
𝑝0 3                                                                                         (32) 

𝑃2(1) = (𝜆 − 𝜇)
−𝛼

𝛽 ∫(𝜆𝑥 − 𝜇)
𝛼

𝛽
(𝜆 + 𝜇 − 𝜆𝑥)

𝛽(1 − 𝑥)(𝜆𝑥 − 𝜇)
(𝑣1𝑃3(𝑥) + 𝑣2𝑃4(𝑥)

1

0

− 𝐴𝑝0 3) 𝑑𝑥                                                                                    (33) 

𝑃3
′(1) =

𝛾(𝛾+𝑣1)

(𝑣1)2
𝑝0 3                                                                                            (34) 

𝑃4
′(1) =

𝑣1(𝛿 + 𝑣2)

𝑣2
2

𝑝0 3                                                                                         (35) 
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𝑃3
′′(1) =

2𝛾2(𝛾+𝑣1)

𝑣1
3

𝑝0 3                                                                                       (36) 

𝑃4
′′(1) =

2𝛿𝑣1(𝛿 + 𝑣2)

𝑣2
3

𝑝0 3                                                                                   (37) 

 

Taking limit 𝑧 → 1 in equation (25) and using L-Hospital rule, we get 

𝑃1(1) =
𝛼𝑃2(1) + 𝑣1𝑃3

′(1) + 𝑣2𝑃4
′(1)

𝜇 − 𝜆
                                                              (38) 

Taking limit 𝑧 → 1 in equation (30) 

𝑃2
′(1) =

𝜇𝑃1(1) − 𝛼𝑃2(1)

𝛽
                                                                                    (39) 

On differentiating equation (25) and taking limit 𝑧 → 1 we get 

𝑃1
′(1)

=
(2𝛼𝑃2

′(1) + 𝑣1𝑃3
′′(1) + 𝑣2𝑃4

′′(1))(𝜇 − 𝜆) + 2𝜆(𝛼𝑃2(1) + 𝑣1𝑃3
′(1) + 𝑣2𝑃4

′(1))

2(𝜇 − 𝜆)2
   (40) 

 All the P.G. F’s are expressed in terms of 𝑝0 3 which is obtained by using 

normalization condition 

∑ 𝑃𝑖(1)

4

𝑖=1

= 1                                                                                                             (41) 

It follows that, 

𝑝0 3 [(
𝛼 + 𝜇 − 𝜆

𝜇 − 𝜆
) (𝜆 − 𝜇)

−𝛼

𝛽 ∫ (𝜆 − 𝜇)
𝛼

𝛽
(λ + μ − λz)

𝛽(1 − 𝑧)(𝜆𝑧 − 𝜇)
{𝑣1 (

𝛾 + 𝑣1

𝛾 + 𝑣1 − 𝛾𝑧
)

1

0

+
𝑣1𝑣2

𝛿
(

𝛿 + 𝑣2

𝛿 + 𝑣2 − 𝛿𝑧
) − 𝐴} 𝑑𝑧 +

𝛾 + 𝑣1

𝑣1
+

𝛾(𝛾 + 𝑣1)

𝑣1(𝜇 − 𝜆)

+
𝑣1(𝛿 + 𝑣2)

𝑣2(𝜇 − 𝜆)
+

𝑣1(𝛿 + 𝑣2)

𝑣2𝛿
] = 1                                             (42) 
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𝑝0 3 = [(
𝛼 + 𝜇 − 𝜆

𝜇 − 𝜆
) (𝜆

− 𝜇)
−𝛼

𝛽 ∫ (𝜆 − 𝜇)
𝛼

𝛽
(λ + μ − λz)

𝛽(1 − 𝑧)(𝜆𝑧 − 𝜇)
{𝑣1 (

𝛾 + 𝑣1

𝛾 + 𝑣1 − 𝛾𝑧
)

1

0

+
𝑣1𝑣2

𝛿
(

𝛿 + 𝑣2

𝛿 + 𝑣2 − 𝛿𝑧
) − 𝐴} 𝑑𝑧 +

𝛾 + 𝑣1

𝑣1
+

𝛾(𝛾 + 𝑣1)

𝑣1(𝜇 − 𝜆)

+
𝑣1(𝛿 + 𝑣2)

𝑣2(𝜇 − 𝜆)
+

𝑣1(𝛿 + 𝑣2)

𝑣2𝛿
]

−1

                                              (43) 

 

4. Important performance measures 

In this section, we present some of the important performance measures of the 

system as follows. 

The expected number of customers in the orbit is 

E[𝐿0] =  ∑ 𝑃𝑖
′(1)

4

𝑖=1

                                                                                                 (44) 

The expected number of customers in the system is 

E[𝐿𝑠] = E[𝐿0] + 𝑃1(1)                                                                                           (45) 

Probability of server in type I vacation  

𝑃𝑟𝑉1 = 𝑃3(1) 

          = ∑ 𝑝𝑛 3

∞

𝑛=0

 

 

          =
(𝛾+𝑣1)𝑝0 3

𝑣1
                                                                                                (46) 

Probability of server in type II vacation  

𝑃𝑟𝑉2 =  𝑃4(1) 
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           = ∑ 𝑝𝑛 4

∞

𝑛=0

 

=
𝑣1(𝛿 + 𝑣2)

𝛿𝑣2
𝑝0 3                                                                                                     (47) 

Probability of server on vacations 

𝑃𝑟𝑉 = 𝑃𝑟𝑉1 + 𝑃𝑟𝑉2 

         =
(𝛾+𝑣1)𝑝0 3

𝑣1
+

𝑣1(𝛿 + 𝑣2)

𝛿𝑣2
𝑝0 3                                                                        (48) 

Probability of server in working (active) state 

𝑃𝑟𝑁 =   𝑃1(1) + 𝑃2(1) 

       = ∑ 𝑝𝑛 1

∞

𝑛=0

+ ∑ 𝑝𝑛 2

∞

𝑛=1

                                                                                        (49) 

 

5. Graphical results 

In this section, we illustrate the effect of various parameters on some of the 

performance measures of system. We have also optimized the cost with respect to 

service rate. 

In the below graphs, we have set λ=1.2, μ=3, β=2, γ=0.6, α=1, 𝑣1 = 0.6,  𝑣2 =
1, δ=0.8 unless they are varied in the graphs. 

5.1 Sensitivity analysis 

For qualitative analysis of the proposed model, we represent some of the 

numerical results graphically. 
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Figure1. Effect of active state arrival rate (λ) on system performance measures. 

 

From figure1, we observe that with the increase in arrival rate λ, expected orbit 

length, system length and probability of normal state increase, whereas the 

probability of vacation decreases. This is explained by the fact that with the 

increase in arrival rate, the number of customers increases in orbit and in 

system. Hence, the probability of normal state increases and thereby, the 

probability of vacation decreases. 
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Figure 2. Effect of service rate (μ) on system performance measures. 

Figure 2 reveals that the expected length of orbit, system and probability of 

normal (active) state decrease, but the probability of vacation state increases 

with an increase in service rate μ. The reason being that with the increase in μ, 

the customers will be served fasterand this reduces the number of customers in 

orbit and hence in the system. Also, due to faster service, the probability of 

normal period decreases and this increases the probability of a vacation period. 
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Figure3.Effect of rate of type I vacation (𝑣1) on system performance measures. 

From figure 3, we see that as the type I vacation rate increases, the expected 

length of orbit, expected length of system and probability of type I vacation 

decrease but the probability of type II vacation and probability of normal 

(active) state increase. The fact behind the observation is that with the increase 

in type I vacation rate, the duration of type I vacation decreases and this causes 

increase in probability of normal state and the probability of type II vacation. 

Due to which the expected number of customers in orbit and that in the system 

decrease. 



 

 

 

 

Poonam Gupta, Naveen Kumar 

60 

 

 

Figure 4. Effect of variation in retrial rate (β) on system performance 

measures. 

Figure 4 shows the effect of change in retrial rate on expected orbit length, 

system length, probability of vacation and active server states. The graphical 

results obtained here matches the intuitive expectations. 
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Figure 5. Effect of variation in rate of type II vacation (𝑣2) on system 

performance measures. 

Figure5 represents that expected orbit length,expected system length, 

probability of server in normal state and probability of type I vacation decrease 

as the rate of type II vacation increase. As the type II vacation rate increases, 

the duration of type II vacation decreases: hence, the expected queue length 

and system length decrease. 

 

5.2 Cost analysis 

In this subsection, we optimize the operating cost function with respect to service 

rate in working state. To obtain the optimal value of𝜇, some cost elements are 

taken as   

𝐶𝐿 = Cost per unit time for each customer present in the orbit.  

𝐶𝜇 = Cost per unit time for service in working state. 
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𝐶𝑣1= Cost per unit time in type I vacation. 

𝐶𝑣2= Cost per unit time in type II vacation. 

 

The corresponding cost function per unit time is defined as  

F(μ) = 𝐶𝐿𝐸[𝐿0] + μ𝐶𝜇 + 𝑣1𝐶𝑣1+ 𝑣2𝐶𝑣2 

 We take𝐶𝐿= 20, 𝐶𝜇=28, 𝐶𝜃=10, 𝐶𝜙=8 in the parabolic method for obtaining 

optimal cost F(x) and the corresponding value of x. Parabolic-method works by 

generating quadratic function through calculated points in every iteration to which 

the function F(x) can be approximated. The point at which F(x) is optimum in 

three- point pattern {𝑥1, 𝑥2, 𝑥3} is given by  

𝑥𝐿 =
0.5(𝐹(𝑥1)(𝑥2

2 − 𝑥3
2) +  𝐹(𝑥2)(𝑥3

2 − 𝑥1
2) +  𝐹(𝑥3)(𝑥1

2 − 𝑥2
2))

𝐹(𝑥1)(𝑥2 − 𝑥3) + 𝐹(𝑥2)(𝑥3 − 𝑥1) + 𝐹(𝑥3)(𝑥1 − 𝑥2)
 

The new value obtained replaces one of the three points to improve the current 

three-point pattern. The process is repeatedly applied until optimum value is 

obtained up to the desired degree of accuracy.  

Table 1 shows that optimum value 𝐹(𝜇) =112.83101corresponding to μ= 

2.15566 with the permissible error of 10−4, which is verified by Figure 6. 

Table 1. Optimization of cost by parabolic method  

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝑭(𝒙𝟏) 𝑭(𝒙𝟐) 𝑭(𝒙𝟑) 𝒙𝑳 

𝟏. 𝟕𝟎 𝟐. 𝟎𝟎 𝟐. 𝟓𝟎 𝟏𝟐𝟕. 𝟑𝟕𝟐𝟓𝟑 𝟏𝟏𝟑. 𝟖𝟓𝟎𝟐𝟒 𝟏𝟏𝟓. 𝟕𝟕𝟓𝟕𝟏 𝟐. 𝟐𝟏𝟖𝟓𝟐 

𝟐. 𝟎𝟎 𝟐. 𝟐𝟏𝟖𝟓𝟐 𝟐. 𝟓𝟎 𝟏𝟏𝟑. 𝟖𝟓𝟎𝟐𝟒 𝟏𝟏𝟐. 𝟗𝟓𝟗𝟎𝟓 𝟏𝟏𝟓. 𝟕𝟕𝟓𝟕𝟏 𝟐. 𝟏𝟖𝟏𝟔𝟓 

𝟐. 𝟎𝟎 𝟐. 𝟏𝟖𝟏𝟔𝟓 𝟐. 𝟐𝟏𝟖𝟓𝟐 𝟏𝟏𝟑. 𝟖𝟓𝟎𝟐𝟒 𝟏𝟏𝟐. 𝟖𝟓𝟑𝟖𝟑 𝟏𝟏𝟐. 𝟗𝟓𝟗𝟎𝟓 𝟐. 𝟏𝟔𝟐𝟔𝟗 

𝟐. 𝟎𝟎 𝟐. 𝟏𝟔𝟐𝟔𝟗 𝟐. 𝟏𝟖𝟏𝟔𝟓 𝟏𝟏𝟑. 𝟖𝟓𝟎𝟐𝟒 𝟏𝟏𝟐. 𝟖𝟑𝟐𝟕𝟑 𝟏𝟏𝟐. 𝟖𝟓𝟑𝟖𝟑 𝟐. 𝟏𝟓𝟖𝟒𝟒 

𝟐. 𝟎𝟎 𝟐. 𝟏𝟓𝟖𝟒𝟒 𝟐. 𝟏𝟔𝟐𝟔𝟗 𝟏𝟏𝟑. 𝟖𝟓𝟎𝟐𝟒 𝟏𝟏𝟐. 𝟖𝟑𝟏𝟐𝟖 𝟏𝟏𝟐. 𝟖𝟑𝟐𝟕𝟑 𝟐. 𝟏𝟓𝟔𝟒𝟖 

𝟐. 𝟎𝟎 𝟐. 𝟏𝟓𝟔𝟒𝟖 𝟐. 𝟏𝟓𝟖𝟒𝟒 𝟏𝟏𝟑. 𝟖𝟓𝟎𝟐𝟒 𝟏𝟏𝟐. 𝟖𝟑𝟏𝟎𝟑 𝟏𝟏𝟐. 𝟖𝟑𝟏𝟐𝟖 𝟐. 𝟏𝟓𝟓𝟗𝟒 

𝟐. 𝟎𝟎 𝟐. 𝟏𝟓𝟓𝟗𝟒 𝟐. 𝟏𝟓𝟔𝟒𝟖 𝟏𝟏𝟑. 𝟖𝟓𝟎𝟐𝟒 𝟏𝟏𝟐. 𝟖𝟑𝟏𝟎𝟏 𝟏𝟏𝟐. 𝟖𝟑𝟏𝟎𝟑 𝟐. 𝟏𝟓𝟓𝟕𝟐 

𝟐. 𝟎𝟎 𝟐. 𝟏𝟓𝟓𝟕𝟐 𝟐. 𝟏𝟓𝟓𝟗𝟒 𝟏𝟏𝟑. 𝟖𝟓𝟎𝟐𝟒 𝟏𝟏𝟐. 𝟖𝟑𝟏𝟎𝟎 𝟏𝟏𝟐. 𝟖𝟑𝟏𝟎𝟏 𝟐. 𝟏𝟓𝟓𝟔𝟔 
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Figure 6. Variation in expected operating cost per unit time with service rate 

(μ)  

6. Conclusion and future scope 

In this paper, we have analyzed single server Markovian queueing model with 

state dependent arrival rates of customers under differentiated vacations and 

classical retrial policy.  The closed form expressions for various performance 

measures are derived with the help of probability generating functions. The 

performance of the proposed model is represented graphically using MATLAB 

software. The operating cost of the queueing system is optimized with respect 

to service rate of the server. The model can be extended to multiple servers. 
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1. Introduction  
The theory of set proposed by Cantor in 1915, is a collection of well-defined 

objects of thought and intuition. The limitation of set theory is its inability to deal 

with the vague properties of its member or element, and likewise its distinctness 

property which does not allows repetition in the collection. In other to handle the 

vague property of a set, Zadeh [19] proposed a mathematical model that deal with 

vagueness of a set known as fuzzy sets. The distinct property of crisp set has been 

violated by allowing repetition of an element in a collection. This gave birth to a 

set called multiset. The term multiset was first suggested by De Bruijn to Knuth in 

a private correspondence as noted in [13]. The theory of multisets has been 

studied [3, 4, 10, 11, 12, 16]. Lake [14] presented an abridge account on sets, 

fuzzy sets, multisets and functions. 

By synthesizing the concepts of fuzzy sets and multisets, Yager [18] introduced 

the concept of fuzzy multiset (FMS) that deal with vagueness property of a set and 

allowed the repetition of its membership function. In fact, fuzzy bag or fuzzy 

multiset generalizes fuzzy sets in such a way that the membership degree of a 

fuzzy set is allowed to repeat. Some fundamentals properties of fuzzy bags have 

been studied [6, 15]. The concept of fuzzy bags has been applied in multi-criteria 

decision-making [1, 2], sequences [5] and computational science [17].   

Metric is a function that defines a concept of distance between any members of 

the set, which are usually called points. The notions of metric and norm have been 

extended to the environment of fuzzy sets [7, 8, 9].  In this work, we present the 

notions of norm and metric in fuzzy multiset context.   

 

2. Preliminaries  

In this section, we review some definitions and result that are important for the 

main work. 
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Definition 2.1 [18]. Assume   is a set of elements. Then, a fuzzy 

bag/multiset,  drawn from  can be characterized by a count membership 

function  such that  where  is the set of all crisp bags or 

multisets from the unit interval,   

According to Syropoulos [17], a fuzzy multiset can also be characterized by a 

high-order function. In particular, a fuzzy multiset  can be characterized by a 

function  

or  

where and  

The count membership degrees,  for  is given as  

 

where ,…  ∈ [0,1] such that  ( )  ≥  ( ) ≥  ( ), 

≥ … ≥  (x) ≥ …, whereas in a finite case, we write  

= {  ( ),  ( ),…,  ( )} for  ( )  ≥  ( )≥ … ≥  ( ).  

A fuzzy multiset  can be represented in the form 

 or  

In a simple term, a fuzzy multiset,  of  is characterized by the count 

membership function,  for , that takes the value of a multiset of 

a unit interval . We denote the set of all fuzzy multisets by   

Example 2.2. Assume that  is a set. Then for 

={0.5,0.4,0.2}, A 

is a fuzzy multiset of  written as  

 
Definition 2.3 [15]. Let  Then,  is called a fuzzy 

submultiset of   written as  if  . Also, if 

 and , then A is called a proper fuzzy submultiset of  and 

denoted as .  
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Definition 2.4 [15]. Let  Then,  and  are comparable to 

each other if and only if  

  

Definition 2.5 [17]. Let .Then, the intersection and union 

of , denoted by and are defined by 

(i)  

(ii)  

Definition 2.6 [17]. Let . Then, the sum of and , denoted 

by , is defined by the addition operation in   for crisp multiset. 

That is, 

 
The addition operation is carry out by merging the membership degree in a 

decreasing order.  

Definition 2.7 [6]. Let . Then, the difference of from  is a 

fuzzy multiset  such that 

. 

Definition 2.8 [6]. Let  . Then, the complement of  is a fuzzy 

multiset  such that   Metric and Norm 

defined over Fuzzy Multisets      

 

3. Metric and norm defined over fuzzy multisets  

In this section, we present metrics and norm defined over fuzzy multiset. 

Definition 3.1. Let  be an arbitrary non-empty set and let  . A 

metric or distance function between A and B on  is a function 

 with the following properties: 

(i)  . 

(ii) iff . 

(iii) . 

(iv)
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if  

Note: 

(i) The distance is a non-negative function and only zero at a single point. 

(ii) The distance is a symmetric function.  

(iii) The distance satisfy triangle. 

Proposition 3.2. Let   Then  is a metric 

defined on   

Proof. We use Definition 3.1: 

Axiom (i) 

  

      . 

Axiom (ii) 

 If 

.   

Conversely, if .  

Axiom (iii)  

 . 

Axiom (iv) 

  

The following are distances between fuzzy multisets: 

Hamming distance; 

   

 

Euclidean distance; 

  

 

 

Normalized Hamming distance; 

 . 

Normalized Euclidean distance; 
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 . 

Theorem 3.3. Let  be non-empty set and  then 

 . 

Proof. We show that  or 

. But  

and  . 

Thus,  

                                                   
        

                  

                 =  

                                                  

Hence  

Corollary 3.4. If  is a distance of fuzzy multiset of 

and  then  

Pr

oof. Clearly,  

       

                         . 

Proposition 3.5. If  is a metric of fuzzy multiset 

and then  

Proof. By Definition 3.1, if , so 

it follows that . 

Proposition 3.6. Let  and  is a metric defined on 

Then  is also a metric. 
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Proof. The proof is obvious, since 

Hence is a metric. 

Corollary 3.7. If λ then  . 

Proof. The proof is straightforward. 

Corollary 3.8. If then .  

Proof. The proof is straightforward. 

Corollary 3.9. If  then  

Proof. The proof is straightforward. 

Definition 3.10. Let  be a non-empty set and  be a fuzzy multiset of X. A 

non-negative real-valued function   defined on   is called a norm if the 

following properties are satisfied: 

(i) iff  that is, iff  

(ii)  which implies that 

 

(iii)  which implies 

that . 

The Fuzzy multiset equipped with a norm is called Normed Fuzzy multiset.  

Proposition 3.11. Let then  

Proof.  We show that . Now,  

                 

      

                 . 

Proposition 3.12.  Let  and a norm   define over 

. 

Proof. 

(i) . 

(ii)  
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(iii)  

            

Hence   is a norm defined over fuzzy multiset   

Corollary 3.13. If  then   and if , then  

. 

Proof. The proof is obvious. 

 

4 Conclusions 

We have presented a brief review on the concept of fuzzy multisets and 

explored metric and norm in fuzzy multiset context. A number of results on 

metric and norm were established, respectively. 
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Abstract

In this paper we introduced xyz local hexagonal picture languages,
where the usual notion of hexagonal tiles of size (2, 2, 2) are replaced
by xyz dominoes, motivated by the studies of xyz domino systems.
This new formalism is used for checking recognizability of hexag-
onal pictures. It is noticed that non- regular hexagonal pictures can
also be studied in the place of regular pictures. Recognizability of xyz
local hexagonal picture were studied and the fact that every recogniz-
able hexagonal p[icture languages can be obtained as a projection of
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1 Introduction
A picture is used to understand things in a better way. Hexagonal pictures

and tiles has got many significances. A lot of technologies are there to compute
pictures with the help of computers. This resulted in the introduction of picture
generating models. In [D.Giammarresi, 1992] Giammerresi et.al proposed the
recognizability of picture languages. The languages in recognizable pictures were
defined using tiling systems. Hexagonal pictures have got various uses particu-
larly in picture processing and image analysis. Hexagonal arrays on triangular
grid are viewed as two dimensional representation of three dimensional blocks
and perceptual twins of pictures of a given set of blocks[KS, 2005]. Since late
seventies, formal models to generate or recognize hexagonal pictures has been
found in literature in the frame work of pattern recognition and image analysis.

Recently searching for a new method for defining hexagonal pictures has
moved towards the new definition for recognizable languages generated by hexag-
onal pictures which inherits many properties from existing cases, in [Giammarresi,
1966],. Local and recognizable hexagonal picture languages in terms of hexago-
nal tiling system were introduced and studied in [KS, 2005]. In [Dersanambika,
2004] K S Dersanambika et.al. define xyz- domino systems and charecterised
hexagonal pictures using this. Subsequently hexagonal hv-local picture languages
via hexagonal domino systems were introduced in the light of two dimensional
domino system introduced by Latturex et.al [Latteurx, 1997]. Hexagonal arrays
and hexagonal patterns are found in picture processing and image analysis [Der-
sanambika, 2004].

It is very natural to consider hexagonal tiles on triangular grid, we require
certain hexagonal tiles only to present in each hexagonal pictures of a hexagonal
picture languages. This leads to recognizable hexagonal pictures and the hexag-
onal tiling systems. The xyz domino tiling characterize the hexagonal picture
languages. So we define xyz local hexagonal picture languages over the usual
notion of a hexagonal picture of size (2, 2, 2) and proved that every recognizable
hexagonal picture language can be obtained as some projection of these languages.

2 Recognizability of hexagonal pictures
In this part we review the notions of formal language theory and some of the

basic concepts on hexagonal pictures and hexagonal picture languages [Anitha,
2011].
Let Σ be a finite alphabet of symbols. A hexagonal picture p over Σ is a hexagonal
array of symbols of Σ. The set of all hexagonal arrays of the alphabet Σ is denoted
by Σ∗∗H . A hexagonal picture over the alphabet a, b, c d is shown in Figure 1.
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a a b
a b f c

b c c a c
d a a d

c c a

Figure 1

With respect to a triad of triangular axes (x, y, z) the co-ordinates of each element
of the hexagonal picture in Figure 2(a) and Figure 2(b) respectively are given
below [KS, 2005].

Figure2(a)

Figure2(b)
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If p ∈ Σ∗∗H , then p̂ is the hexagonal picture obtained by surrounding p with
a special boundary # is called a bordered hexagonal picture which is shown in
Figure 3.

# # # #
# a b c #

# b b a b #
# c a b c f #

# d b e d #
# c f a #

# # # #

Figure 3

Let l1(p) = l, l2(p) = m, l3(p) = n be the size of the hexagonal arrays. We
writep = (l,m, n), the size of a picture. For a picture p of size (l,m, n) we have
the bordered picture p̂ is of size(l + 1,m+ 1, n+ 1).

Now we see the projections of hexagonal picture and projections of a lan-
guage. Γ and Σ be two finite alphabets and π : Γ → Σ be a mapping, this
mapping π is called a projection.
A hexagonal tile is of the form as shown in Figure 4.

Figure 4

Given a hexagonal picture p of size (l,m, n) we denote the set of hexagonal sub-
picture of p of size (2, 2, 2) is called a hexagonal tile of size (2, 2, 2). Figure 4
denote a hexagonal tile of size (2, 2, 2).
A hexagonal tiling system [Dersanambika, 2004] T is a 4-tuple (Σ,Γ, π, θ) where
Σ and Γ are two finite set of symbols. π : Γ −→ Σ is a projection and θ is the set
of hexagonal tiles over the alphabet Γ∪ {#}.

Definition 2.1. A hexagonal sub picture p̂′ is a picture which is a hexagonal sub
array of the picture p̂. Given a hexagonal picture p̂ then Bl,m,n(p̂) denotes the set
of hexagonal sub pictures of size l,m, n.

For hexagonal pictures there are three types of concatenations namely type
1, type 2, and type 3 refer [Anitha, 2011]. A hexagonal picture language is rec-
ognizable if there exist a local language L′ over an alphabet Σ and a mapping
π : Γ −→ Σ such that L ⊆ π(L′).
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3 xyz local hexagonal picture languages
In this section we introduce the notion of xyz local hexagonal picture lan-

guages where the hexagonal tiles of size (2, 2, 2) are replaced by xyz dominos.

Definition 3.1. L be a hexagonal picture language included in Σ∗∗H . L is said to
be xyz local if there exist a set ∆ of x,y,z dominoes over Σ ∪ {#} such that L =
{q ∈ Σ∗∗H |T1,1,2(q) ∪ T1,2,1(q) ∪ T2,1,1(q) ⊆ ∆}

Example 3.1. If we consider the hexagonal picture langauages L over the alpha-
bet Σ = {0, 1} then all the hexagonal picture of can be obtained by the concate-
nation of xy,yz,xz dominoes.

Figure 5

The hexgonal picture so obtained is local as we can associate a set of xyz
dominoes ∆ as follows which generates the whole picture. Here figure 6 show the
picture generated by x dominoes, figure 7 shows the y dominoes, while figure 8
shows the z dominoes.

Figure 6

Figure 7

Figure 8
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Theorem 3.1. Let L ⊆ Σ∗∗H be a hexagonal picture language. If L is xyz local,
then L is local.

Proof. proof Let L ⊆ Σ∗∗H be a xyz local hexagonal picture language. For prov-
ingt L is local, construct a local hexagonal picture language L′ and show that L =
L′. We know that there exist a set ∆ of xyz dominoes over
Σ ∪ {#}(∆ ⊆ (Σ ⊆ {#})(1,1,2) ∪ (Σ ⊆ {#})(1,2,1) ∪ (Σ ⊆ {#})(2,1,1))
such that
L = {p ∈ Σ∗∗H |T1,1,2(p̂) ∪ T1,2,1(p̂) ∪ T2,1,1(p̂) ⊆ ∆}.
We define the set of hexagonal pictures ∆ ′ ,
∆ ′ = q ∈ (Σ ∪ {#})(2,2,2)|T1,2,1(q̂) ∪ T1,1,2(q̂) ∪ T2,1,1(q̂) ⊆ ∆}.
Let L′ = {p ∈ Σ∗∗H |T2,2,2(p̂) ⊆ ∆ ′ }.
Clearly L′ is local. Now let p ∈ L′.
Then T2,2,2(p̂) ⊆ ∆ ′ and T1,1,2(p̂) ⊆ T1,1,2(T2,2,2(p̂)) ⊆ T1,1,2(∆

′ ) ⊆ ∆.
Similarly T2,1,1(p̂) ⊆ ∆ and T1,2,1(p̂) ⊆ ∆. Hence p ∈ L.
Therefore L′ ∈ L.
To show that L ∈ L′. Let p ∈ L, let q ∈ L and a ∈ T2,2,2(q̂). Then T1,2,1(a) ⊆
T1,2,1(q̂) ⊆ ∆,
T2,1,1(a) ⊆ T2,1,1(q̂) ⊆ ∆,
and T1,1,2(a) ⊆ T1,1,2(q̂) ⊆ ∆.
So a ∈ ∆

′ , and q ∈ L′. Therefore L ∈ L′.
Hence L = L′. That is if L is an xyz local hexagonal picture language then L is a
local hexagonal picture language.

Example 3.2. For instance, the hexagonal picture language defined above is local
with,

Figure 9

Theorem 3.2. Let L ⊆ Σ∗∗H be a hexagonal picture language. If L is local there
exists a xyz local hexagonal picture language L′ over Σ

′
and a mapping π : Σ

′ →
Σ such that L = π(L

′
).

Proof. We define an extended alphabet from Σ. We denote this alphabet E(Σ) =
(Σ ∪ {#})3,3,3. Now we define a mapping π, π : Σ∗∗H → E(Σ∗∗H)
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p→ pE ∈ E(Σ∗∗H).
We define p and pE with same size and for all 1 6 i 6 l + 1, 1 6 j 6 m+ 1, 1 6
k 6 n+ 1 where (l,m, n) be the size ofp.

Figure 10

It can be verified that every hexagonal tile of size (2, 2, 2) in pE where p ∈ Σ∗∗H

appear in π(p) and vice versa.
T2,2,2(p

E) = ∪T2,2,2(a).
If p ∈ Σ∗∗H where Σ = {0, 1} then

Figure 11

where

Figure 12
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We also define a mapping φ from E(Σ∗∗H) onto Σ∗∗H by π(a) = a(2, 2, 2) for a
∈ E(Σ). By using figure 10 it is clear that for all p ∈ Σ∗∗H we have p = φ(π(p)).
Hence we conclude that L = π(L′)

Theorem 3.3. Let L ∪ Σ∗∗H be a hexagonal picture language L is recognizable
if and only if there exist a xyz local hexagonal picture language L′ over Σ

′
and a

mapping π : Σ
′ → Σ such that L = π(L′).

Proof. Let L be a recognizable hexagonal picture language over Σ. By defini-
tion of recognizable picture languages we know that there exist a local hexagonal
picture language L′ over an alphabet Σ

′ and a mapping π : Σ
′ → Σ such that

L = π(L′).
According to theorem 1 there exist a xyz local hexagonal picture language L′′ over
an alphabet Σ

′′ and a mapping φ : Σ
′′ → Σ

′ such that L′ = φ(L′′).
From the above two results we get L = π(L′′) = π(φ(L′′)) where L′′ is xyz local.

Now let L′ be a xyz local hexagonal picture language over Σ
′ , then π : Σ

′ →
Σ be a mapping. Applying theorem 2 it follows that L′ is local and hence the
hexagonal picture π(L′) is recognizable.

4 Conclusion
xyz local recognizable hexagonal picture languages provides a new formalism

of using xyz dominos instead of usual notation of hexagonal tile.We tried to prove
that a hexagonal picture language L is recognizable and is the projection of a xyz
local hexagonal picture language. In a similar way we can extend the various other
properties of recognizable rectangular picture to recognizable hexagonal picture.
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On odd integers and their couples of
divisors

Giuseppe Buffoni*

Abstract

A composite odd integer can be expressed as the product of two odd
integers. Possibly, this decomposition is not unique. From 2n + 1 =
(2i + 1)(2j + 1) it follows that n = i + j + 2ij. This form of n
characterizes the composite odd integers. It allows the formulation
of simple algorithms to compute all the couples of divisors of odd
integers and to identify the odd integers with the same number of
couples of divisors (including the primes, with the number of non
trivial divisors equal to zero). The distributions of odd integers ≤
2n+1 vs. the number of their couples of divisors have been computed
up to n ' 5 107, and the main features are illustrated.
Keywords: divisor computation; odd integer distribution vs. divisor
number. 2020 AMS subject classifications: 11Axx, 11Yxx. 1

1 Introduction: characterization of composite odd
and prime numbers

Let N be the set of positive integers and P the set of prime numbers with the
exception of 2. Composite odd integers 2n + 1, n ∈ N, may be expressed as
product of two odd integers,

2n+ 1 = (2i+ 1)(2j + 1), i, j ∈ N, (1)

or of more than two odd integers, i.e. as product of two odd integers in different
ways. The decomposition (1) implies that
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n = kij = i+ j + 2ij, (2)

which may also be rewritten in the form

n = kij = i(j + 1) + (i+ 1)j. (3)

Either equation (2) or (3) specifies the structure of a composite odd integer 2n+1.
Let K ⊂ N be the set of the integers kij ∀i, j ∈ N. Since any odd integer

2n+ 1 greater than one is either a composite or a prime number, it follows that

n ∈ K ⇐⇒ 2n+ 1 ∈ N \ P,
or, equivalently,

n ∈ N \K ⇐⇒ 2n+ 1 ∈ P.
Remark. More involved characterizations of prime numbers can be formu-

lated. They are obtained starting from the observation that all prime numbers
greater than c ∈ N, are of the form c#h + ι, where c# represents c primorial,
h, ι ∈ N, and ι < c# is coprime to c#, i.e. gcd(ι, c#) = 1. As an example, let
c = 4, c# = 6; thus, all prime numbers > 4 may be expressed as 6h + ι with
ι = 1, 5. Since 6h+ 5 = 6(h+ 1)− 1, then all prime numbers may be expressed
in the form 6h ± 1, with the exception of 2 and 3. Let the odd integer 2n + 1 be
written as 2n + 1 = 6h± 1, so that either n = 3h or n = 3h− 1. For composite
integers n = kij , and consequently 3 should be a dvisor of either kij or kij + 1.

The paper is organized as follows. In section 2 varios formulations of the
relationship between n and the pair (i, j) are viewed. An algorithm to compute
the divisors of an odd integer is described; it can also be used as a primality
test. In sections 3 and 4 it is shown how odd integers with the same number of
couples of divisors can be identified. Moreover, the distributions of odd integers
≤ 2n+1 vs. the number of their couples of divisors are computed up to n = 5 107

and illustrated. Some concluding remarks can be found in section 5. Details of
calculations are reported in appendix.

2 The relationship between n and the pair (i, j)

The functional relationship between a composite integer 2n+1 and the factors
2i+ 1, 2j + 1 of its decompositions, or between n, i, j, can be written in different
forms. The decomposition (1) is an inverse proportional relationship (hyperbolic
relation) between 2i + 1 and 2j + 1. Here and in the following it is assumed
that i ≤ j, so that 2i + 1 ≤

√
2n+ 1 ≤ 2j + 1 (equality holds iff i = j), or

equivalently
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i ≤ In =
1

2
(−1 +

√
2n+ 1) ≤ j. (4)

The relation (1) has been written in the forms (2) and (3). These equations
define the entries of the matrix K = {kij}, used for the computation of the distri-
bution of odd integers vs. the number of their couples of divisors. Properties of
K can be found in appendix 1.

By making explicit the variable j, (2) can be written in the form of an homo-
graphic function

j = φn(i) =
n− i
2i+ 1

, 1 ≤ i ≤ In. (5)

Thus, 2i + 1 is a divisor of both 2n + 1 and n − i. From (12) in appendix 1, it
follows that 2i+ 1 is also a divisor of n− kii.

Equation (5) can be used to compute the couples of divisors of an integer 2n+1
by means of the following algorithm:

given n, compute φn(i) for i = 1, 2, ..., [In],
where [·] is the integer part of the real argument;
if for some i = iq we obtain that jq = φn(iq) ∈ N,
then 2iq + 1 ≤

√
2n+ 1 ≤ 2jq + 1 is a couple of divisors of 2n+ 1.

The order of the number of operations is
√
n/2. The algorithm can also be

used as a primality test: if the computed φn(i) /∈ N ∀i, then 2n+ 1 is a prime.
The functions y = φn(x), x+y, xy, y−x, of the real variable x, are monotone

for 0 ≤ x ≤ In (figure 1). In, defined in (4), is the unique positive solution to the
equation φn(x) = x, i.e. 2x2 + 2x− n = 0. The point x = In corresponds to the
minimum of x+ y, to the maximum of xy, and, obviously, to y − x = 0.

By means of a change of variables, the relationship (1) can be put in the form

2n+ 1 = (s+ t)(s− t) = s2 − t2, with s = i+ j + 1, t = j − i, (6)

while (2) and (3), representing partitions of the integer n in two sections, can be
put in linear forms

n = s+ 2t, with s = i+ j, t = ij, (7)

n = s+ t, with s = i(j + 1), t = (i+ 1)j. (8)

Equation (6) shows the well known fact that composite odd integers can be
written as a difference of two squares in different ways, while for a prime only
holds the decomposition 2n+ 1 = (n+ 1)2 − n2.
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Figure 1: Top left y = φn(x), top right x + y, bottom left xy, bottom right
y− x. Circle: point x = In on the x axis, and corresponding points on the curves.
n = 50, In = 4.52.
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Given n, s ∈ N, it is possible to prove when s and t = n− s can be expressed
as either in (7) or in (8). The details are reported in appendix 2: it is shown that
i, j are solutions to second order equations, and they are integer satisfying either
(7) or (8), iff the square root of a quadratic form in n and s is an integer,

3 Identification of odd integers ≤ 2n + 1 with the
same number of couples of divisors

Let 2m+ 1 be a composite integer and let

ψ(m) = number of couples of divisors of 2m+ 1.

Obviously, ψ(m) is also equal to the number of divisors of 2m + 1 ≤
√

2m+ 1.
If ψ(m) = ν, then the entry m = kij , with i ≤ j, appears ν times in the matrix
K = {kij}.

Composite integers 2m + 1 with m ≤ n are identified by the pairs (i, j) such
that

4 ≤ m = kij ≤ n. (9)

By assuming i ≤ j, it follows that (9) holds for the pairs

(i, j) ∈ Ω(4, n) = {i, j ∈ N : i = 1, 2, ..., [In]; j = i, i+ 1, ..., [φn(i)]}.

An estimation of the number of these pairs as n −→ +∞ is given by

κ∗n ' n(
1

4
ln(n) + c). (10)

with c = −0.4415. The details can be found at the end of appendix 1. In doing
so we do not consider the couple (0, n), corresponding to the couple of trivial
divisors (1, 2n+ 1).

The odd integers 2m+1, m ≤ n, with the same number of couples of divisors
can be identified by means of the following algorithm:

let ψ(m) = 0, m = 1, ..., n;
compute kij, ∀(i, j) ∈ Ω(4, n);
for kij = m let ψ(m) = ψ(m) + 1.

When ψ(m) = 0, then the integer 2m + 1 is a prime. All the integers 2m + 1,
with ν couples of divisors, are identified by the values of m for which ψ(m) = ν.
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Furthermore, let

Πn(ν) = number of odd integers ≤ 2n+ 1 with ν couples of divisors.

Πn(0) is the number of primes ≤ 2n+ 1, except 2. Πn(ν) is estimated as follows:

for ν = 0 : Πn(0) = number of ψ(m) = 0,

for ν > 0 : Πn(ν) = 1
ν

∑
ψ(m)=ν ψ(m).

This approach, used to identify the prime numbers, is an equivalent formu-
lation of the common implementation of the Eratostene’s sieve (see for example
the C program source in (2), section 6.3). In this case ψ(m) could be a logical
variable.

The algorithm may be easily applied to the integers in a generic set [2a +
1, 2n+ 1], with 4 < a < n, to identify either the odd integers in this interval with
the same number of couples of divisors or the primes. The inequalities identifying
these integers,

a ≤ kij ≤ n, with i ≤ j,

hold for the pairs

(i, j) ∈ Ω(a, n) = {i, j ∈ N : i = 1, 2, ..., [In]; j = Ja(i), Ja(i)+1, ..., [φn(i, )]},

where:

when i ≤ [Ia] : either Ja(i) = [φa(i)] + 1, φa(i) /∈ N, or Ja(i) = φa(i) ∈ N;

when i > [Ia] : Ja(i) = i.

The set of the points (i, j) ∈ Ω(a, n), with integer coordinates, is contained in a
closed and convex set Ω∗(a, n) of a plane. See figure 2, where the boundaries of
this set are plain defined.

Some remarks on the case with large n and n − a << n can be found in
appendix 3.
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Figure 2: Set Ω∗(a, n) in the plane (x, y). Continuous lines: y = φa(x) <
y = φn(x); dotted line: y = x; asterisk: points (0, a), (0, n); circle: points
(Ia, 0), (In, 0), and corresponding points on the curves. Different scales for x and
y.
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4 Distributions of odd numbers vs. the number of
their couples of divisors

The computation of the distributions Πn(ν) has been performed, by means of
the algorithm described in the previous section, for n ≤ 5 107, i.e. for odd integers
2n+ 1 ≤ 108 + 1 (see the tables 1, 2 for some values of n).

n = 5 n = 50 n = 5 102 n = 5 103 n = 5 104

ν
0 4 25 167 1228 9591
1 1 20 207 1964 18259
2 5 52 382 2824
3 56 925 11380
4 5 50 308
5 12 264 3200
6 0 4 32
7 1 128 2785
8 22 265
9 9 188

10 0 3
11 24 826
12 1
13 18
14 27
15 195
16 0
17 66
18 0
19 13
20 0
21 0
22 1
23 18
tot. 4 1 30 20 224 276 1686 3314 13052 36948

Table 1: Distribution Πn(ν) of odd integers ≤ 2n+ 1, with ν couples of divisors,
for n = 5, 50, 5 102, 5 103, 5 104.

Let

ν∗n = maximum number of couples of divisors of odd integers ≤ 2n+ 1.
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n = 5 105 n = 5 106 n = 5 105 n = 5 106

ν ν
0 78497 664578 1 168522 1555858
2 21711 174188 3 126518 1336044
4 2030 14919 5 32314 309137
6 236 1758 7 42022 542740
8 2228 17481 9 2171 21649

10 16 74 11 13521 172181
12 2 12 13 238 2343
14 295 2376 15 5733 105676
16 0 4 17 1403 17487
18 0 0 19 545 8847
20 24 268 21 0 15
22 11 60 23 1537 34648
24 6 57 25 0 0
26 50 705 27 17 566
28 0 0 29 67 1503
30 0 0 31 179 8098
32 0 0 33 0 0
34 0 7 35 88 3589
36 0 0 37 0 4
38 0 0 39 13 922
40 0 11 41 0 69
42 0 0 43 0 0
44 0 65 45 0 0
46 0 0 47 6 1693
48 0 49 7
50 0 51 0
52 0 53 118
54 0 55 16
56 0 57 0
58 0 59 86
60 0 61 0
62 1 63 91
64 0 65 0
66 0 67 0
68 0 69 0
70 0 71 46
72 0 73 0
.. .. .. ..

78 0 79 3
tot. 105106 876564 tot. 394894 4123436

Table 2: Distribution Πn(ν) of odd integers ≤ 2n+ 1, with ν couples of divisors,
for n = 5 105, 5 106. (Since ν∗n = 143 for n = 5 107, this case is not reported
here).
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Thus, Πn(ν) = 0 for ν > ν∗n. It has been estimated (table 3, figure 3) that ν∗n
increases as a power of n. The following approximation has been found by a
fitting procedure

ν∗n = µnλ, µ = e0.3992±0.1050, λ = 0.2586± 0.0083, 5 102 ≤ n ≤ 5 107.

n 5 102 5 103 5 104 5 105 5 106 5 107

ν∗n 8 12 24 48 80 144

µ nλ 7.43 13.48 24.46 44.37 80.48 145.99

Table 3: Computed values of ν∗n and those produced by ν∗n = µnλ for some values
of n.

A visual inspection of the patterns of Πn(ν) (the scattered plots of ln(Πn(ν))
vs. ν are shown in the figures 4, 5) suggests that the odd integers with even and
odd numbers of couples of divisors should belong to different populations. This
view has to be considered only as a guess of the author, trying to interpret special
features of Πn(ν). Anyhow, to avoid repetitions, we nickname these integers as

ravens the odd integers with 2ν couples of divisors,
cods the odd integers with 2ν + 1 couples of divisors.

The primes, identified by ν = 0, are included in the ravens. We have that

Πn(2ν) = number of ravens ≤ 2n+ 1,
Πn(2ν + 1) = number of cods ≤ 2n+ 1.

For n > 150, in general

Πn(2ν) < Πn(2ν + 1). (11)

Only for few values of ν this inequality is not satisfied in the computed distribu-
tions (table 4). The number of ravens is less large than that of cods (see the last
row in the tables 1, 2).
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Figure 3: ν∗n vs. ln(n). Circles: computed values, continuous line: approximation
ν∗n = µ exp(λ ln(n)) for 2 102 ≤ n ≤ 5 107.

n 5 102 5 103 5 104 5 105 5 106 5 107

8-9 8-9 8-9 20-21 20-21 24-25 20-21 24-25
24-25 26-27 44-45 32-33 44-45

74-75 80-81
N. couples 0 1 1 4 3 6

Table 4: Couples of ν for which inequality (11) is not satisfied.
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Figure 4: Distributions ln(Πn(ν) vs. ν for n = 5 102, 5 103 5 104, 5 105. Circle:
ravens, asterisk: cods.
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Figure 5: Distribution ln(Πn(ν)) vs. ν for n = 5 106, n = 5 107. Circle: ravens,
asterisk: cods.
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For ' 5 102 ≤ n ≤' 5 104 both the points Πn(2ν) and Πn(2ν + 1) show
well distinct decreasing trends with ν (figure 4). However, points not belonging to
the initial trends begin to appear for n ' 5 103. Indeed, new branches (generally
decreasing with ν) grow for increasing n, beginning at ν values not detected in
the previous branches (figure 5).

A branch may be roughly defined as a sequence of points in the plane (ν, ln Π)
which approximately lay on a straight line. For example, in the plot for n = 5 105

in figure 4, we can recognize two raven branches: the initial at the points ν =
0, 2, 4, 6, 8 and a second branch at ν = 8, 14, 20, 22, 24 (the point at ν = 8 is
already present in the distribution for n = 5 103), and a single point at ν = 26.
Moreover, four cod branches: the initial at the points ν = 1, 3, 7, 11, 15, 23, 31, 35,
and then at ν = 5, 9, 13, at ν = 17, 19, 27, and at ν = 29, 39. The attribution of
a point to a branch is sometimes uncertain. Indeed, the interpretation of the evo-
lution of the distributions Πn(ν) with n in terms of growing branches is arbitrary.
The straight lines in the plane (ν, ln Π) approximating the initial trends of both
ravens and cods are estimated by a fitting procedure (table 5, figure 6).

n α± σ β ± σ σ
ravens

5 105 11.3131± 0.2663 −0.8846± 0.0377 0.3901
5 106 13.4700± 0.2292 −0.9257± 0.0324 0.3358
5 107 15.7156± 0.1925 −0.9823± 0.0272 0.2820

cods
5 105 12.2196± 0.1155 −0.2234± 0.0059 0.1971
5 106 14.3920± 0.1244 −0.1770± 0.0063 0.2122
5 107 16.4599± 0.2084 −0.1484± 0.0106 0.3557

Table 5: Initial branches of Πn(ν): coefficients of the linear relationship
ln(Πn(ν)) = α+βν and their standard deviations σ. Last column: σ of ln(Πn(ν)).

All the points (ν, ln(Πn(ν)) are contained in a bounded region of the plane
(ν, ln Π) (figures 4, 5). This region is bounded from the bottom by the initial
branch of ravens, starting from the number of primes ln(Πn(0)) and ending in
ν ' 20, and then by the axis ln Π = 0. From the top by the initial branch of cods,
starting from ln(Πn(1)) and ending in ν ' 40, and then by sparse decreasing cod
points, belonging to different branches. The upper boundary can be approximated
by a straight line with ' the same slope of the initial cod trend.

A guess about the description of the evolution of Πn(ν) with n has been sug-
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Figure 6: Top: initial branch of cods at ν = 1, 3, 7, 11, 15, 23, 31, 35. Bottom:
initial branch of ravens at ν = 0, 2, 4, 6, 10, 12. Triangle: n = 5 105; square:
n = 5 106; circle: n = 5 107. Continuous line: linear approximation.

101



G.Buffoni

gested by the most simple formula ((1), p. 8) approximating the number of primes
≤ 2n+ 1:

Πn(0) =
2n+ 1

ln(2n+ 1)
.

Taking into account that ln(ln(n)) ' 1.2334 + 0.0992 ln(n), 102 ≤ n ≤ 107,
this relationship can be approximated by ln(Πn(0)) ' −0.5403 + 0.9008 ln(n).
Fitting of ln(Πn(ν)) to the linear expression α + β ln(n) has been carried out
for ν = 0, 1, 2, 3 (table 6, figure 7). The straight lines are ' parallel for the
ravens ν = 0, 2, while the lines for the codes ν = 1, 3 show different slopes (the
line for ν = 3 is not shown in figure 7 for clearness of the figure). It is worth
here to remind that a logarithmic approximation of a quantity may lead to a rough
estimation of the quantity.

ν α± σ β ± σ σ
0 −0.4902± 0.0755 0.8993± 0.0068 0.0847
1 −0.7130± 0.0282 0.9714± 0.0025 0.0317
2 −1.7076± 0.0550 0.8944± 0.0049 0.0617
3 −2.3972± 0.1632 1.0721± 0.0140 0.1528

Table 6: ln(Πn(ν)) vs. ln(n): coefficients of the linear relationship ln(Πn(ν)) =
α + β ln(n) and their standard deviations σ. Last column: σ of ln(Πn(ν)). Ten
n−points, from n = 100 to n = 5 107 are used in fitting ln(Πn(ν)) for ν = 0, 1, 2.
Since Πn(3) is very small for n = 100, this point is not included for ν = 3.

The ”regularity” of some relationships between Πn(ν) (figure 8) may arouse
some surprise. We have performed a survey on the ratios between Πn(ν) with
ν = 0, 1, 2, 3. The trends of the ratios Πn(1)/Πn(0), Πn(3)/Πn(0), Πn(3)/Πn(1)
(figure 8 top), increasing with n, seem to be reasonable. On the other hand, the
trends of the ratios Πn(2)/Πn(ν), ν = 0, 1, 3, (figure 8 bottom), are disturbing.
This might be due to the shortage of ravens with ν = 2 detected. Obviously,
computations with n greater than n = 5 107, the maximum value here considered,
should be carried out to confirm the results, and to try to explain the trends. A
careful analysis to produce a thorough knowledge has to be hoped for.
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Figure 7: Distributions ln(Πn(ν)) vs. ln(n). Circle: Πn(0), asterisk: Πn(1),
square: Πn(2). Continuous line: linear approximation.

5 Concluding remarks
We have focused our attention on the computation of the couples of divisors

of odd integers. Indeed, any even integer can be written in the form

2m (2n+ 1), with m ≥ 1, n ≥ 0.

Thus, it is characterized by the power of two, and possibly by an odd integer with
its divisors. The following considerations hold for the computed distributions for
n up to 5 107.

For small n the following inequalities hold:

Πn(0) > Πn(1) > Πn(2) > Πn(ν), ν > 2, n < 149.

Πn(0) is the number of primes, Πn(1) is the number of cods either products of
two primes or primes cubed, while Πn(2) is the number of ravens either products
of primes by primes squared or primes to the fourth. The previous inequalities can
be explained by the following reasonings: for small n, (1) the density of primes is
high, and (2) the prime factors in the divisors of both cods and ravens should be
small. As an example, the possible decompositions of cods ≤ 101 with ν = 1 are
reported here:
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Figure 8: Ratios of distributions Πn(ν) vs. ln(n). Top: Πn(1)/Πn(0) aster-
isk, Πn(3)/Πn(0) circle, Πn(3)/Πn(1) square. Bottom: Πn(2)/Πn(0) asterisk,
Πn(2)/Πn(1) circle, Πn(2)/Πn(3) square.
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p1pi, i = 1, ..., 10; p2pi, i = 2, 3, ..., 7; p3pi, i = 3, 4, 5; p1p
2
1;

where p1 = 3, p2 = 5, ... are the primes. Thus, for small n, few factors produce
cod integers ≤ 2n + 1. For increasing n, the inequality Πn(1) > Πn(ν), ν 6= 1,
hold. For n = 149 we have Πn(0) = Πn(1) (table 7.

n Πn(0) Πn(1) Πn(2)

50 25 20 5
100 45 40 10
148 61 60 16
149 61 61 16
150 61 62 16
200 78 83 21
250 94 104 25

Table 7: The transition from Πn(0) > Πn(1) to Πn(0) < Πn(1).

The distributions Πn(ν) have been obtained by identifying all the couples (2i+
1, 2j + 1) of divisors of the integers 2m + 1 with m = kij ≤ n. For large n the
number κ∗n of kij ≤ n is n(ln(n)/4 + c) (10). The number k∗a+1n of kij such that
a+ 1 ≤ kij ≤ n can be estimated by

k∗a+1n = k∗n − k∗a =
1

4
(n ln(n)− a ln(a)) + c(n− a).

Under the assumption n− a << a < n it follows that

1 <
n

a
= 1 + (

n

a
− 1) << 2, so that 0 <

n

a
− 1 << 1.

Thus,

k∗a+1n = k∗n− k∗a = (n− a)(
1

4
ln(n) + c) +

1

4
a ln(

n

a
) = (n− a)(

1

4
ln(n) + c+

1

4
).

Some explanations on the numerical computations are given. The algorithms
described in sections 2 and 3 can be easily implemented in Fortran language.

The algorithm (in section 2) for the computation of the couples of divisors of
a given integer 2n + 1 does not require the storage of large dimension vectors. It
has been successfully used to determine the couples of divisors of odd composite
integers (and whether a number is prime or composite), up to input numbers of
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order 260 ' 1018. Note that quadruple precision for floating point operations is
necessary for numbers of order 260. We do not have recourse to computer algebra
systems, with numbers of variable length (3; 4).

The algorithm (in section 3) for the computaion of the distributions Πn(ν)
requires the storage of an INTEGER*8 vector; the computation has been carried
out up to the limit of the storage carrying capacity of the available computer (about
a vector of 6 107 of INTEGERS*8 entries). The computation of the primes in a
given interval [2a+1, 2n+1] has been performed either with small n−a ∈ [5, 50]
and a up to 1018, or with large n− a ∈ [102, 4 107] and a up to 109.
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Appendix 1. The matrix K = {kij}
Obviously, the symmetry property holds for the elements kij of K: kij =

kji,∀ i, j ∈ N. Thus, they can be represented by means of a symmetric matrix.
(see the table 8).

Since some composite odd numbers 2n + 1 may be expressed as product of
two odd numbers in different ways, it follows that

2n+ 1 = (2i1 + 1)(2j1 + 1) = (2i2 + 1)(2j2 + 1) =⇒ ki1j1 = ki2j2 ,
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as it can be observed in the matrix K (table 8). The number of couples (i, j) such
that n = kij , if they exist, is the number of decompositions of 2n + 1 in two
factors.

− ↓ i j → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46
2 12 17 22 27 32 37 42 47 52 57 62 67 72 77
3 24 31 38 45 52 59 66 73 80 87 94 101 108
4 40 49 58 67 76 85 94 103 112 121 130 139
5 60 71 82 93 104 115 126 137 148 159 170
6 84 97 110 123 136 149 162 175 188 201
7 112 127 142 157 172 187 202 217 232
8 144 161 178 195 212 229 246 263
9 180 199 218 237 256 275 294

10 220 241 262 283 304 325
11 264 287 310 333 356
12 312 337 362 387
13 364 391 418
14 420 449
15 480

Table 8: Matrix K = {kij} for 1 ≤ i ≤ j ≤ 15. i=row and j=column index.

Besides the symmetry identity, the elements kij satisfy other combinatorial
properties, obtained from the equation

(2n+ 1)(2kij + 1) = 2knkij + 1.

The identities

kpkqr = kqkrp = krkpq , p, q, r ∈ N

follow from the product of three odd numbers (2p+ 1)(2q+ 1)(2r+ 1), while the
identities

kkpqkrs = kkprkqs = ... = kpkqkrs = kqkpkrs = ..., p, q, r, s ∈ N

follow from the product of four odd numbers (2p + 1)(2q + 1)(2r + 1)(2s + 1).
Obviously, more involved identities are obtained from products of more than four
odd numbers.

The quantities kij − i = (2i + 1)j and kij − j = i(2j + 1) are divisible by
2i+ 1, j and by i, 2j + 1, respectively. Moreover, kij can be written in the form
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kij = kii+(2i+1)(j−i), i = 1, 2, ..., j = i, i+1, ... with kii = 2i2+2i, (12)

which leads to the following recurrence formula for the computation (by means
of additions) of the entries of the i− th row, with i ≤ j, of the matrix K:

kij = ki (j−1) + 2i+ 1, j = i+ 1, i+ 2, ...

Now we estimate
κ∗n = number of pairs (i, j) with 1 ≤ i ≤ j such that 4 ≤ kij ≤ n.

It is given by

κ∗n =
In∑
i=1

[qn(i)].

where

qn(i) = φn(i)− i+ 1 =
1

2
(
2n+ 1

2i+ 1
− (2i− 1)),

and here In denotes the integer part of the quantity defined in (4). qn(i) are de-
creasing with i, and

qn(In) = 1 ≤ qn(i) ≤ qn(1) =
n− 1

3
.

By direct calculation we have that

Qn =
In∑
i=1

qn(i) =

= (n+
1

2
)
In∑
i=1

1

2i+ 1
− 1

2
I2n = (n+

1

2
)
In∑
i=1

1

2i+ 1
− 1

4
(1 + n−

√
2n+ 1).

Taking into account the logarthmic growth of the harmonic series, we have for n
large enough

In∑
i=1

1

2i+ 1
' ln(

2In + 1√
In

) +
γ

2
− 1,

where γ ' 0.5772 is the Euler-Mascheroni constant. It follows that
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Qn

n
−→ ln(2

√
In +

1√
In

) +
γ

2
− 5

4
' 1

4
ln(n) + c as n −→ +∞,

with c = 0.5(1.5 ln(2) + γ − 2.5) = −0.4415.

Since the following inequalities

Qn − In ≤ k∗n ≤ Qn.

hold, and In/n −→ 0 as n −→ +∞, for the increasing function κ∗n/n we have
that

κ∗n
n
−→ 1

4
ln(n) + c as n −→ +∞.

A linear fit of κ∗n/n vs. ln(n), for 10 ≤ n ≤ 1017.5, produces the line κ∗n/n '
(−0.4017± 0.0102) + (0.2486± 0.0004) ln(n).

Appendix 2. The partitions n = s + 2t and n = s + t

Equation (2) represents a partition of the integer n in two sections

s = i+ j and n− s = 2ij, with 2s ≤ n (2s = n iff i = j = 1). (13)

Since i ∈ [1, In] and j = φn(i), the bounds for s in the partition (13) are given by
In + φn(In) = 2In and 1 + φn(1) (see figure 1, plot of x + y). Therefore, the set
of admissible values for s is

Ω1 = [2In,
n+ 2

3
]. (14)

From (13) it follows that i and j are the positive integer solutions,if they exist,
to the equation

x2 − sx+
n− s

2
= 0. (15)

The solutions to (15) are

x± =
1

2
(s±

√
∆, with ∆ = s2 + 2s− 2n. (16)

Since ∆ and s have the same parity, positive integer solutions exist iff
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∃s ∈ Ω1 :
√

∆ ∈ N.

Equation (3) represents another partition of the integer n in two sections

s = i(j+1) and n−s = (i+1)j, with 2s ≤ n (2s = n iff i = j). (17)

The set of admissible values for s is

Ω2 = [
n+ 2

3
,
n

2
]. (18)

From (17) it follows that i is solution to the following equation

i2 + (n− 2s+ 1)i− s = 0,

and

j = i+ n− 2s.

The results are given by

i =
1

2
[−1− (n− 2s) +

√
∆],

j =
1

2
[−1 + (n− 2s) +

√
∆],

where

∆ = 2n+ 1 + (n− 2s)2.

Since ∆ and s have the same parity, positive integer solutions to the system (17)
exist iff

∃s ∈ Ω2 :
√

∆ ∈ N.

We can summarize the reasonings on the partitions of n in the following im-
plications:

n ∈ K, ∆ = s2 + 2s− 2n⇐⇒ ∃s ∈ Ω1 :
√

∆ ∈ N,

n ∈ K,∆ = 4s2 − 4ns+ 2n+ 1⇐⇒ ∃s ∈ Ω2 :
√

∆ ∈ N.
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Appendix 3. Remarks on the sets Ω(a, n) and Ω∗(a, n)

Here we consider the case

n− a << Ia = min(a, n, Ia, In). (19)

For example, this situation happens when we are looking for very few primes in
[2a + 1, 2n + 1] with large a. In virtue of the prime distribution ((1), p. 8) we
should choose

n− a ' ι

2
ln(2a+ 1),

with 1 ≤ ι ≤ 10.
The difference between the top and bottom boundary lines of Ω∗(a, n) (figure

2) is

φn(i)− φa(i) =
n− a
2i+ 1

.

It is decreasing with i, and

φn(i)− φa(i) < 1 for i ≥ [I0], I0 =
n− a− 1

2
+ 1 < Ia. (20)

When (20) holds, at most only one integer is in [φa(i), φn(i)]. It follows that for
i ≥ [I0] the points of Ω∗(a, n) with integer coordinates are the points (i, j) with
j = [φa(i) + 1] = [φn(i)].

Furthermore, since Ia < 2
√
n+ a, from (19) we have that also n − a <

2
√
n+ a, which implies In− Ia < 1. Thus, the boundary of Ω∗(a, n) between the

points (Ia, Ia) and (In, In) (figure 2) does not contain points with integer coordi-
nates.

In the limit case a = n, the set Ω∗(a, n) (figure 2) reduces to the curve y =
φn(x) for 0 ≤ x ≤ In, and Ω(n, n) is then defined by

(i, j) ∈ Ω(n, n) = {i = 1, 2, ..., [In] : φn(i) ∈ N, j = φn(i)}.

The algorithm described in section 2 identifies the points of the set Ω(n, n).

111



.

112



Ratio Mathematica Volume 40, 2021, pp. 113-121

On Characterization of δ-Topological
Vector Space

Shallu Sharma *

Tsering Landol†

Sahil Billawria‡

Abstract

The main objective of this paper is to present the study of δ-topological
vector space. δ-topological vector space is defined by using δ-open
sets and δ-continuous mapping which was introduced by J.H.H. Bayati[3]
in 2019. In this paper, along with basic inherent properties of the
space, δ-closure and δ-interior operators are discussed in detail. We
characterize some important properties like translation, dilation of the
δ-topological vector space and an example of δ-topological vector
space is also established.
Keywords: Regular open set, δ-open set, δ-closed set, δ-continuous
mapping and δ-topological vector space.
2020 AMS subject classifications:57N17, 57N99, 54A05. 1

*Department of Mathematics, University of Jammu JK-180006, India; shallu-
jamwal09@gmail.com.

†Department of Mathematics, University of Jammu, JK-180006, India; tseringlan-
dol09@gmail.com.

‡Department of Mathematics, University of Jammu, JK-180006, India;
sahilbillawria2@gmail.com.
1Received on January 16th, 2021. Accepted on June 23th, 2021. Published on June 30th, 2021.
doi: 10.23755/rm.v40i1.569. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors. This paper
is published under the CC-BY licence agreement.

113



S. Sharma, T. Landol, S. Billawria

1 Introduction

In functional analysis, topological vector space is one of the fundamental
space being investigated by mathematicians due to the significant role played
by it in other branches of mathematics such as operator theory, fixed point the-
ory, variational inequality etc. The formalism of topological vector space be-
longs to Kolmogroff [4] who was the first to introduce a well structured notion
of topological vector space in his pioneering work done in 1934. Since then, it
has evolved further and many mathematicians have developed different general-
izations of topological vector space. In 2015, the notion of s-topological vector
space is being developed by M. Khan et.al.[5], which is one of the generaliza-
tion of topological vector space. Later, many other significant generalizations of
topological vector space are being introduced such as irresolute topological vec-
tor space [2], β-topological vector space [11], strongly preirresolute topological
vector space [9], almost s-topological vector spaces [10], etc.

2 Preliminaries

In this paper, (X, τ)(or simply X) always means topological space on which
no separation axioms are assumed unless stated explicitly. For a subset D of a
space X , we denote closure and interior by Cl(D) and Int(D) respectively and
neighborhood and δ-neighborhood of an element x in any topological space X is
denoted by N(x) and Nδ(x).

Definition 2.1. Let B be a subset of a topological space (X, τ). Then B is said to
be
(a) Regular open [12] if B = Int(Cl(B))
(b) Pre-open [6] if B ⊆ Int(Cl(B))
(c) β-open [1] if B ⊆ Cl(Int(Cl(B))).

Definition 2.2. A subset C of a topological space X is called
(a) Regular closed if X \ C is open i.e. C = Cl(Int(C))
(b) Pre-closed if Cl(Int(C)) ⊆ C
(e) β-closed if Int(Cl(Int(C))) ⊆ C.

Definition 2.3. A subset D of a topological space X is said to be δ-open [13] if
for each x ∈ D, there exist a regular open set R such that x ∈ R ⊆ D.

Remark 2.1. Every regular open set is open and every open set is pre-open, while
the converse need not be true.
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Example 2.1. Let R be a set of real numbers with usual topology. Then Int(Cl(Z)) =
∅, which implies Z is not regular in topological space (R, τu). Also, set of ratio-
nal number denoted by Q is pre-open but neither regular open nor open set in
topological space (R, τu).

The complement of δ-open set is δ-closed. The concept of δ-closure and δ-
interior are introduced by Velicko [13] in 1968. The intersection of all δ-closed
sets in X containing a subset D ⊆ X is called δ-closure of D and is denoted by
Clδ(D). A point x ∈ Clδ(D) if and only if D ∩ R 6= ∅, for a regular open set R
in X containing x. A subset C of X is δ-closed if and only if C = Clδ(C). The
union of all δ-open sets in X that are contained in D ⊆ X is called δ-interior of D
and is denoted by Intδ(D). A point x ∈ X is called δ-interior of D ⊆ X if there
exist a δ-open set U in X such that x ∈ U ⊆ D.

Definition 2.4. [4] Let X be a vector space over the field F(R or C). Let τ be a
topology on X such that
1) for each x, y ∈ X , and for each open neighborhoodW of x+y inX , there exist
open neighborhoods U and V of x and y respectively in X such that U + V ⊆ W
2) for each λ ∈ F, x ∈ X and for each open neighborhood W of λ · x in X, there
exist open neighborhoods U of λ in F and V of x in X such that U · V ⊆ W .
Then, the (X(F), τ) is called topological vector space.

3 δ-Topological Vector Space

In this section, we give an examples of δ-topological vector space and further
illustrate the properties of this space.

Definition 3.1. [3] Let X be a vector space over field F(R or C) with standard
topology. Let τ be a topology over X such that the following conditions hold:
(a) For each x, y ∈ X and each open set R containing x + y, there exist δ-open
set P and Q containing x and y respectively, such that P +Q ⊆ R;
(b) For each λ ∈ F, x ∈ X and each open set R containing λx ∈ X , there exist
δ-open set P and Q containing λ and x respectively such that P.Q ⊆ R.
Then the pair (X(F), τ ) is said to be δ-topological vector space.

Following are some examples of δ-topological vector.

Example 3.1. Let K = R with usual topology. Let X = R with base B =
{(a, b) : a, b ∈ R}. We shall show that (X(K), τ) is δ-topological vector space.
For, we will check the following:
(i) Let x, y ∈ X . Consider open set R = (x + y − ε, x + y + ε) in X containing

115



S. Sharma, T. Landol, S. Billawria

x+y. Then we can choose δ-open sets P = (x−η, x+η) and Q = (y−η, y+η)
in X containing x and y respectively such that P + Q ⊆ R, for each η < ε

2
. This

establish the first condition of the definition of δ-topological vector space.
(ii) Let λ ∈ R and x ∈ X . Consider an open set R = (λx − ε, λx + ε) in X
containing λx. Then, we have the following cases:
Case I: If λ > 0 and x > 0, then we can choose δ-open set P = (λ− η, λ+ η) in
R containing λ and Q = (x− η, x+ η) in X containing x such that P.Q ⊆ R, for
each η < ε

λ+x+1
.

Case II: If λ < 0 and x < 0, then λx > 0. We choose δ-open set P = (λ−η, λ+η)
of λ in R and Q = (x− η, x+ η) of x in R such that P.Q ⊆ R, for η ≤ −ε

λ+x−1 .
Case III: If λ > 0 and x = 0, (λ = 0 and x > O). We can choose δ-open
sets as P = (λ − η, λ + η) (resp.(−η, η)) containing λ in K and Q = (η, η)
(resp.(x − η, x + η)) containing x in R such that P.Q ⊆ R, for each η <
ε

λ+1
(resp.(η < ε

x+1
)).

Case IV: If λ = 0 and x < 0, (λ = 0 and x > 0). We can choose δ-open
sets as P = (η, η)(resp.(λ − η, λ + η)) containing λ in K and Q = (x −
η, x + η)(resp.(−η, η)) containing x in R, we have P.Q ⊆ R, for every η <
ε

1−x(resp.(η < ε
1−λ)).

Case V: If λ = 0 and x = 0. Then, for δ-open set P = (η, η) and Q = (η, η) of λ
and x respectively such that P.Q ⊆ R, for each η <

√
ε.

This proves that the pair (X(K), τ) is δ-TVS.

Example 3.2. Consider a vector space X = R of real number over the field K
with the topology τ = {φ,Qc,R}, where Qc denotes the set of irrational num-
bers and the field K is endowed with standard topology. Then (X(K), τ) is not
δ-topological vector space. For x, y ∈ Qc and open neighborhood Qc of x + y
in X, there doesn’t exist any δ-open sets P and Q containing x and y respectively
such that P +Q ⊆ Qc.

Theorem 3.1. [3] Let D be any open subset of δ-topological vector space X. Then
(a) x+D ∈ δO(X), for each x ∈ X;
(b) λD ∈ δO(X), for each non-zero scalar λ.

Theorem 3.2. Let C be any closed subset of a δ-topological vector space X, then
(a) x+ C ∈ δC(X), for each x ∈ X;
(b) λC ∈ δC(X), for each non-zero scalar λ.

Proof: (a) Let y ∈ Clδ(x + C), z = −x + y and R be an open set in X con-
taining z. Then there exist δ-open set P and Q containing −x and y respectively,
such that P + Q ⊆ R. Also, y ∈ Clδ(x + C), y ∈ Q and Q is δ-open implies
there exist regular open set Q′ such that y ∈ Q′ ⊆ Q. So (x + C) ∩ Q′ 6= ∅. Let
a ∈ (x + C) ∩ Q′ ⇒ −x + a ∈ C ∩ (P ′ + Q′) ⊆ C ∩ (P + Q) ⊆ C ∩ R 6= ∅.

116



On Characterization of δ-Topological Vector Space

Hence z ∈ Cl(C) = C ⇒ −x + y ∈ C ⇒ y ∈ x + C. Thus, x + C ∈ δC(X),
for each x ∈ X .

(b) Assume that x ∈ Clδ(λC) and R be open neighborhood of y = 1
λ
x ∈ X .

Since X is δ− TV S, there exist δ-open neighborhood P of 1
λ

in F and Q of x in X
such that P.Q ⊆ R. By hypothesis, (λC)∩Q′ 6= ∅, for regular open set Q′ subset
of Q containing x. Let a ∈ (λC)∩Q′. Now 1

λ
a ∈ C ∩P ′.Q′ ⊆ C ∩P.Q ⊆ C ∩R

⇒ C ∩ R 6= ∅ i.e. y is a limit point of C and so y = 1
λ
x ∈ Cl(C) = C, since C

is closed subset of X. Hence y ∈ λC. Since the inclusion λC ⊆ Clδ(λC) holds
generally, so Clδ(λC) = λC. Therefore, λC is δ-closed set in X. This completes
the proof.

Theorem 3.3. For any subset D of δ-topological vector space X,
(a) Clδ(x+D) ⊆ x+ Cl(D), for each x ∈ X .
(b) x+ Clδ(D) ⊆ Cl(x+D), for each x ∈ X .

Proof: (a) Let y ∈ Clδ(x+D) and consider z = −x+ y in X. Let R be open
neighborhood of z. By hypothesis, there exist δ-open set P and Q containing -x
and y respectively such that P + Q ⊆ R. Existence of δ-open set confirms the
existence of regular open set P ′ and Q′ such that −x ∈ P ′ ⊆ P and y ∈ Q′ ⊆ Q.
Since y ∈ Clδ(x + D), (x + D) ∩ Q′ 6= ∅. Let a ∈ (x + D) ∩ Q′. Now,
−x+a ∈ D∩(P ′+Q′) ⊆ D∩(P +Q) ⊆ D∩R 6= ∅, which implies z ∈ Cl(D).
Hence y ∈ x+ Cl(D). This completes the proof.

(b) Let z ∈ x + Clδ(D). Then z = x + y, for some y ∈ Clδ(D). Let R
be any open neighborhood of z in X, then there exist δ-open neighborhood P and
Q of x and y respectively such that P + Q ⊆ R. Also, D ∩ Q′ 6= ∅, for regu-
lar open set Q′ ⊆ Q containing y which implies D ∩ Q 6= ∅. Let a ∈ D ∩ Q.
Then x + a ∈ (x + D) ∩ (P + Q) ⊆ (x + D) ∩ R 6= ∅, which implies z is a
limit point of x+D i.e z ∈ Cl(x+D). Hence the inclusion holds for each x ∈ X .

Theorem 3.4. For a subset D of δ-topological vector space X, the following are
valid:
(a) x+ Int(D) ⊆ Intδ(x+D), for each x ∈ X .
(b) Int(x+D) ⊆ x+ Intδ(D), for each x ∈ X .

Proof: (a) Assume y ∈ x + Int(D). Then,−x + y ∈ Int(D). Since
X is δ-topological vector space, there exist δ-open sets P containing -x and Q
containing y in X such that Q ⊆ Int(D). Also, δ-openness of P and Q im-
plies the existence of regular open set P ′ and Q′ such that −x ∈ P ′ ⊆ P
and y ∈ Q′ ⊆ Q satisfying P ′ + Q′ ⊆ P + Q ⊆ Int(D). In particular,
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−x + Q′ ⊆ Int(D) ⊆ D ⇒ Q′ ⊆ x + D. Thus there exist regular open set
Q′ containing y such that y ∈ Q′ ⊆ x + D, which implies y is δ-interior point of
x+D i.e. y ∈ Intδ(x+D). Hence the proof.

(b) Let y ∈ Int(x + D), then y = x + a, for some a ∈ D. By definition of
δ-topological vector space, there exist δ-open set P and Q such that x ∈ P, a ∈ Q
satisfying P +Q ⊆ Int(x+D). Hence, x+a ∈ P ′+Q′ ⊆ P +Q ⊆ Int(x+D),
for each regular open set P ′ and Q′ such that x ∈ P ′ ⊆ P and a ∈ Q′ ⊆ Q. Now
x+Q′ ⊆ x+Q ⊆ Int(x+D) ⊆ x+D, which implies y ∈ x+ Intδ(D). Hence
the inclusion Int(x+D) ⊆ x+ Intδ(D) holds.

Theorem 3.5. Let D be any subset of δ-topological vector space X. Then the
following holds:
(a) λClδ(D) ⊆ Cl(λD), for every non-zero scalar λ.
(b) Clδ(λD) ⊆ λCl(D), for every non-zero scalar λ.

Proof The proof is trivial, omitted.

Theorem 3.6. Let X be a δ-topological vector space and D be any subset of X.
Then the following holds:
(a) Int(λD) ⊆ λIntδ(D), for every non-zero scalar λ.
(b) λInt(D) ⊆ Intδ(λD), for every non-zero scalar λ.

Proof The proof is trivial, omitted.

Theorem 3.7. Let C and D be any subset of a δ-topological vector space X. Then
Clδ(C) + Clδ(D) ⊆ Cl(C +D).

Proof: Let z ∈ Clδ(C) + Clδ(D). Then z = x + y, where x ∈ Clδ(C)
and y ∈ Clδ(D). Let R be an open neighborhood of z in X. By definition of
δ-topological vector space, there exist δ-open neighborhood P and Q of x and y
respectively such that P + Q ⊆ R. Since x ∈ Clδ(C), C ∩ P ′ 6= ∅ for regular
open set P ′ such that x ∈ P ′ ⊆ P and also y ∈ Clδ(D), D ∩ Q′ 6= ∅ for regular
open set Q′ satisfying y ∈ Q′ ⊆ Q.
Let a ∈ C ∩ P ′ and b ∈ D ∩ Q′ ⇒ (a + b) ∈ (C + D) ∩ (P ′ + Q′) ⊆
(C + D) ∩ (P + Q) ⊆ (C + D) ∩ R ⇒ (C + D) ∩ R 6= ∅. Thus z is a
closure point of (C +D) i.e. z ∈ Cl(C +D). Hence the inclusion holds.

Theorem 3.8. For any subsets C and D of δ-topological vector space X. Then
C + Int(D) ⊆ Intδ(C +D).
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Proof: Let z ∈ C + Int(D) be arbitrary. Then z = x + y, for some
x ∈ C, y ∈ Int(D), which results in −x + z ∈ Int(D). By definition of δ-TVS,
there exist δ-open neighborhood P and Q containing -x and z respectively such
that P + Q ⊆ Int(D). Hence, there exist regular open sets P ′ and Q′ containing
-x and z respectively satisfying P ′ ⊆ P , Q′ ⊆ Q and P ′+Q′ ⊆ P +Q ⊆ Int(D).
In particular, −x + Q′ ⊆ Int(D) ⇒ Q′ ⊆ x + Int(D) ⊆ C + D. Hence, there
exist regular open set Q′ containing z such that z ∈ Q′ ⊆ C + D. Therefore, z is
δ-interior point of A+B. Hence the proof.

Definition 3.2. [8] A function f : X → Y is called δ-continuous if for each
x ∈ X and each open neighborhood Q of f(x), there exist open neighborhood P
of x such that f(Int(Cl(P )) ⊆ Int(Cl(Q)).

Lemma 3.1. [8] For a function f : X → X , the following are equivalent:
(a) f is δ-continuous.
(b) For each x ∈ X and each regular open set V containing f(x), there exist a
regular open set U containing x such that f(U) ⊆ V .
(c) f([A]δ) ⊂ [f(A)]δ, for every A ⊂ X .
(d) [f−1(B)]δ ⊂ f−1([B]δ), for every B ⊂ X .
(e) For every regular closed set F of Y, f−1(F ) is δ-closed in X.
(f) For every δ-closed set V of Y, f−1(V ) is δ-closed in X.
(g) For every δ-open set V of Y, f−1(V ) is δ-open in X.
(h) For every regular-open set V of Y, f−1(V ) is δ-open in X.

Theorem 3.9. [3] Let X be δ-topological vector space, then the following are
true:
(a) the translation mapping ga : X → X defined by ga(b) = a + b, ∀b ∈ X is
δ-continuous.
(b) the mapping gλ : X → X defined by gλ(a) = λa, ∀a ∈ X is δ-continuous,
where λ is a fixed scalar.

Theorem 3.10. For a δ-topological vector space X, the mapping Φ : X×X → X
defined by Φ(x, y) = x+ y, ∀x ∈ X ×X is δ-continuous.

Proof: Take arbitrary elements x, y in X and let R be regular open neighbor-
hood of x + y which implies R is open neighborhood of x+y. Then by hypoth-
esis, there exist δ-open neighborhood P and Q of x and y respectively such that
P +Q ⊆ R.
Also, by definition of δ-open set, there exist regular open neighborhood P ′ and
Q′ such that x ∈ P ′ ⊆ P and y ∈ Q′ ⊆ Q. This implies that Φ(P ′ × Q′) =
P ′ + Q′ ⊆ P + Q ⊆ R. Since P × Q is regular open in X × X(with respect to
product topology), it follows that Φ is δ-continuous.
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Theorem 3.11. For δ-topological vector space X, the mapping Ψ : K×X → X
defined by Ψ(λ, x) = λx, ∀(λ, x) ∈ K×X is δ-continuous.

Proof: Let λ ∈ K and x ∈ X and R be a regular open neighborhood of λx in
X. Then there exist δ-open neighborhood P of λ in K and δ-open neighborhood
Q of x in X such that P.Q ⊆ R. Also, P ′.Q′ ⊆ P.Q ⊆ R, for regular open set
P ′ and Q′ contained in P and Q containing λ and x respectively. Since P × Q is
regular in K × X , Ψ(P ′.Q′) ⊆ R. Hence, it follows that Ψ is δ-continuous for
arbitrary element λ ∈ K and x ∈ X .

Theorem 3.12. Let X be δ-topological vector space and Y be topological vector
space over the same field K. Let f : D1 → D2 be a linear map such that f is
continuous at 0. Then f is δ-continuous.

Proof: Let 0 6= x ∈ X and V be regular open set and hence open in Y con-
taining f(x). Since translation of an open set is open in topological vector space,
which implies V − f(x) is open in Y containing 0. Since f is continuous at 0,
there exist open set U in X containing 0 such that f(U) ⊆ V − f(x). Also, by
linearity of f implies that f(x + U) ⊆ V . By theorem 3.1, x + U is δ-open and
hence there exist regular open set Q such that Q ⊆ x+ U . Hence, f(Q) ⊆ V .

4 Conclusions
δ-Topological vector space is an extension of topological vector space and

this paper give an insight into this space. We presented the space with new exam-
ples and inherent properties. Moreover, important characterization of the space is
studied in this paper.
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1. Introduction 

The Weibull-exponential distribution was proposed by Oguntunde et al. 

[1]. They obtained some of its basic Mathematical properties. This distribution is 

useful as a life testing model and is more flexible than the exponential distribution. 

The probability function ( )f x;  and distribution function ( )F x;  of Weibull-

exponential distribution are respectively given by 

 

( ) ( ) ( )
1

1 1 0
a a

x a x xf x; a e e exp e    ; x .    
−

−  = − − − 
  

                                  (1) 

( )
( )1

1 0 0

a
xe

F x; e    ; x , .


 
−− −

= −                (2) 

Let ( )R t  denote the reliability function, that is, the probability that a 

system will survive a specified time t comes out to be 

( )
( )1

0 0

a
te

R t e    ; t , .



− −

=                (3) 

And the instantaneous failure rate or hazard rate, h(t) is given by 

( ) ( )1a t th t a e e .  −= −               (4) 

From equation (1) and (3), we get 

( )( )
( )

( ) ( ) ( ) ( )
1

1
11 1

1

a
x

t

a x e
a

x
e

a
t

a e
f x;R t e log R t R t  ;  0<R t .

e











 −

−  −  − = − −       
−

      

(5) 

The joint density function or likelihood function of (5) is given by 

( )( )
( )

( )
( ) ( ) ( )

1

1

1
1

1

1

1
1

n

i an xii

ti
i

a x
n en a nx

e
na

t
i

a e
f x | R t e log R t R t

e











 =

=

 −
−  −  − 

=


  

= − −        
 −
         (6) 

The log likelihood function is given by 
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( )( )
( )
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i
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i i

n a
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a
t

i

a
log f x | R t log a x log e

e

                           n log log R t e log R t
e












−
−

= =

=

 
  = + + −    −

 

+ − + −      
−

 


        

(7) 

Differentiating (7) with respect to R (t) and equating to zero, we get the maximum 

likelihood estimator of R (t) as 

( ) ( ) ( )
1

1 1i

n aa
xt

i

R t exp n e e




=

  
= − − −  

  
 .            (8) 

 

2. Bayesian method of estimation 

 The Bayesian estimation procedure have been developed generally 

under squared error loss function 

( ) ( ) ( ) ( )
2

L R t ,R t R t R t
    

= −   
   

.             (9) 

where ( )R t


 is an estimate of ( )R t . The Bayes estimator under the above loss 

function, say ( )
S

R t


 , is the posterior mean, i.e., 

( ) ( )
S

R t E R t


=    .             (10) 

The squared error loss function is often used also because it does not lead 

extensive numerical computation but several authors (Zellner [2], Basu & Ebrahimi 

[3]) have recognized the inappropriateness of using symmetric loss function. 

Canfield [4] points out that the use of symmetric loss function may be inappropriate 

in the estimation of reliability function. Norstrom [5] introduced an alternative 

asymmetric precautionary loss function and also presented a general class of 

precautionary loss function with quadratic loss function as a special case. A very 

useful and simple asymmetric precautionary loss function is 
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( ) ( )
( ) ( )

( )

2

R t R t

L R t ,R t

R t







 
− 

   = 
 

           (11) 

The Bayes estimator of ( )R t  under precautionary loss function is denoted by ( )
P

R t


, and is obtained by solving the following equation 

( ) ( )( )
1
22

P
R t E R t


 =
 

 .            (12) 

In many practical situations, it appears to be more realistic to express the 

loss in terms of the ratio 
( )

( )

R t

R t



 . In this case, Calabria and Pulcini [6] points out that 

a useful asymmetric loss function is the entropy loss 

( ) ( ) 1p

eL p log    − −   , 

where  
( )

( )

R t
,

R t




=  and whose minimum occurs at ( ) ( )R t R t


=  when 0p ,  a 

positive error ( ) ( )R t R t
 

 
 

 causes more serious consequences than negative error, 

and vice-versa. For small | p |  value, the function is almost symmetric when both 

( ) ( )R t and  R t


 are measured in a logarithmic scale, and approximately 

( ) ( ) ( )
22

2
e e

p
L log R t log R t .

 
 −  

  

Also, the loss function ( )L   has been used in Dey et al. [7] and Dey and Liu [8], 

in the original form having 1p .=  Thus ( )L   can be written as 

( ) ( ) 1 0eL b log ;    b .  = − −               (13) 

The Bayes estimator of ( )R t  under entropy loss function is denoted by E


 and is 

obtained as 
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( )
( )

1

1
E

R t E .
R t

−
   

=    
   

            (14) 

For the situation where we have no prior information about ( )R t  , we 

may use non-informative prior distribution 

( )( )
( ) ( )

( )1

1
0 1h R t ;   R t .

R t  logR t
=             (15) 

The most widely used prior distribution for ( )R t  is a beta distribution with 

parameters 0, ,     given by 

( )( )
( )

( ) ( ) ( )
1 1

2

1
1 0 1h R t R t R t ;   R t .

 B ,

 

 

− −
= −                 (16) 

 

3. Bayes estimators of ( )R t under ( )( )1h R t
 

Under ( )( )1h R t  , the posterior distribution is defined by
 

( )( )
( )( ) ( )( )

( )( ) ( )( ) ( )

1

1

1

0

f x | R t h R t
f R t | x

f x | R t h R t dR t

=



          (17) 

Substituting the values of ( )( )1h R t  and ( )( )f x | R t  from equations (15) and (6) in 

(17), we get 
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      (18) 

Theorem 1. Assuming the squared error loss function, the Bayes estimate of ( )R t

, is of the form 

( )
( )
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1

1
1

1i
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nS a
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e
R t

e





−



=

 
 −
 = +
 

− 
 


            (19) 

Proof. From equation (10), on using (18), 

( ) ( )
S

R t E R t


=     
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Theorem 2. Assuming the precautionary loss function, the Bayes estimate of ( )R t

, is of the form 
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Proof. From equation (12), on using (18), 
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Theorem 3. Assuming the entropy loss function, the Bayes estimate of ( )R t , is of 

the form 
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Proof. From equation (14), on using (18), 
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4. Bayes estimators of ( )R t under ( )( )2h R t
  

Under ( )( )2h R t  , the posterior distribution is defined by 
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Substituting the values of ( )( )2h R t  and ( )( )f x | R t  from equations (16) and (6) 

in (22), we get 
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Theorem 4. Assuming the squared error loss function, the Bayes estimate of ( )R t

, is of the form 
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Proof. From equation (10), on using (23), 
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Theorem 5. Assuming the precautionary loss function, the Bayes estimate of ( )R t
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Proof. From equation (12), on using (23), 
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5. Conclusion 

We have obtained a number of Bayes estimators of reliability function ( )R t  of 

Weibull-exponential distribution. In equations (19), (20), and (21), we have 

obtained the Bayes estimators by using non-informative prior and in equations (24), 

(25), and (26), under beta prior. From the above said equation, it is clear that the 

Bayes estimators of ( )R t  depend upon the parameters of the prior distribution. In 

this case the risk function and corresponding Bayes risks do not exist. 
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1 Introduction

Topology is an indispensable object of study in Mathematics with open
sets as well as closed sets being the most fundamental concepts in topological
spaces. General topology plays an important role in many branches of mathemat-
ics as well as many fields of applied sciences.

Introduction to the concept of pre-open sets and pre-closed sets were made
by Mashhour et al. (7) and the idea of α-open sets was introduced by Njastad
(6).The concepts and characterizations of semi open and semi pre open sets are
studied in (4) and (1) repectively. The concept, generalized closed sets of Levine
(5) opened the flood gates of research in generalizations of closed sets in general
topology. Many researchers (3), (8), (10), (11) worked on weaker forms of closed
sets. Recently, Benchalli et al.(2) and Patil et al. (9) introduced and studied the
concept of ωα-open sets and gpα-open sets in topological spaces.

The present authors continued the study of gpα-closed sets and their prop-
erties. We study the gpα-closure, gpα-interior, gpα-neighbourhood, gpα-limit
points and gpα-derived sets by using the concept of gpα-open sets and their topo-
logical properties. We provide the relationship between gpα-derived set (resp.
gpα-limit points, gpα-interior) and pre-derived set (resp. pre-limit points and pre-
interior). Also, we studied Kuratowski closure axioms with respect to gpα-open
sets.

2 Preliminaries

Throught the paper, let X and Y (resp. (X, τ) and (Y, σ)) always denotes
non-empty topological spaces on which no separation axioms are assumed unless
explicitly mentioned.

The following definitions are useful in the sequel:

Definition 2.1. A subset A of X is said to be a
(a) ωα-closed (2) if α-cl(A) ⊆ U whenever A ⊆ U and U is ω-open in X.
(b) gpα-closed (9) if p-cl(A) ⊆ U whenever A ⊆ U and U is α-open in X.

3 gpα-Interior and gpα-closure in topological spaces

This section deals with gpα-interior and gpα-closure and some of their
properties.
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Definition 3.1. (9) Let A ⊂ X , then gpα-interior of A is denoted by gpα-int(A),
and is defined as gpα-int(A) = ∪{G : A ⊆ G : G is gpα-open in X }.

Definition 3.2. (9) Let A ⊂ X , then gpα-closure of A is denoted by gpα-cl(A),
and is defined as gpα-cl(A) = ∩{G : A ⊆ G : G is gpα-closed in X }.

Theorem 3.1. If A is gpα-closed then gpα-cl(A) = A.
Proof: Let A be gpα-closed in X. Since A ⊆ A, and A is gpα-closed in X. Then
A ∈ {G : A ⊆ G and G is gpα-closed in X }, that is A = ∩{G : A ⊆ G and
G is gpα-closed }. Hence gpα-cl(A) ⊆ A. But A ⊆ gpα-cl(A) is always true.
Therefore gpα-cl(A) = A.

In general the converse of Theorem 3.1 is not true.

Example 3.1. Let X = {a, b, c, d, e} and τ = {X,φ, {a}, {c, d}, {a, c, d}}.
LetA = {a, b}. Then we can observe that gpα-cl(A) = {a, b}. therefore gpα-cl(A)
= A. But A is not gpα-closed in X.

Remark 3.1. (9) Let A ⊆ X and A is gpα-closed in X. Then gpα-cl(A) is the
smallest gpα-closed set containing A.

However, the converse of the Remark 3.1 is not true in general.

Example 3.2. Let X = {a, b, c} and τ = {X,φ, {a}, {a, c}}.
Consider A = {a, c}, then gpα-cl(A) = X , which is the smallest gpα-closed set
containing A. But A is not gpα-closed in X.

Remark 3.2. (9) For subsets A,B of X , then gpα-cl(A ∩ B)⊆gpα-cl(A) ∩ gpα-
cl(B).

Remark 3.3. (9) For subsets A,B of X , then gpα-cl(A ∪ B) = gpα-cl(A) ∪gpα-
cl(B).

Remark 3.4. For any A,B ⊆ X then we have the following properties:
(i) gpα-int(X) = X and gpα-int(φ) = φ. (9)
(ii) gpα-int(A) ⊆ A.(9)
(iii) If B is any gpα-open set contained in A then B ⊆ gpα-int(A).(9)
(iv) if A ⊆ B, gpα-int(A) ⊆ gpα-int(B).
(v) gpα-int(gpα-int(A)) = gpα-int(A).

Remark 3.5. For any A,B ⊆ X , gpα-int(A ∪B) = gpα-int(A) ∪ gpα-int(B).
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4 gpα-Neighbourhood points in topological spaces
This section deals with the properties of gpα-neighbourhood points in

topological spaces.

Definition 4.1. (9) A subset N of X is said to be gpα-neighbourhood of a point
x ∈ X , if there exists an gpα-open set G containing x such that x ∈ G ⊆ N .

Theorem 4.1. Every neighbourhood N of X is a gpα-neighbourhood of X.
Proof: Follows from the definition 4.1 and every open set is gpα-open (9).

From the following example converse of the Theorem 4.1is not true.

Example 4.1. Let X = {a, b, c, d, e} and τ = {X,φ, {a, b}, {a, b, c}}.
Let a ∈ X . Consider A = {a, d}. Since A is gpα-neighbourhood of the point a,
but A is not a neighbourhood of the point a.

Remark 4.1. If N ⊆ X is gpα-open then, N is gpα-neighbourhood of each of its
points.

Converse of the Theorem 4.1 need not true in general, as seen from the follow-
ing example.

Example 4.2. Let X = {a, b, c, d} and τ = {X,φ, {a}, {c, d}, {a, c, d}}. Here
the gpα-open sets are: X, φ, {a}, {b}, {c}, {c, d}, {a, c, d}. Then the set A =
{a, b} is gpα-neighbourhod of the points a and b, but the set A = {a, b} is not
gpα-open in X.

Theorem 4.2. Let A be gpα-closed set in X and x ∈ Ac. Then there exists gpα-
neighbourhood N of x such that N ∩ A = φ.
Proof: Let A be gpα-closed in X and x ∈ Ac. Then Ac = X \ A which is gpα-
open in X. Then from Remark 4.1, Ac is gpα-neighbourhood of each of its points.
Hence, for every point x ∈ Ac, there exists gpα-neighbourhood N of X such that
N ⊆ Ac. Hence N ∩ A = φ.

Theorem 4.3. Let x ∈ X and gpαN(x) be the collection of all gpα-neighbourhoods
of X . Then the following results holds:
(i) gpαN(x) 6= φ, ∀ x ∈ X .
(ii) N ∈ gpαN(x) implies x ∈ N .
(iii) Let N ∈ gpαN(x) and N ⊆M , then M ∈ gpαN(x).
(iv) N ∈ gpαN(x) and M ∈ gpαN(x) then N ∩M ∈ gpαN(x).
Proof: (i) We have X is always gpα-open in X. Hence X is in gpαN(x) of every
point x ∈ X . Therefore gpα-N(X) 6= φ for every point x ∈ X .
(ii) From definition of N ∈ gpαN(x), it follows that x ∈ N .
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(iii) Let N ∈ gpαN(x) and N ⊆ M . Then there exists gpα-open set G such that
x ∈ G ⊆ N . Since N ⊆ M , then x ∈ G ⊆ M . So by definition of 4.1, M is a
gpα-neighbourhood point of x. Hence M ∈ gpαN(x).
(iv) Let N ∈ gpαN(x) and M ∈ gpαN(x). Then, there exist gpα-open sets U
and V such that x ∈ U ⊆ N and x ∈ V ⊆ M . That is x ∈ U ∩ V ⊆ N ∩M .
Therefore, for every point x ∈ X , there exists gpα-open set U ∩ V such that
x ∈ U ∩ V ⊆ N ∩M . So, N ∩M is a gpα-neighbourhood of a point x. Hence,
intersection of two gpα-neighbourhood of a point is again a gpα-neighbourhood
of point.

Corollary 4.1. For any subset A of X, every α-interior point of A is gpα-interior
point of A.
Proof: It follows from the fact that every α-open set is gpα-open in X (9).

Theorem 4.4. For any subsetA ofX , every pre-interior point of A is gpα-interior
point of A.
Proof: For any pre-interior point x of A. Then there exists pre-open set G con-
taining x such that G ⊆ A. Since every pre-open set is gpα-open (9), then G is
gpα-open in X . Hence x is a gpα-interior point of A.

5 gpα-Kuratowski closure operators in topological
spaces

Theorem 5.1. If P-C(X, τ) is closed under finite union, then gpα-C(X, τ) is
closed under finite union, where P-C(X, τ) and gpα-C(X, τ) are the families of
pre-closed sets and gpα-closed sets in (X, τ) respectively.
Proof: Let A and B are gpα-closed sets in X and A∪B ⊆ G, where G is ωα-open
in X. Then A ⊆ G and B ⊆ G. Since A and B are gpα-closed, then pcl(A) ⊆ G
and pcl(B) ⊆ G. Then pcl(A) ∪ pcl(B) = pcl(A ∪B) ⊆ G from (7). Thus, from
hypothesis, pcl(A ∪B) ⊆ G. Hence A ∪B is gpα-closed in X.

Definition 5.1. Let τ ∗gpα be the topology on X generated by gpα-closure in the
usual manner, τ ∗gpα = {G ⊂ X : gpα-cl(X \G) = X \G}.

Definition 5.2. Let τ ∗g∗p be the topology on X generated by g∗p-closure in the usual
manner, that is
τ ∗g∗p = {G ⊂ X : g∗p-cl(X \G) = X \G}

Theorem 5.2. Let A ⊆ X . Then the following statements holds:
(i) τ ⊆ τ ∗gpα
(ii) τ ⊆ τ p ⊆ τ ∗gpα (τ p is family of pre-open sets.(12))
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Proof: (i) Let A ∈ τ , then Ac is closed in X. We have Ac ⊆ gpα-cl(Ac) ⊆ cl(Ac).
Since, Ac is closed, then cl(Ac) is also closed in X. HenceAc ⊆ gpα-cl(Ac) ⊆ Ac.
Therefore gpα-cl(Ac) ⊆ Ac. But Ac ⊆ gpα-cl(Ac) is always true. Thus gpα-
cl(Ac) = Ac. Hence A ∈ τ ∗gpα.
(ii) Since, every pre-closed set is gpα-closed in X, proof follows.

Theorem 5.3. For any subset A of a topological space X, τ ⊆ τ ∗gpα ⊆ τ ∗g∗p.
Proof: Let us consider A ∈ τ , then Ac is closed in X. Then Ac ⊆ gpα-cl(Ac) ⊆
cl(Ac). Since, Ac is closed, then cl(Ac) = Ac. Therefore Ac ⊆ gpα-cl(Ac) ⊆ Ac.
Hence, gpα-cl(Ac) ⊆ Ac. But (Ac) ⊆ gpα-cl(Ac) is always true. Hence (Ac) =
gpα-cl(Ac). Thus A ∈ τ ∗gpα and hence τ ⊆ τ ∗gpα.
Let A ∈ τ ∗gpα. Then gpα-cl(Ac) = Ac. But Ac ⊆ g∗p-cl(Ac) ⊆ gpα-cl(Ac) = Ac

from (9). Hence g∗p-cl(Ac) = Ac. Hence A ∈ τ ∗g∗p. Thus A ∈ τ ∗gpα implies that
A ∈ τ ∗g∗p. Hence τ ⊆ τ ∗gpα ⊆ τ ∗g∗p.

Theorem 5.4. The following statements are equal for the space X:
(i) Every gpα-closed set is pre-closed.
(ii) τ p = τ ∗gpα.
(iii) For each x ∈ X , {x} is ωα-open or pre-open.
Proof: (i) → (ii) Let G ∈ τ ∗gpα. Then from (9) and by the Theorem 3.1, we have
gpα-cl(A) = A. Hence X \G = gpα-cl(X \G) = p-cl(X \G). Therefore X \G
is pre-closed and so G is pre-open. Therefore τ ∗gpα ⊆ τ p and from (9), τ p ⊆ τ ∗gpα.
Hence τ p = τ ∗gpα.
(ii) → (iii) Let {x} ∈ X . By (9), we have X \ {x} = gpα-cl(X \ {x}) is true
only when {x} is not ωα-closed. Hence {x} ∈ ωα-C(X, τ) or x ∈ τ p.
(iii)→ (i) Let A be gpα-closed in X and x ∈ p− cl(A). Then, we have x ∈ A.
case I: If {x} is ωα-closed. Suppose x /∈ A, then p−cl(A)\A contains ωα-closed
set {x}, which is contradiction. Hence x ∈ A.
case II: If {x} is pre-open. Since x ∈ pcl(A), then {x} ∩A = φ. Hence, we have
pcl(A) = A and thus A is pre-closed. Therefore gpα-C(X, τ) ⊂ p-C(X, τ).

Theorem 5.5. Every gpα-closed set closed if and only if τ = τ ∗gpα.
Proof: Suppose every gpα-closed set is closed. Let A be gpα-closed then, gpα-
cl(A) = cl(A). Thus τ = τ ∗gpα.
Conversely, let A be gpα-closed then from (9), A = gpα-cl(A). Hence X \ A ∈
τ ∗gpα. Hence, A is closed in X.

Theorem 5.6. Every gpα-closed set is pre-closed if and only if τ p = τ ∗gpα.
Proof: Suppose that every gpα-closed set is pre-closed. Let A be gpα-closed in
X. Then from hypothesis, gpα-cl(A) = pcl(A). Thus τ p = τ ∗gpα.
Conversely, let A be gpα-closed in X. Then A = gpα-cl(A). Thus X \ A ∈ τ ∗gpα.
Hence, A is pre-closed in X.
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Remark 5.1. Let A be any subset of X. Then gpα-int(A) is the largest gpα-open
set contained in A if A is gpα-open.

Theorem 5.7. gpα-closure is a Kuratowski closure operator on X .
Proof:Follows from the Definition 3.2 and (9)

6 Characterizations of gpα-closed sets in topologi-
cal spaces

Definition 6.1. (9) A point x ∈ X is a gpα-limit point of a subset A of X, if and
only if every gpα-neighbourhood of x contains a point of A distinct from x. That
is, [N \ {x}] ∩ A 6= φ for each gpα-neighbourhood N of x.

Definition 6.2. (9) The set of all gpα-limit points of A is a gpα-derived set of A
and is denoted by gpα-d(A).

Example 6.1. Let X = {a, b, c} and τ = {X,φ, {a}}.
Let A = {c}. Then the only limit point with respect to the set A = c is point b.
Therefore d(A) = {b}.
But gpα-limit point with respect to the set A is φ. Therefore gpα-d(A) = φ.

Theorem 6.1. Let A be any subset of X , Then,A is gpα-closed if and only if gpα-
d(A)⊆ A.
Proof: Let A be gpα-closed in X, thenAc is gpα-open in X such that x ∈ Ac. Then
for each point x ∈ X and from Definition 4.1 , there exist gpα-open set G such
that x ∈ G ⊆ X \ A. Then A ∩ (X \ A) = φ. Therefore, gpα-neighbourhood of
G contains no points of A. Hence, x is not a gpα-limit point of A. Thus, no point
of X \ A is a gpα-limit point of A, that is A contains all the gpα-limit points.
Therefore A contains the gpα-derived points. Hence gpα-d(A) ⊆ A.
Conversely, suppose gpα-d(A)⊆ A and let x ∈ Ac. So x /∈ A. Hence x /∈ gpα-
d(A). Therefore x is not a limit point of A. Then, there exists gpα-open set G such
that G ∩ (A \ {x}) = φ, that is G ⊆ X \A. Therefore for each x ∈ X \A, there
exists gpα-open set G such that x ∈ G ⊆ X \A. Therefore X \A is gpα-open in
X and hence A is gpα-closed.

Theorem 6.2. Let τ1 and τ2 be any two topologies on a set X such that gpα-
O(X, τ1) ⊆ gpα-O(X, τ2). Then for every subset A of X, every gpα-limit point of
A with respect to τ2 is gpα-limit point of A with respect to τ1.
Proof: Let x be a gpα-limit point of A with respect to τ2. Then by definition of gpα-
limit point (G∩A)\{x} 6= φ, this is true for everyG ∈ gpα-O(X, τ2) and x ∈ G.
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But by hypothesis, gpα-O(X, τ1) ⊆ gpα-O(X, τ2). Hence (G ∩ A) \ {x} 6= φ for
every G ∈ gpα-O(X, τ1) such that x ∈ G. Hence x is a gpα-limit point of A with
respect to the topology τ1.

Theorem 6.3. Let A and B be any two subsets of (X, τ). Then the following
assertions are valid:
(i) gpα-d(A) ⊆ dp(A), where dp is a pre-derived set (12).
(ii) gpα-d(A ∪ gpα-d(A)) ⊆ A ∪ gpα-d(A).
Proof: (i) It clearly observed from the fact that every pre-open set is gpα-open in
X.
Then y ∈ G and y ∈ gpα-d(A) \{x}. That is y ∈ G and y ∈ gpα-d(A). Hence
G ∩ (A \ {y}) 6= φ. Let z ∈ G ∩ (A \ {y}), then x 6= z as x /∈ A. Thus
G ∩ (A \ {x}) 6= φ.
(ii) Let x ∈ gpα-d(A ∪ gpα-d(A)). If x ∈ A, then x ∈ gpα-d(A). Therefore
x ∈ A∪ gpα-d(A). On the contrary assume that x /∈ A. Then G∩ (A∪ gpα-d(A))
\{x}) 6= φ, is true for all G ∈ gpα-d(A) and x ∈ G. Therefore (G∩A)\{x} 6= φ
or G ∩ (gpα-d(A)) \{x}) 6= φ. Thus x ∈ gpα-d(A).
If G ∩ (gpα-d(A)) \{x} 6= φ, then will get x ∈ gpα-d(gpα-d(A)). Since x /∈ A,
then x ∈ gpα-d(gpα-d(A)) \A. Therefore gpα-d(A∪ gpα-d(A)) ⊆ A∪ gpα-d(A).

Remark 6.1. We can see the following implification with respect to gpα-open sets.

Example 6.2. Let X = {a, b, c, d, e} and τ = {X,φ, {a}, {c, d}, {a, c, d}}. In
(X, τ) we have,
pre-open sets are: X, φ, {a}, {c}, {d}, {a, c}, {b, c}, {c, d}, {d, e}, {a, c, d},
{a, c, e}, {a, d, e}, {a, b, c, d}, {a, b, c, e}, {a, b, d, e}, {a, c, d, e}.
gpα-open sets are: X, φ, {a}, {c}, {d}, {a, b}, {b, d}, {c, d}, {a, c},
{b, c}, {d, e}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c}, {a, c, e}, {a, d, e},
{a, b, c, d}, {a, b, c, e}, {a, b, d, e}, {a, c, d, e} .
(i)Let A = {b, c, d}.
Then pre-limit point of the set A is {b, e} and
gpα-limit point of A is {e}.
Hence dp(A) = {b, e} and gpα-d(A) = {e}.
Hence, gpα-d(A) ⊆ dp(A).

(ii)Let A = {a, c, d}, then gpα-d(A) = {b, e}.
Consider A ∪ gpα-d(A) = {a, c, d} ∪ {b, e} = X .
But gpα-d(X) = {b, e}.
Therefore gpα-d(A ∪ gpα-d(A)) = gpα-d(X) = {b, e}.
Now consider A ∪ gpα-d(A) = {a, c, d} ∪ {b, e} = X .
Hence gpα-d(A ∪ gpα-d(A)) 6= A ∪ gpα-d(A), that is {b, e} 6= X , but gpα-
d(A ∪ gpα-d(A) ⊂ A ∪ gpα-d(A).
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Remark 6.2. if A ⊆ B, then gpα-d(A) ⊆ gpα-d(B).

Example 6.3. Consider the Example 6.2,
Let A = {b, c, d}. Then we have gpα-d(A) = {e}.
Let B = {a, e}. Then gpα-limit point of the set B is φ, that is gpα-d(B) = φ.
Thus we can observe that gpα-d(B) ⊂ gpα-d(A) but B * A.

Remark 6.3. gpα-d(A ∩B) ⊆ gpα-d(A) ∩ gpα-d(B).

Example 6.4. From the Example 6.2,
Let A = {b, c, d} and B = {b, c} are any two subsets of X.
Then gpα-d(A) = {e} and gpα-d(B) = φ.
Also gpα-d(A ∩B) = φ.
Therefore gpα-d(A ∩B) ⊆ gpα-d(A) ∩ gpα-d(B)

Theorem 6.4. Let A be any subset of X and x ∈ X . Then the following statements
are equal:
(i) For each x ∈ X , A ∩G 6= φ where G is gpα-open in X.
(ii) x ∈ gpα-cl(A).
Proof: Let A be any subset of X.
(i) → (ii): On the contrary assume that x /∈ gpα-cl(A). Then there exists gpα-
closed set F such thatA ⊆ F and x /∈ F . ThenX \F is gpα-open in X containing
a point x. Hence A ∩ (X \ F ) ⊆ A ∩ (X \ A) = φ, which is contradiction to the
assumption. Hence x ∈ gpα-cl(A).
(ii)→ (i): Follows from the Definition 3.2.

Corollary 6.1. For any subset A of a space X, gpα-d(A) ⊆ gpα-cl(A).

Theorem 6.5. Let A be any subset of X, then gpα-cl(A) = A ∪ gpα-d(A).
Proof: Let x ∈ gpα-cl(A). On the contrary assume that x /∈ A. Let G be any gpα-
open set containing a point x. Then (G \ {x}) ∩ A 6= φ. Therefore x is gpα-limit
point of A and hence x is gpα-derived set of A, that is x ∈ gpα-d(A).
Hence gpα-cl(A) ⊆ A ∪ gpα-d(A).
From the Corollary 6.1, we have gpα-d(A) ⊆ gpα-cl(A) and A ⊆ gpα-cl(A) is
always true. Hence A ∪ gpα-d(A) ⊆ gpα-cl(A).
Therefore gpα-cl(A) = A ∪ gpα-d(A).

Theorem 6.6. Let A be gpα-open set in X and B be any subset of X. ThenA∩gpα-
cl(B) ⊆ gpα-cl(A ∩B).
Proof: Let x ∈ A∩gpα-cl(B). Then x ∈ A and x ∈ gpα-cl(B). From the Theorem
6.5, we have gpα-cl(B) = B ∪ gpα-d(B).
If x ∈ B then x ∈ A ∩B. Then A ∩B ⊆ gpα-cl(A ∩B).
If x /∈ B then x ∈ gpα-d(B). From the definition of gpα-limit point, we have
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G ∩ B 6= φ for every gpα-open set G containing x. Therefore G ∩ (A ∩ B) =
(G ∩ A) ∩ B 6= φ. Hence x ∈ gpα-d(A ∩ B) ⊆ gpα-cl(A ∩ B). Therefore
A ∩ gpα-cl(B) ⊆ gpα-cl(A ∩B).

However the equality does not holds in general

Example 6.5. Let X = {a, b, c, d, e} and τ = {X,φ, {a}}.
Let A = {a, b} and B = {a, c} are two subsets of X .
Then A ∩ gpα-cl(B) = {a, b}
and gpα-cl(A ∩B) = X
This impliesA∩gpα-cl(B) 6= gpα-cl(A∩B). But ,A∩gpα-cl(B)⊂ gpα-cl(A∩B).

7 Conclusions
In this present work, we have analyzed the notion of generalized pre α-closed

sets in topological spaces. We have established the results of gpα-closure, gpα-
interior, gpα-neighbourhood and gpα-limit points. Moreover, we have character-
ized these concepts with suitable examples. Finally, we apply gpα-open sets for
Kuratowski closure axioms. There is a scope to study and extend these newly
defined concepts.
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1. Introduction 
The fundamental theory of fuzzy sets were introduced by  Zadeh [16] and 

Chang [9] studied the theory of  fuzzy topology. After this Ghanim.et.al [10] 

introduced separation axioms, regular spaces and fuzzy normal spaces in 

fuzzy topology. The theory of regular generalized fuzzy b-closed set (open 

set) presented by Jenifer et. al [11]. In this study we define rgfb-closure, rgfb-

interior and rgfb-separation axioms and their implications are proved. 

Effectiveness nature of the various concepts of fuzzy separation ideas are 

carried out. Characterizations are obtained. 

 

2. Preliminary 

(X1, τ),( X2, σ)  (or simply X1, X2 ) states fuzzy topological spaces(in 

short, fts) in this article. 

 

Definition 2.1[1, 3]: In fts X1, 𝛼 be fuzzy set. 

(i) If 𝛼 =IntCl(𝛼)then 𝛼 is  fuzzy regular open(precisely, frOS).  

(ii) If 𝛼 =ClInt(𝛼)then 𝛼 is  fuzzy regular closed (precisely, frCS). 

(iii) If ( ) ( ) ClIntIntCl   then 𝛼 is f b-open set (precisely, fbOS). 

(iv) If ( ) ( ) ClIntIntCl   then 𝛼  is f b-closed set (precisely, fbCS). 

 

Remark 2.2 [1]: In a fuzzy topological space X, The following implication 

holds good           

 

 

 

Figure1. Interrelations between some fuzzy open sets 

 

Definition 2.3[3]: Let   be a fuzzy set in a fts X1. Then , 

(i)   =   , )fbCS(X  a is : )bCl( 1
. 

(ii)   =   ),fbOS(X a is :)bInt( 1 . 

 

Definition 2.4[11]: In a fts X1, if bCl( ) ≤ 𝛽 , at any time when   ≤ 𝛽, then 

fuzzy set   is named as regular generalized fuzzy b-closed (rgfbCS).Where 𝛽 

is fr- open.   

. 

Remark 2.5[11]: In a fts X1, if 1-  is rgfbCS(X1 ) then fuzzy set   is  rgfbOS.  

 

                  frOS f-open    fbOS 
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Definition 2.6[11]: In a fts X1, if bInt( )≥ 𝛽 , at any time when   ≥ 𝛽, then 

fuzzy set   is named as regular generalized fuzzy b-open (rgfbOS).Where 𝛽 

is fr- closed.   

 

Definition 2.7[13]: Let (X1, τ), (X2, σ) be two fuzzy topological spaces. Let f : 
X1 → X2  be mapping, 

(i) if f-1() is rgfbCS(X1), for each closed fuzzy set  in X2, then f  is said 

to be regular generalized fuzzy b-continuous (briefly, rgfb-

continuous). 

(ii)  if f-1() is open fuzzy in X1, for  each rgfbOS  in X2, then f is called 

strongly rgfb-continuous. 

(iii) if f-1() is rgfbCS in X1, for each rgfbCS   in X2, then f is called  

rgfb-irresolute. 

 

Definition 2.8[10]:  X1 is a fts  which is named as  

(i) fuzzy T0(in short, fT0) if and only if for each pair of fuzzy 

singletons p1 and p2 with  various supports there occurs open fuzzy 

set U such that either  p1≤ U ≤ 1- p2  or  p2≤ U ≤ 1-p1 . 

(ii) fuzzy T1(in short fT1)if and only if for each pair of fuzzy singletons 

p1 and p2 with                                         

            various supports, there occurs open fuzzy sets U and V such that   

            p1≤ U≤1- p2  and  p2≤ V ≤ 1- p1 . 

(iii) fuzzy T2(in short, fT2) or f-Hausdorff  if and only if  for each pair 

of fuzzy  singletons  p1and p2 with various supports ,there occurs 
open fuzzy sets U and V such that p1≤U≤ 1- p2  , p2≤V≤ 1- p1  and  

U≤ 1- V. 

(iv) fuzzy T2
1

2
 (in short, fT2

1

2
) or f-Urysohn if and only if  for each pair of 

fuzzy singletons p1 and p2 with various supports, there occurs open 

fuzzy sets U and V such that p1≤U≤ 1- p2  , p2≤V≤ 1- p1  and  

clU≤ 1-cl V. 

 

3. Regular generalized fuzzy b-closure (rgfbCl) 

and Regular generalized fuzzy b-Interior (rgfbInt) 
 

Definition 3.1:The regular generalized fuzzy b-closure is denoted and defined 

by, rgfbCl ( ) = Λ {  :  is a rgfbCS( X1),  ≥  }. Where   be a fuzzy set 

in fts X1. 

   

Theorem 3.2:Let  X1 be fts, then the properties that follows are  occurs for 

rgfbCl of a set 
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i. rgfbCl(0) = 0 

ii. rgfbCl(1) = 1  

iii. rgfbCl( )  is rgfbCS in X1 

iv. rgfbCl[rgfbCl( )] = rgfbCl( )   

 

Definition 3.3:Let  and 𝛽 be fuzzy sets in fuzzy topological space X1. Then 

regular generalized fuzzy b-closure of   ( V 𝛽)  and  regular generalized 

fuzzy b-closure of ( /\ 𝛽)  are denoted and  defined as follows  

i. rgfbCl ( V 𝛽 ) = /\ {   :   is a rgfbCS(X1) , where   ≥ ( V 𝛽 ) } 

ii. rgfbCl ( /\𝛽 ) = /\ {   :   is a rgfbCS(X1), where   ≥ ( /\ 𝛽) } 

 

Theorem 3.4: Let   and 𝛽 be fuzzy sets in fts X1, then the following relations 

occurs  

i. rgfbCl( ) V rgfbCl(𝛽)  ≤   rgfbCl(  V 𝛽) 

ii. rgfbCl( ) /\ rgfbCl(𝛽)   ≥  rgfbCl(  /\ 𝛽) 

Proof: (i) We know that   ≤   ( V 𝛽) or 𝛽 ≤   ( V 𝛽)   

 rgfbCl ( ) ≤rgfbCl ( V 𝛽) orrgfbCl(𝛽) ≤rgfbCl ( V 𝛽)     

Hence, rgfbCl ( ) V rgfbCl (𝛽) ≤rgfbCl ( V 𝛽). 

(ii) We know that  ≥ ( /\𝛽)  or  𝛽 ≥ ( /\𝛽)    

 rgfbCl( )  ≥rgfbCl ( /\𝛽) orrgfbCl(𝛽) ≥rgfbCl ( /\𝛽)      

Hence, rgfbCl( ) /\  rgfbCl(𝛽)  ≥rgfbCl ( /\𝛽).   

 

Theorem 3.5:  is rgfbCS in a fts X1, if and only if  =rgfbCl( ). 

Proof: Suppose  is rgfbCS.  Since    and   { 𝛽: 𝛽 is rgfbCS(X1) and 

  𝛽 },  is the smallest and contained in 𝛽,therefore  =Λ{ 𝛽: 𝛽 is rgfbCS( 

X1 )and   𝛽}=rgfbCl( ). Hence,  =rgfbCl ( ). 

On the other hand, Suppose  =rgfbCl ( ), then 

 = Λ{ 𝛽: 𝛽 is rgfbCS,   𝛽 }    Λ { 𝛽: 𝛽 is rgfbOS,   𝛽 }.  

Hence,  is rgfbCS. 

 

Definition 3.6: The regular generalized fuzzy b-interior is denoted and defined 

by, rgfbInt( ) = V { 𝛿: 𝛿 is a rgfbOS(X1),    }. Where   be a fuzzy set in 

fts X1. 

 

Theorem 3.7: Let X1 be fts, then the properties that follows are occurs for 

rgfbInt of a set 

i. rgfbInt(0) = 0 

ii. rgfbInt(1) = 1 

iii. rgfbInt( )  is rgfbOS in X1 

iv. rgfbInt[rgfbInt( )] = rgfbInt( ) .  
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Definition 3.8: Let  and 𝛽 are fuzzy sets in fts X1. Then regular generalized 

fuzzy b-interior of ( V 𝛽) and  regular generalized fuzzy b-interior of (  /\ 

𝛽)  are denoted and defined as follows  

i. rgfbInt ( V 𝛽 ) = V {𝛿: 𝛿 is a rgfbOS( X1), where 𝛿 ≤ ( V 𝛽 ) }. 

ii. rgfbInt( /\ 𝛽 ) =  V { 𝛿: 𝛿 is a rgfbOS(X1), where 𝛿 ≤ ( /\ 𝛽 )}. 

 

Theorem 3.9:Let   and 𝛽 are  fuzzy sets in fts X1, then the following 

relations occurs  

i. rgfbInt( ) V rgfbInt(𝛽)  ≤   rgfbInt( V 𝛽) 

ii. rgfbInt( ) /\ rgfbInt(𝛽)   ≥ rgfbInt( /\𝛽) 

Proof: (i) We know that,  ≤   ( V 𝛽)  or  𝛽 ≤   ( V 𝛽)    

 rgfbInt( )  ≤  rgfbInt ( V 𝛽)  or  rgfbInt(𝛽) ≤  rgfbInt ( V 𝛽)      

Hence,   rgfbInt( ) V   rgfbInt(𝛽)  ≤ rgfbInt( V 𝛽).           

(ii)We know that  ≥ ( /\𝛽)  or  𝛽 ≥ ( /\𝛽)    

 rgfbInt( )  ≥ rgfbInt ( /\𝛽)  or rgfbInt(𝛽) ≥ rgfbInt ( /\𝛽)      

 Hence,   rgfbInt( ) /\   rgfbInt(𝛽)  ≥ rgfbInt ( /\𝛽).   

 

Theorem 3.10: Let X1 be fts,   is rgfbOS if and only if  =rgfbInt( ). 

Proof: Suppose  is rgfbOS.  Since    ,   { 𝛿: 𝛿 is rgfbOS and 𝛿  } 

Since biggest   contains 𝛿.  Therefore,  = V{ 𝛿: 𝛿 is rgfbOS 𝛿   } = 

rgfbInt ( ). Hence,  =rgfbInt( ). 

On the other hand, Suppose  =rgfbInt ( ).Then,  =V{ 𝛿: 𝛿 is rgfbOS, 𝛿  

 }    V { 𝛿: 𝛿 is rgfbOS 𝛿   }. Hence,  is rgfbOS. 

 

Theorem 3.11: Let  be a fuzzy set in a fts X1, in that case following relations 

holds good 

i. rgfbInt(1- ) = 1-rgfbCl( ) 

ii. rgfbCl(1- ) = 1- rgfbInt( ) 

Proof: (i) Let  be a fuzzy set in fts X1.  Then we have 

rgfbCl ( ) = Λ {  :  is a rgfbCS( X1),  ≥  }. Where   be a fuzzy set in fts 

X1.   

1-rgfbCl ( ) = 1- Λ {  :  is a rgfbCS( X1),  ≥  }.                                 

           = V { 1 −  :  is a rgfbCS( X1),  ≥  }.                                   

                      = V{ 1 −  : 1 −  is a rgfbOS( X1),  ≤  1- }.                                                                                                                     

                      = rgfbInt (1- ) 

Hence, 1-rgfbCl( ) = rgfbInt (1- ). 

 

(ii) Let   be a fuzzy set in fts X1. Then we have 

rgfbInt( ) = V { 𝛿: 𝛿  is a rgfbOS(X1),    }. Where   be a fuzzy set in fts 

X1. 
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1-rgfbInt ( ) = 1-V { 𝛿 : 𝛿   and 𝛿 is rgfbOS (X1)} 

  = Λ{1- 𝛿: 𝛿   and 𝛿 is rgfbOS(X1)} 

  = Λ {1- 𝛿 : 1-  1- 𝛿 and 1- 𝛿 is rgfbCS( X1)} 

  = rgfbCl (1- ) 

Hence 1-rgfbInt ( ) = rgfbCl (1- ). 
 

4. rgfb-separation axioms 
 

Definition 4.1:A fts  is known as rgfbT0, that is  regular generalized fuzzy bT0,  

iff for each pair of fuzzy singletons q1 and q2 with various supports, there 

occurs rgfbOS  𝛿 such that either   q1≤ 𝛿 ≤ 1- q2 or  q2≤ 𝛿 ≤ 1- q1.  

 

Theorem 4.2: A fts is rgfbT0,that is  regular generalized fuzzy bT0,  if and only 

if rgfbCl of  crisp  fuzzy singletons q1 and q2 with various supports are 

different. 

Proof: To prove the necessary condition: Let a fuzzy topological space be 

rgfbT0  and two crisp  fuzzy singletons be q1 & q2 with various supports  x1 & 

x2 respectively i.e. x1 ≠ x2. Since fts is rgfbT0 ,there exist a rgfbOS  𝛿 such 

that, q1≤ 𝛿 ≤ 1- q2   q2 ≤ 1- 𝛿, but  q2≤ rgfbCl(q2) ≤ 1- 𝛿, where q1≤  

rgfbCl(q2)   q1≤ 1- 𝛿 where 1- 𝛿 is rgfbCS. But, q1≤  rgfbCl(q1). This shows 

that, rgfbCl(q1) ≠ rgfbCl(q2).   

To prove the sufficiency: Let p1 & p2 be fuzzy singletons with various supports 

x1 & x2 respectively, q1 & q2 be crisp fuzzy singletons such that q1(x1)=1, 

q2(x2)=1. But, q1≤  rgfbCl(q1)  1-rgfbCl(q1) ≤ 1-q1≤1-p1. As each crisp 

fuzzy singleton is rgfbCS, 1- rgfbCl(q1) is rgfbOS and p2≤ 1- rgfbCl(q1) ≤ 1- 

p1.This proves, fts is rgfbT0 space. 

 

Definition 4.3: A fts is known as rgfbT1,that is  regular generalized fuzzy bT1, 

iff for each pair of fuzzy singletons q1 & q2 with various supports x1 & x2 

respectively, there occurs rgfbOSs  𝛿1 &  𝛿2  such that, q1≤ 𝛿1≤ 1- q2  and  q2≤ 

𝛿2≤ 1- q1. 

 

Theorem 4.4: A fts is rgfbT1, that is regular generalized fuzzy bT1, if and only 

if each crisp fuzzy singleton is rgfbCS. 

Proof: To prove the necessary condition: Let rgfbT1 be fts and crisp fuzzy 

singleton with supports x0 be q0 .There occurs, rgfbOSs  𝛿1 and 𝛿2 for any 

fuzzy singleton q with supports x (≠ x0), such that, q0≤ 𝛿1≤ 1- q and q ≤ 𝛿2≤ 

1- q0. Since, it includes each fuzzy set as the collection of fuzzy singletons. So 

that, 1-q0 =
01 qq

V
−

q =  0. Thus, 1-q0 is rgfbOS. This shows that, q0 (crisp fuzzy 

singleton) is rgfbCS. 
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To prove the sufficiency: Assume p1 and p2 be pair of fuzzy singletons with 

various supports x1& x2 .Further on  fuzzy singletons with various supports x1 

& x2 be q1 & q2, such that q1(x1) = 1 and q2(x2)=1. As each crisp fuzzy 

singleton is rgfbCS, the fuzzy sets 1-q1 & 1-q2 are rgfbOSs such that,  p1≤ 1-

q1≤ 1- p2  and p2≤1-q2≤ 1- p1.This proves, fts is rgfbT1 space. 

 

Remark 4.5:In a fts X1, each rgfbT1 space is rgfbT0  space. 

Proof: It follows the above definition. 

The opposite of this theorem is in correct. This is shown as follows – 

 

Example 4.6:Let X1={a, b},p1={(a,0),(b,1)} and p2={(a,0.4),(b,0)} are fuzzy 

singletons. U= {(a, 0.5),(b, 1)}  be rgfbOS . Let  𝜏= { 0,p1 , p2 , U,1 }. The 

space is rgfbT0 and it is not rgfbT1. 

 

Definition 4.7: A fts is known as rgfbT2 , that is regular generalized fuzzy bT2 

or rgfb-Hausdorff iff, for each pair of fuzzy singletons q1 & q2 with various 

supports x1 & x2 respectively, there occurs, rgfbOS   𝛿1 &  𝛿2  such that, q1≤
𝛿1≤ 1- q2  , q2≤ 𝛿2≤ 1- q1 and  𝛿1≤ 1- 𝛿2 . 

 

Theorem 4.8: A fts is known as rgfbT2, that is regular generalized fuzzy bT2 

or rgfb-Hausdorff  if and only if  for each pair of fuzzy singletons q1 & q2 with 

various supports x1 & x2 respectively, there occurs an rgfbOS  𝛿1 such that, 

q1≤ 𝛿1≤ rgfbCl 𝛿1≤ 1- q2 . 

Proof: To prove the necessary condition: Let rgfbT1 be fts  and  fuzzy 

singletons q1 & q2 with various supports .Let 𝛿1 & 𝛿2  be rgfbOS such that, q1≤ 

𝛿1≤ 1- q2 , q2≤ 𝛿2≤ 1- q1  and  𝛿1≤ 1- 𝛿2  where 1- 𝛿2  is rgfbCS. We have by 

definition, rgfbCl(𝛿1)=/\ {(1- 𝛿2) : (1- 𝛿2) rgfbCS} where  𝛿 1≤ 1- 𝛿2  .Also 

rgfbCl(𝛿1)≥ 𝛿1.This shows that, q1≤ 𝛿1≤ rgfbCl (𝛿)1≤ 1- 𝛿2≤ 1- q2  q1≤ 

𝛿1≤ rgfbCl (𝛿1)≤ 1- q2 . 

To prove the sufficiency: Assume q1 and q2 are pair of fuzzy singletons with 

various supports and 𝛿1 be rgfbOS. Since, q1≤ 𝛿1≤ rgfbCl (𝛿1)≤ 1- q2   q1≤ 

𝛿1≤1- q2. Also q1≤rgfbCl( 𝛿1)≤ 1- q2  q2≤ 1- rgfbCl (𝛿1) ≤1-q1. This shows 

that, 1- rgfbCl (𝛿1) is rgfbOS. Also rgfbCl (𝛿1)  ≤ 1- rgfbCl (𝛿2) . This proves 

that, fts is rgfbT2 space. 

 

Remark 4.9:In a fts X1,each rgfbT2 space is  rgfbT1  space. 

Proof: It follows the above definition. 

The opposite of this theorem is in correct. This is shown as follows – 

 

Example 4.10: Let X1={a,b}. q1={(a, 0.2),(b, 0)} and q2={(a,0), (b,0.4)} are 

fuzzy singletons, O1= {(a,0.3),(b,0.4)} and O2= {(a,0.8),(b,0.7)} are rgfbOS 

.Let 𝜏 = { 0, p1 , p2 , O1 , O2, 1}. The space is  rgfbT1 and it's not rgfbT2. 



Varsha Joshi and Dr.Jenifer J.Karnel 

 

 

158 

 

 

Definition 4.11: A fts is known as rgfbT2
1

2
 , that is regular generalized fuzzy 

bT2
1

2
 or rgfb-Urysohn iff for each pair of fuzzy singletons q1 & q2 with various 

supports x1 & x2 respectively, there occurs, rgfbOSs  𝛿1 & 𝛿2  such that, q1≤ 

𝛿1≤ 1- q2  , q2≤ 𝛿2≤ 1- q1  and  rgfbCl (𝛿1)≤ 1-rgfbCl (𝛿2) . 

 

Remark 4.12:In a fts X1,each rgfbT2
1

2
 space is  rgfbT2  space. 

Proof: It follows from the above definition. 

The opposite of this theorem is in correct. This is shown as follows – 

 

Example 4.13: Let X1={a, b}. q1={(a,  0.1),(b,0)} and q2={(a,0),(b,0.3)} are 

fuzzy singletons,  O1= {(a,0.2),(b,0.3)} and O2= {(a,0.7),(b,0.5)} are rgfbOSs. 

Let  𝜏 ={ 0, p1 , p2 , O1 , O2, 1 }. The space is  rgfbT2  and it's not rgfbT2
1

2
 . 

 
 

 

 

 

Figure2. From the above definition and examples one can notice that the 

above chains of implication. 

 

Theorem 4.14: An injective function f: X1 → X2 is rgfb-continuous, and X2 is 

fT0, then X1 is rgfbT0. 

Proof: Assume  & β be fuzzy singletons in X1 with various support then f () 

& f (β) belongs to X2, As f  is injective and  f ()≠ f (β). As X2 is fT0, there 

occurs, a open set O in X2 such that, 𝑓() ≤ 𝑂 ≤ 1 − 𝑓(𝛽)or 𝑓(𝛽) ≤ 𝑂 ≤

1 − 𝑓(),  ≤ 𝑓−1(𝑂) ≤ 1 − 𝛽  or 𝛽 ≤ 𝑓−1(𝑂)  ≤ 1 − .  Since, f : X1 → 

X2 is rgfb-continuous, 𝑓−1(𝑂) is rgfbOS in X1. This shows that, X1 is rgfbT0-

space[ 4.1].  

 

Theorem 4.15: An injective function f : X1 → X2 is rgfb-irresolute,  and X2 is 

rgfbT0, then X1 is rgfbT0.  

Proof: Assume    & β be fuzzy singletons in X1 with various support.  As f is 

injective 𝑓() & 𝑓(𝛽) belongs to X2 and 𝑓() ≠ 𝑓(𝛽). As, X2 is rgfbT0, there 

occurs rgfbOS O in X2 so that 𝑓() ≤ 𝑂 ≤ 1 − 𝑓(𝛽) or 𝑓(𝛽) ≤ 𝑂 ≤ 1 −

𝑓()  ≤ 𝑓−1(𝑂) ≤  1 − 𝛽 or   𝛽 ≤ 𝑓−1(𝑂)  ≤ 1 − . As, f is rgfb-

irresolute 𝑓−1(𝑂) is rgfbOS(X1).  This shows that, X1 is rgfbT0 space[4.1 ]. 
 

Theorem 4.16:An injective function f : X1 → X2 is strongly rgfb-continuous, 

and X2 is rgfbT0, then X1 is fT0. 

    
  rgfbT2

𝟏

𝟐
 

 

rgfbT2 

 

rgfbT1 

 

rgfbT0 
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Proof: Assume    & β  be  fuzzy singletons in X1 with various support.  Since 

f is injective  f () & f (β) belongs to X2 and 𝑓() ≠ 𝑓(𝛽).  As, X2 is rgfbT0, 

there occurs rgfbOS O in X2 so that, 𝑓() ≤ 𝑂 ≤ 1 − 𝑓(𝛽) or 𝑓(𝛽) ≤ 𝑂 ≤

1 − 𝑓(),  ≤ 𝑓−1(𝑂) ≤ 1 − 𝛽 or 𝛽 ≤ 𝑓−1(𝑂) ≤ 1 − . Since, f is 

strongly rgfb-continuous, 𝑓−1(𝑂) is fuzzy-open in X1.  This shows that, X1 is 

fT0-space[ 2.8]. 

 

Theorem 4.17:An injective function f : X1 → X2 is rgfb-continuous, and X2 is 

fT1, then X1 is rgfbT1. 

Proof: Assume    and β  be fuzzy singletons in X1 with various supports. 
𝑓() and  𝑓(𝛽) belongs to X2, Since, f is injective. As, X2 is fT1 space hence, 

by the statement there occurs fuzzy-open sets O1 & O2 in X2 such that, 𝑓() ≤
𝑂1  ≤ 1 − 𝑓(𝛽) and 𝑓(𝛽) ≤ 𝑂2  ≤ 1 − 𝑓( )    ≤ 𝑓−1(𝑂1)  ≤  1 −
𝛽 and 𝛽 ≤ 𝑓−1(𝑂2)  ≤ 1 − .  

Since, f is rgfb-continuous 𝑓−1(𝑂1) and 𝑓−1(𝑂2) are rgfb-open in X1. This 

shows that, X1 is rgfbT1 space[4.3 ]. 

 

Theorem 4.18: An injective function f : X1 → X2 is rgfb-irresolute, and X2 is 

rgfbT1, then X1 is rgfbT1. 

Proof: Assume   & β be fuzzy singletons in with various supports.  Since f is 

injective, 𝑓() & 𝑓(𝛽) belongs to X2. As X2 is rgfbT1, there occurs two 

rgfbOS O1& O2 in X2 so that 𝑓() ≤ 𝑂1  ≤ 1 − 𝑓(𝛽) and 𝑓(𝛽) ≤ 𝑂2  ≤ 1 −

𝑓()    ≤ 𝑓−1(𝑂1)  ≤  1 − 𝛽 𝑎𝑛𝑑 𝛽 ≤ 𝑓−1(𝑂2)  ≤ 1 − . Since, f is rgfb-

irresolute, then 𝑓−1(𝑂1) 𝑎𝑛𝑑 𝑓−1(𝑂2) are rgfbOS(X1).  This shows that, X1 is 

rgfbT1 space[ 4.3]. 
 

Theorem 4.19:If f : X1 → X2 is strongly rgfb-continuous and X2 is rgfbT1, 

then X1 is fT1. 

Proof: Assume  & β be fuzzy singletons in X1 with various supports. Since, f 

is injective, 𝑓()  &𝑓(𝛽) belong to X2.  As, X2 is rgfbT1, there occurs two 

rgfbOSs  O1 and O2 in X2 so that, 𝑓() ≤ 𝑂1  ≤ 1 − 𝑓(𝛽) and 𝑓(𝛽) ≤ 𝑂2  ≤
1 − 𝑓()    ≤ 𝑓−1(𝑂1)  ≤  1 − 𝛽 and 𝛽 ≤ 𝑓−1(𝑂2)  ≤ 1 − . Since, 

f is strongly rgfb-continuous, therefore 𝑓−1(𝑂1) & 𝑓−1(𝑂2) are fuzzy-open in 

X1.  This shows that, X1 is fT1 space[2.8 ]. 

 

Theorem 4.20: An injective function f : X1 → X2  is rgfb-continuous, and X2 is 

fT2, then X1 is rgfbT2. 

Proof: Assume   & β be  fuzzy singletons in X1 with various supports. Since, 

f   is injective, so 𝑓() & 𝑓(𝛽) belongs to X2   and  𝑓() ≠ (𝛽). Since, X2 is 

fT2, therefore there occurs open fuzzy set O in X2  so that, 𝑓() ≤ 𝑂 ≤
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Cl(𝑂) ≤ 1 − 𝑓(𝛽)   ≤ 𝑓−1(𝑂)  ≤  𝑓−1[𝐶𝑙(𝑂)]  ≤ 1 − 𝛽. Since, f is rgfb-

continuous 𝑓−1(𝑂) is rgfbCS(X1). Hence,  ≤ 𝑓−1(𝑂)  ≤  𝑓−1[Cl(𝑂)] ≤
𝑓−1[rgfbCl(𝑂)] ≤  rgfbCl[𝑓−1[(𝑂)]  ≤ 1 − 𝛽. That is,  ≤ 𝑓−1(𝑂)  ≤
rgfbCl[𝑓−1[(𝑂)]  ≤ 1 − 𝛽. This shows that, X1 is rgfbT2[4.7]. 

 

Theorem 4.21: An injective function f : X1 → X2   is rgfb-irresolute, and X2 is 

rgfbT2. Then, X1 is rgfbT2. 

Proof: Obvious. 

 

Theorem 4.22: An injective function f : X1 → X2   is strongly rgfb-continuous, 

and X2 is rgfbT2. Then, X1 is fT2. 

Proof: Obvious. 

 

Theorem 4.23: An injective function f : X1 → X2   is rgfb-continuous, and X2 

is fT2
1

2
 . Then, X1 is rgfbT2

1

2
 . 

Proof: Assume  & β be fuzzy singletons in X1 with various supports. Since, f 
is injective, then 𝑓() and 𝑓(𝛽) belongs to X2 and 𝑓 ()  ≠  𝑓(𝛽). Since, X2 is 

fT2
1

2
 , then there occurs open fuzzy sets O1 and O2 in X2 such that, 𝑓() ≤

𝑂1 ≤  1 −  𝑓(𝛽), 𝑓(𝛽) ≤ 𝑂2 ≤ 1 − 𝑓()and Cl𝑂1   ≤ 1 − Cl𝑂2   ≤
𝑓−1(𝑂1) ≤ 1 −  𝛽 ,𝛽 ≤ 𝑓−1(𝑂2)   ≤ 1 −  and Cl𝑓−1(𝑂1)   ≤ 1 − Cl𝑓−1(𝑂2). 
Since, 𝑓 is rgfb-continuous 𝑓−1(𝑂1) and 𝑓−1(𝑂2) are rgfbOS(X1). 

Cl(𝑓−1(𝑂1)) ≤ rgfbCl(𝑓−1(𝑂1)) and1 − 𝐶l(𝑓−1(𝑂2)) ≤ 1 −
rgfbCl(𝑓−1(𝑂2)). Hence, rgfbCl(𝑓−1(𝑂1)) ≤ 1 − rgfbCl(𝑓−1(𝑂2)).  This 

shows that, X1 is rgfbT2
1

2
 [ 4.11]. 
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From the beginning of 20th century, generalization of binomial coef-
ficient has been deliberated broadly. One of the most famous gener-
alized binomial coefficients are Fibonomial coefficients, obtained by
substituting Fibonacci numbers in place of natural numbers in the bi-
nomial coefficients. In this paper, we further generalize the concept
of Fibonomial coefficient and called it Generalized double Fibono-
mial number and obtain interesting properties of it. We also discuss
its special case, double Fibonomial number along with the situation in
which they give integer values. Other properties of it have also been
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1 Introduction
In combinatorics, the factorial of a positive integer n, denoted by n!, is defined

by n! = n× n− 1× · · · × 2× 1;n ≥ 1 and 0! = 1. Whereas the double factorial
of a positive integer n, usually denoted by n!! is defined as

n!! =


n× n− 2× · · · × 3× 1; n is odd
n× n− 2× · · · × 4× 2; n is even

1; n = 0

Note that n!! is not the same as the iterated factorial (n!)!, which grows much
faster. We do not know precisely when, where, or by whom, the double factorial
notation was devised. It was used by Meserve [6] in 1948, and it is not mentioned
by Cajori in his very detailed work in history of mathematical notations during
1928 – 1929 [2]. Thus, we summaries that the notation was introduced at some
times during the period 1928 – 1948.

In this definition of n!!, if we replace the natural numbers by the terms of
the generalized Fibonacci numbers wn defined by the recurrence relation wn =
pwn−1 + qwn−2, for n ≥ 2; w0 = a and w1 = b, where a, b, p and q are any
integers, then what we get will be called Generalized double Fibonorial n!!w and
is defined as

n!!w ≡


wn × wn−2 × · · · × w3 × w1 n > 0 is odd
wn × wn−2 × · · · × w4 × w2 n > 0 is even

1 n = 0
(1)

Here note that when we substitute p = q = b = 1 and a = 0 in the definition of
wn, we get regular Fibonacci numbers Fn. The definition of n!!w helps to express
the generalized double Fibonorial in terms of regular generalized Fibonorial as
shown in the following lemma.

Lemma 1.1. n!!w = n!w
(n−1)!!w = (n+1)!w

(n+1)!!w
;n ≥ 1.

In 1964 Fontene [3] generalized the notion of binomial coefficients and intro-
duce the new concept of Fibonomial coefficients. In the definition of binomial
coefficients

(
m
k

)
, he replaced the natural numbers by the terms of an arbitrary

sequence {An} of real or complex numbers. Since then there has been an accel-
erated interest in the study of Fibonomial coefficients. When the sequence {An}
is considered as the sequence {Fn} of Fibonacci numbers, the Fibonomial coeffi-

cients
[
m
k

]
F

, for 1 ≥ k ≥ m, is defined as
[
m
k

]
F

= m!F
k!F (m−k)!F

. The elaborated

study on the generalized Fibonomial coefficients can be found in literature. (See
[5])
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This quantity will always be an integer, which can be shown by an induction
argument by replacing Fm in the numerator with FkFm−k+1+Fk−1Fm−k, resulting
in [

m
k

]
F

= Fm−k+1

[
m− 1
k − 1

]
F

+ Fk−1

[
m− 1
k

]
F

(2)

We use the concept of generalized double Fibonorial to further generalize the
concept of generalized Fibonomial coefficients. We define the generalized double

Fibonomial numbers
[[
m
k

]]
w

as

[[
m
k

]]
w

=
m!!w

k!!w (m− k)!!w
(3)

It is easy to observe that[[
m
0

]]
w

= 1,

[[
m
2

]]
w

= wmand

[[
m
k

]]
w

=

[[
m

m− k

]]
w

(4)

2 Generalized double Fibonomial numbers:

2.1 Some properties of generalized double Fibonomial num-
bers:

The following results are now easy consequences from this definition:

Lemma 2.1. For any positive integers k,m and n,

1. (Iterative rule)

[[
n
k

]]
w

[[
k
m

]]
w

=

[[
n
m

]]
w

[[
n−m
k −m

]]
w

.

2. wm−k

[[
m
k

]]
w

= wm

[[
m− 2
k

]]
w

.

3. wk

[[
m
k

]]
w

= wm−k+2

[[
m

k − 2

]]
w

.

4. wk

[[
m
k

]]
w

= wm

[[
m− 2
k − 2

]]
w

.

Lemma 2.2. (m− 1)!!w

[[
m
k

]]
w

will always give an integer value.

165



M. Shah, D. Shah

This result is an easy derived from the definition of generalized Fibonorial
and generalized double Fibonomial numbers. The basic recurrence relations for
the generalized double Fibonomial numbers is as follows:

Lemma 2.3.
[[
m
k

]]
w

−
[[
m− 2
k

]]
w

=

[[
m− 2
k − 2

]]
w

{
wm−wm−k

wk

}
.

By changing k to m− k and using (4), we get

Lemma 2.4.
[[
m
k

]]
w

−
[[
m− 2
k − 2

]]
w

=

[[
m− 2
k

]]
w

{
wm−wk
wm−k

}
.

The following result can be easily obtained when we apply the sum on both
sides with respect to the upper index such that m and k have the same parity.

Lemma 2.5.
[[
m
k

]]
w

=
∑m

j=k

{
wj−wj−k

wk

}[[j − 2
k − 2

]]
w

; where the sum is taken

over integers starting from k with spacing of 2 up to m.

2.2 Star of David theorem:
In 1972, Gould gave a result related to one interesting arithmetic property of

binomial coefficients which was named as the Star of David theorem, which was
stated as “The greatest common divisors of the binomial coefficients forming each
of the two triangles in the Star of David shape in Pascal’s triangle are equal:

gcd
{(

n−1
k−1

)
,
(
n
k+1

)
,
(
n+1
k

)}
.

The two sets of three numbers, which the Star of David theorem says, have
equal greatest common divisors and equal products. Interestingly, Gould’s result
can be imitated for generalized double Fibonomial numbers too as shown in the
following result.

Theorem 2.1.
[[
m− a
k − b

]]
w

[[
m

k + b

]]
w

[[
m+ b
k

]]
w

=

[[
m− a
k

]]
w

[[
m+ b
k + a

]]
w

[[
m

k − b

]]
w

; where a, b are positive integers.

Proof. Using the definition of generalized double Fibonomial numbers, the
left side of the result becomes[[

m− a
k − b

]]
w

[[
m

k + b

]]
w

[[
m+ b
k

]]
w

= (m−a)!!w
(k−b)!!w(m−k−a+b)!!w ×

(m)!!w
(k+a)!!w(m−k−a)!!w ×

(m+b)!!w
(k)!!w(m−k+b)!!w
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= (m−a)!!w
(k)!!w(m−k−a)!!w ×

(m+b)!!w
(k+a)!!w(m−k−a+b)!!w ×

(m)!!w
(k−b)!!w(m−k+b)!!w

=

[[
m− a
k

]]
w

[[
m+ b
k + a

]]
w

[[
m

k − b

]]
w

, as required.2

Corolary 2.1. If a = b = 1, we get the product of six generalized double Fibono-

mial numbers, which are equally spaced around
[[
m
k

]]
w

.

2.3 Generalized Double Multinomial Numbers:
Letm = k1+k2+ · · ·+kr then we can define generalized double multinomial

number as [[
m

k1, k2, · · · , kr

]]
w

= m!!w
k1!!wk2!!w···kr!!w

Following result expresses generalized double multinomial numbers as the multi-
plication of generalized double Fibonomial numbers.

Lemma 2.6. Generalized double multinomial numbers can be expressed as the
multiplication of generalized double Fibonomial numbers.

Proof. In the definition of generalized double multinomial numbers, consider

r = 2, then we have
[[

m
k1, k2

]]
w

=

[[
m
k1

]]
w

; where k1 + k2 = m.

For r = 3 and m = k1 + k2 + k3,

[[
m

k1, k2, k3

]]
w

=

[[
m
k1

]]
w

[[
m− k1
k2

]]
w

.

Let us now consider r = n and m = k1 + k2 + · · ·+ kn. Thus[[
m

k1, k2, · · · , kr

]]
w

= m!!w
k1!!wk2!!w···kn!!w = m!!w

k1!!wk2!!w···kn−2!!w
× 1

kn−1!!wkn!!w

= m!!w
k1!!wk2!!w···kn−2!!w×(m−k1−k2−···−kn−2)!!w

× (m−k1−k2−···−kn−2)!!w
kn−1!!w(m−k1−k2−···−kn−2−kn−1)!!w

=

[[
m
k1

]]
w

[[
m− k1
k2

]]
w

· · ·
[[
m− k1 − k2 − · · · − kn−2

kn−1

]]
w

.

Hence, by the principle of Mathematical induction, we get the required result.2
It is obvious that all the above results related to generalized double Fibonorials
and generalized double Fibonomial numbers are also true for double Fibonomials

n!!F and double Fibonomial coefficients
[[
m
k

]]
F

. But there are some additional

results related to them, which are discussed in the following article.
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3 Double Fibonomial numbers:

3.1 Definition and some properties of double Fibonomial num-
bers:

Using the definitions (1) and (3), Double Fibonorials and double Fibonomial
numbers can be respectively expressed as

n!!F ≡


Fn × Fn−2 × · · · × F3 × F1 n > 0 is odd
Fn × Fn−2 × · · · × F4 × F2 n > 0 is even

1 n = 0

and [[
m
k

]]
F

= m!!F
k!!F (m−k)!!F

.

The following table shows first few terms of double Fibonorials for some initial
values of n.

n 0 1 2 3 4 5 6 7 8 9 10
n!!F 1 1 1 2 3 10 24 130 504 4420 27720

Table 1: Double Fibonorial numbers

Also by (4), double FIbonomial numbers have the symmetry property. Thus
Table 2 shows the first few terms of double Fibonomial numbers of one side only.

1
1

1 1
1 2

1 3/2 3
1 10/3 5

1 24/10 8 6
1 65/12 13 65/3

1 252/65 21 126/5 56

Table 2: Double Fibonomial numbers

We further show how Double Fibonorial and Double Fibonomial numbers are
connected with the sequence {Ln} of Lucas numbers. This sequence is famously
known as the twin sequence of Fibonacci sequence, which can be obtained by
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substituting p = q = b = 1 and a = 2 in the definition of wn. That is Ln =
Ln−1 + Ln−2;L0 = 2 and L1 = 1. It is easy to observe that F2n = FnLn. If we
define n!L = Ln×Ln−1×· · ·×L2×L1, then the following lemma follows easily.

Lemma 3.1. n!!F = k!F × k!L, for even positive integer n = 2k.

If we consider
[
m
k

]
L

= m!L
k!L(m−k)!L

,then the following is an easy consequence

of lemma 3.1.

Lemma 3.2.
[[

2m
2k

]]
F

=

[
m
k

]
F

×
[
m
k

]
L

From the Table 2 it is clear that double Fibonomial numbers are not always an

integer. Obviously, for any integer m,
[[
m
0

]]
F

=

[[
m
m

]]
F

= 1, will always have

an integer value. Also
[[
m
2

]]
F

=

[[
m

m− 2

]]
F

= Fm will be integers. These

two will serve as the trivial cases. Following theorem speaks about when double
Fibonomial numbers attain integer values.

Theorem 3.1. The nontrivial double Fibonomial numbers
[[
m
k

]]
F

are integers

only when either m and k both are even integers together or
[[
m
k

]]
F

=

[[
6
3

]]
F

.

Proof. We prove the result in four cases depending on the parity of m and k.
Case 1: When m and k both are even integers, we have[[

m
k

]]
F

=

[[
2n
2l

]]
F

= (2n)!!F
(2l)!!F (2n−2l)!!F

= F2n×F2n−2×···×F2n−2l+2

F2l×···×F4×F2

Note that number of elements in numerator and denominator are same. Also,
they are Fibonacci numbers with even subscripts, such that in the denominator
we have first l even subscripted Fibonacci numbers. Since these numbers always
divide multiplication of any l consecutive even subscripted Fibonacci numbers, it

follows that
[[
m
k

]]
F

will always be an integer.

Case 2: When m and k both are odd integers, we have In this case, we have[[
m
k

]]
F

=

[[
2n+ 1
2l + 1

]]
F

= (2n+1)!!F
(2l+1)!!F (2n−2l)!!F

= F2n+1×F2n−1×···×F2l+3

F2n−2l×···×F4×F2
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In the numerator, every Fibonacci number is with odd subscript. Consequently,

none of them will be divisible by F4 = 3. Thus
[[
m
k

]]
F

will not be an integer in

this case.
Case 3: When m is odd integer and k is even integer, we have In this case, we
have[[

m
k

]]
F

=

[[
2n+ 1
2l

]]
F

= (2n+1)!!F
(2l)!!F (2n−2l+1)!!F

= F2n+1×F2n−1×···×F2n−2l+3

F2l×···×F4×F2

Here again in the numerator, every Fibonacci number is with odd subscript, so

none of them will be divisible by F4 = 3. And therefore, in this case
[[
m
k

]]
F

will not be an integer.
Case 4: When m is even integer and k is odd integer, we have[[

m
k

]]
F

=

[[
2n

2l + 1

]]
F

= (2n)!!F
(2l+1)!!F (2n−2l−1)!!F

=

F2n×F2n−2×···×F4×F2

(F2l+1×···×F3×F1)(F2n−2l−1×···×F3×F1)

Here number of terms in the numerator and denominator are same. Also, the
Fibonacci numbers in the numerator are with only even subscripts and in the de-
nominator with only odd subscripts. But, for any Fibonacci number Fn, there
exists a prime p such that if p | Fn, then p will only divide Fmn; for every m ≥ 1.

Since
[[
m
k

]]
F

=

[[
m

m− k

]]
F

, for convenience we take k > m − k, that is,

2k > m. Then there will not be the same Fibonacci numbers in the numerator and
denominator. Also, there will not be any multiple subscripts of k in the numerator.
Thus, there will exist a prime p in the denominator such that p | Fk which will not
divide any of the Fibonacci number in the numerator.

Likewise, when k = m−k, then except for k = 3, there will be a prime p such
that p | Fk as well as p | Fm, but it will appear in the denominator only once where

as in the numerator twice. Thus in this case, except for
[[

6
3

]]
F

= 6,

[[
m
k

]]
F

will

not be an integer.2
In the following theorem we obtain the recurrence relation for the double Fi-

bonomial numbers.

Theorem 3.2.
[[
m
k

]]
F

= Fk−1

[[
m− 2
k

]]
F

+ Fm−k+1

[[
m− 2
k − 2

]]
F

.

Proof. From [4], we observe that the Fibonomial coefficients
[
m
k

]
F

has the

recurrence relation
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[
m
k

]
F

= Fk−1

[
m− 1
k

]
F

+ Fm−k+1

[
m− 1
k − 1

]
F

Now, using this relation and lemma 3.2, we get[[
m
k

]]
F

= m!F
(m−1)!!F

× (k−1)!!F
k!F

× (m−k−1)!!F
(m−k)!F

=

[
m
k

]
F

× (k−1)!!F×(m−k−1)!!F
(m−1)!!F

.

=

{
Fk−1

[
m− 1
k

]
F

+ Fm−k+1

[
m− 1
k − 1

]
F

}
× (k−1)!!F×(m−k−1)!!F

(m−1)!!F
.

=
{
Fk−1(m−1)!F

(m−1)!!F
× (k−1)!!F

k!F
× (n−k−1)!!F

(n−k−1)!F

}
+
{
Fn−k+1(m−1)!F

(m−1)!!F
× (k−1)!!F

(k−1)!F
× (n−k−1)!!F

(n−k−1)!F

}
= Fk−1(n−2)!!F

k!!F×(n−k−2)!!F
+ Fn−k+1(n−2)!!F

(k−2)!!F×(n−k)!!F[[
m
k

]]
F

= Fk−1

[[
m− 2
k

]]
F

+ Fm−k+1

[[
m− 2
k − 2

]]
F

, as required. 2

Lemma 3.3.
[[
m
k

]]
F

=
∑|m−k

2 |
j=1 F j−1

k−1Fm−k+1−2(j−1)

[[
m− 2j
k − 2

]]
F

+F
|m−k

2 |
k−1 A;

where A =


1;when m and k both are even or both are odd integers[[

k + 1
k

]]
F

; otherwise

Proof. From above theorem, we have[[
m
k

]]
F

= Fm−k+1

[[
m− 2
k − 2

]]
F

+ Fk−1

[[
m− 2
k

]]
F

= Fm−k+1

[[
m− 2
k − 2

]]
F

+ Fk−1

{
Fm−k−1

[[
m− 4
k − 2

]]
F

+ Fk−1

[[
m− 4
k

]]
F

}
= Fm−k+1

[[
m− 2
k − 2

]]
F

+ Fk−1Fm−k−1

[[
m− 4
k − 2

]]
F

. + F 2
k−1

{
Fm−k−3

[[
m− 6
k − 2

]]
F

+ Fk−1

[[
m− 6
k

]]
F

}
Continuing this process, we get

[[
m
k

]]
F

=



∑|m−k
2 |

j=1 F j−1
k−1Fm−k+1−2(j−1)

[[
m− 2j
k − 2

]]
F

+ F
|m−k

2 |
k−1

[[
k
k

]]
F

;

when n and k both are even or odd∑|m−k
2 |

j=1 F j−1
k−1Fm−k+1−2(j−1)

[[
m− 2j
k − 2

]]
F

+ F
|m−k

2 |
k−1

[[
k + 1
k

]]
F

;

otherwise
,as required. 2

To illustrate the result, we consider m = 9 and k = 5. Then[[
m
k

]]
F

=
∑|m−k

2 |
j=1 F j−1

k−1Fm−k+1−2(j−1)

[[
m− 2j
k − 2

]]
F

+ F
|m−k

2 |
k−1 A

=
∑2

j=1 F
j−1
4 F5−2(j−1)

[[
9− 2j

3

]]
F

+ F 2
4

[[
5
5

]]
F
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= F5

[[
7
3

]]
F

+ F4F3

[[
5
3

]]
F

+ F 2
4 =

(
5× 65

3

)
+ (3× 2× 5) + (32)

= 442
3

=

[[
9
5

]]
F

, as expected.

The following result is an easy consequence from the definition of double
Fibonomial numbers and the basic identity FmLn+FnLm = 2Fm+n relating both
Fibonacci numbers and Lucas numbers.

Lemma 3.4.
[[
m
k

]]
F

= 1
2

(
Lk

[[
m− 2
k

]]
F

+ Lm−k

[[
m− 2
k − 2

]]
F

)
.

Proof. Since 2Fm = FkLm−k + Fm−kLk , we have 2

[[
m
k

]]
F

Fm =[[
m
k

]]
F

FkLm−k +

[[
m
k

]]
F

Fm−kLk

=

[[
m− 2
k − 2

]]
F

FmLm−k +

[[
m− 2
k

]]
F

FmLk. Thus

2

[[
m
k

]]
F

= Lk

[[
m− 2
k

]]
F

+ Lm−k

[[
m− 2
k − 2

]]
F

, as required. 2

Using lemma 3.4 and applying the same logic of lemma 3.3, the following
result can be proved easily.

Lemma 3.5.
[[
m
k

]]
F

=
∑bm−k

2 c
j=1

Lj−1
k Lm−k−2(j−1)

2j

[[
m− 2j
k − 2

]]
F

+
(
Lk
2

)bm−k
2 cA;

where A =


1;when m and k both are even or odd integers[[

k + 1
k

]]
F

; otherwise

To illustrate the result, we consider m = 10 and k = 3. Then
[[
m
k

]]
F

=∑bm−k
2 c

j=1

Lj−1
k Lm−k−2(j−1)

2j

[[
m− 2j
k − 2

]]
F

+
(
Lk
2

)bm−k
2 cA

=
∑3

j=1

Lj−1
3 L7−2(j−1)

2j

[[
10− 2j

3

]]
F

+
(
L3

2

)3 [[4
3

]]
F

= L7

2

[[
8
1

]]
F

+ L3L5

22

[[
6
1

]]
F

+
L2
3L3

23

[[
4
1

]]
F

+
L3
3

23

[[
4
3

]]
F

=
(
29
2
× 252

65

)
+
(
4×11
22
× 24

10

)
+
(

43

23

) (
3
2
+ 3

2

)
= 1386

13
=

[[
10
3

]]
F

, as expected.

In the following section we find the bounds of these numbers.
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3.2 Bounds of double Fibonomial numbers:
The Binet formula for the Fibonacci number is given by Fn = αn−βn

α−β ; where

α = 1+
√
5

2
and β = 1−

√
5

2
. The following theorem gives us the bounds of double

Fibonomial numbers in terms of α.

Theorem 3.3. For χ (n) =
{
0;when n is even
1;when n is odd

,

α
(k−χ(k))(m−k−χ(m(m−k−1)−1))

2 ≤
[[
m
k

]]
F

≤ α
(k+χ(k))(m−k+χ(m(m−k−1)−1))

2 .

Proof. It is well-known that αn−2 ≤ Fn ≤ αn−1; for all n ≥ 1.
Then it is easy to observe that

Fm−2t
F2t+2

≤ αm−4t−1 (5)

and
Fm−2t
F2t+2

≥ αm−4t−3 (6)

Here we consider the four cases depending on the parity of m and k. When both
m and k are even, using the definition of double Fibonomial numbers and (5), we
have[[
m
k

]]
F

= m!!F
k!!F×(m−k)!!F

= Fm×Fm−2×···×Fm−k+2

F2×F4×···×Fk

≤ αm−1 × αm−5 × · · · × α(m−2k+3) = α
k(m−k+1)

2

Thus
[[
m
k

]]
F

≤ α
k(m−k+1)

2 .

Again using (6) in the definition of double Fibonomial number, we get[[
m
k

]]
F

≥ αm−3 × αm−7 × · · · × αm−2k+1 = α
k(m−k−1)

2 .

This shows that
[[
m
k

]]
F

≥ α
k(m−k−1)

2 . Thus when m and n both are even, we

have

α
k(m−k−1)

2 ≤
[[
m
k

]]
F

≤ α
k(m−k+1)

2 .

Considering χ (n) =
{
0;when n is even
1;when n is odd

, this result can be written as

α
(k−χ(k))(m−k−χ(m(m−k−1)−1))

2 ≤
[[
m
k

]]
F

≤ α
(k+χ(k))(m−k+χ(m(m−k−1)−1))

2 .
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The required result can be proved using the similar technique for all the remaining
cases.

To illustrate it, we consider m = 9 and k = 4. Then
[[
m
k

]]
F

= 442
3
.

Also, α
(k−χ(k))(m−k−χ(m(m−k−1)−1))

2 = α
k(m−k−1)

2 = α8 = 46.97

and α
(k+χ(k))(m−k+χ(m(m−k−1)−1))

2 = α
k(m−k+1)

2 = α12 = 321, which shows that

α
(k−χ(k))(m−k−χ(m(m−k−1)−1))

2 ≤
[[
m
k

]]
F

≤ α
(k+χ(k))(m−k+χ(m(m−k−1)−1))

2 .

4 Double Fibonomial numbers and Fibonacci num-
bers:

By [1], it is known that a primitive divisor of a Fibonacci number Fn is any
prime integer p such that p | Fn but p - Fm; where m < n. Also, primitive
divisor theorem says that for n ≥ 13, every Fn has a primitive divisor. We use this
result to prove many interesting relations between generalized double Fibonomial
numbers and Fibonacci numbers.

4.1 Double Fibonomial number as a power of Fibonacci num-
ber:

In literature, there are many results involving Fibonomial numbers and Fi-

bonacci numbers. From (4), it is clear that
[[
m
k

]]
F

= Fm for k = 2. Thus, the

Diophantine equation
[[
m
k

]]
F

= Fn will always have a trivial solution (m, k, n) =

(m, 2,m). Following result claims that there is no other solution for the consid-
ered Diophantine equation.

Lemma 4.1. The Diophantine equation
[[
m
k

]]
F

= Fn has no solution for k > 2.

Proof. We know that except for
[[

6
3

]]
F

= 6, which is not a Fibonacci

number, and trivial cases,
[[
m
k

]]
F

is an integer only when both m and k are even

integers. Thus,
[[
m
k

]]
F

= Fn implies

Fm × Fm−2 × · · · × Fm−k+2

Fk × Fk−2 × · · · × F2

= Fn (7)
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If we consider n ≥ 13 and n > m, then by the primitive divisor theorem, there
exists a prime p such that p | Fn but p - Fm. That is, (7) has no solution possible.
Similarly, for m ≥ 13 and m > n, primitive divisor theorem implies that (7) has
no solution.
Thus, we can narrow down the range of m and n as max (m,n). A quick look at

the Table 2 reveals that for k > 2, the Diophantine equation
[[
m
k

]]
F

= Fn has no

solution. 2
The following result can be proved through the similar arguments.

Theorem 4.1. For any positive integer t, the Diophantine equation
[[
m
k

]]
F

= F t
n

has no solution for k > 2.

Though the double Fibonomial numbers do not possess the value of a Fi-
bonacci number except for the trivial cases, they do stand in the neighborhood
of Fibonacci number. We present this fact in the following final result.

Theorem 4.2. The only solutions of the Diophantine equation
[[
m
k

]]
F

± 1 = Fn

are (m, k, n) = (3, 1, 2) , (3, 2, 2) , (4, 2, 3) , (6, 3, 5) , (8, 4, 10) for ′+′ case and
(3, 1, 4) , (3, 2, 4) for ′−′ case.

Poof. From the Table 2, it is easy to observe that the Diophantine equation[[
m
k

]]
F

± 1 = Fn has solution (m, k, n) = (3, 1, 2) , (3, 2, 2) , (4, 2, 3) for ′+′

case and (m, k, n) = (3, 1, 4) , (3, 2, 4) for the ′−′ case for m ≤ 5. Now for m >
5, when m is an odd integer, double Fibonomial number will not be an integer.

And when m is an even integer such that k is an odd integer,
[[

6
3

]]
F

= 6 is the

only possibility integer value of double Fibonomial. Thus (m, k, n) = (6, 3, 5)
will be a solution of the given Diophantine equation for ′+′ case.

Now, we can narrow down our possible solution to the even integers for both
m and k. Since FaLb = Fa+b+(−1)b Fa−b, the different factorizations for Fn± 1
depending on the class of nmodulo4 can be written as:

F4l + 1 = F2l−1L2l+1 F4l − 1 = F2l+1L2l−1

F4l+1 + 1 = F2l+1L2l F4l+1 − 1 = F2lL2l+1

F4l+2 + 1 = F2l+2L2l F4l+2 − 1 = F2lL2l+2

F4l+3 + 1 = F2l+1L2l+2 F4l+3 − 1 = F2l+2L2l+1
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Therefore, the considered Diophantine equation, which can also be written as[[
m
k

]]
F

= Fn ∓ 1, can be factorized for the ′+′ case as[[
m
k

]]
F

= F2l+1L2l−1

[[
m
k

]]
F

= F2lL2l+1

[[
m
k

]]
F

= F2lL2l+2[[
m
k

]]
F

= F2l+2L2l+1;

and for the ′−′ case as[[
m
k

]]
F

= F2l−1L2l+1

[[
m
k

]]
F

= F2l+1L2l

[[
m
k

]]
F

= F2l+2L2l[[
m
k

]]
F

= F2l+1L2l+2;

It is obvious that all these eight cases can be handled in the similar man-

ner. Thus, we shall only focus on the proof of the first case. Now,
[[
m
k

]]
F

=

F2l+1L2l−1 implies Fm×Fm−2×···×Fm−k+2

Fk×Fk−2×···×F2
= F2l+1L2l−1. Thus, we have

Fm × Fm−2 × · · · × Fm−k+2 = F2l+1 × L2l−1 × Fk × Fk−2 × · · · × F2

Since F2n = FnLn, we write L2l−1 =
F4l−2

F2l−1
. Thus

Fm × Fm−2 × · · · × Fm−k+2 × F2l−1 = F2l+1 × F4l−2 × Fk × Fk−2 × · · · × F2.

Since l =
⌊
n
4

⌋
> 2, we have4l − 2 > 2l + 1. Therefore, from primitive divisor

theorem, we can write m = 4l − 2. Thus,

Fm−2 × · · · × Fm−k+2 × F2l−1 = F2l+1 × Fk × Fk−2 × · · · × F2 (8)

If we assume that m ≥ max {14, k + 1}, we have m − 2 ≥ 12. So, again by
primitive divisor theorem, we get m − 2 = max {2l + 1, k}. But m − 2 =
4l − 4 > 2l + 1, which implies m − 2 = k and from (8), we get F2l−1 = F2l+1,
which is not possible. Thus, we only need to consider the range 4 ≤ k ≤ 10 and
k + 2 ≤ m ≤ 12.

Again, from Table 2, we can easily claim that the only solution of the Diophan-

tine equation
[[
m
k

]]
F

± 1 = Fn are (m, k, n) = (3, 1, 2) , (3, 2, 2) , (4, 2, 3) ,

(6, 3, 5) , (8, 4, 10) for ′+′ case and (3, 1, 4) , (3, 2, 4) for ′−′ case. 2

5 Conclusion:
In this paper, we have defined double Fibonorial numbers and double Fibono-

mial numbers. We have proved many properties for these numbers including re-
cursive equations in terms of Fibonacci numbers and Lucas numbers. We have
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extended the star of David theorem for double Fibonomial numbers and also dis-
cussed various Diophantine equations related to double Fibonomial numbers and
Fibonacci numbers.
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The notions of intuitionistic Fuzzy Wajsberg Implicative ideal (𝐹𝑊𝐼 –ideal) 

and intuitionistic fuzzy lattice ideal of residuated Wajsberg algebras are 

introduced. Also, we show that every intuitionistic 𝐹𝑊𝐼- ideal of residuated 

lattice Wajsberg algebra is an intuitionistic fuzzy lattice ideal of residuated 
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1. Introduction 
The concept of fuzzy set was introduced by Zadeh [13] in 1935.        

The concept of intuitionistic fuzzy set was introduced by Atanassov [1, 2].   

The idea of Wajsberg algebra was introduced by Mordchaj Wajsberg [10].  

The author [8] introduced the notions of FWI-ideals and investigated their 

properties with illustrations.  

In the present paper, we introduce the notions of intuitionistic          

𝐹𝑊𝐼 –ideal and intuitionistic fuzzy lattice ideal of residuated lattice Wajsberg 

algebras. Also, we show that every intuitionistic 𝐹𝑊𝐼–ideal of residuated 

lattice Wajsberg algebra is an intuitionistic fuzzy lattice ideal of residuated 

lattice Wajsberg algebra. Further, we verify its converse part. 

 

2. Preliminaries 

In this section, we recall some basic definitions and properties which 

are helpful to develop our main results. 

Definition 2.1[3]. Let (𝐴, →,∗ ,1) bean algebra with a binary operation          

 “ → " and a quasi-complement  “ ∗  ”.  Then it is called a Wajsberg algebra, if 

the following axioms are satisfied for all 𝑥, 𝑦, 𝑧 ∈ 𝐴, 

(i) 1 → 𝑥 = 𝑥 

(ii) (𝑥 → 𝑦) → 𝑦 = ((𝑦 → 𝑧) → (𝑥 → 𝑧)) = 1 

(iii) (𝑥 → 𝑦) → 𝑦 = (𝑦 → 𝑥) → 𝑥 

(iv) (𝑥∗ → 𝑦∗) → (𝑦 → 𝑥) = 1.   

Definition 2.2[3].Let(𝐴, →,∗ ,1) be a Wajsberg algebra. Then the following 

axioms are satisfied for all 𝑥, 𝑦, 𝑧 ∈ 𝐴, 
(i) 𝑥 → 𝑥 = 1 

(ii) If (𝑥 → 𝑦) = (𝑦 → 𝑥) = 1 then 𝑥 = 𝑦 

(iii) 𝑥 → 1 = 1 

(iv) (𝑥 → (𝑦 → 𝑥)) = 1 

(v) If (𝑥 → 𝑦) = (𝑦 → 𝑧) = 1 then 𝑥 → 𝑧 = 1 

(vi) (𝑥 → 𝑦) → ((𝑧 → 𝑥) → (𝑧 → 𝑦)) = 1 

(vii) 𝑥 → (𝑦 → 𝑧) = 𝑦 → (𝑥 → 𝑧) 

(viii) 𝑥 → 0 = 𝑥 → 1∗ = 𝑥∗ 

(ix) (𝑥∗)∗ = 𝑥 

(x) (𝑥∗ → 𝑦∗) = 𝑦 → 𝑥. 

Definition 2.3[3]. Let (𝐴, →,∗ ,1) be a Wajsberg algebra. Then it is called a 

lattice Wajsberg algebra, if the following axioms are satisfied for all 𝑥, 𝑦 ∈ 𝐴, 
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(i) The partial ordering " ≤ " on a Wajsberg algebra such that 𝑥 ≤ 𝑦 if and 

only if 𝑥 → 𝑦 = 1 

(ii) 𝑥 ∨ 𝑦 = (𝑥 → 𝑦) → 𝑦  
(iii) 𝑥 ∧ 𝑦 = ((𝑥∗ → 𝑦∗) → 𝑦∗)∗.  

Thus, (𝐴, ∨, ∧, ∗ ,0 , 1)  is a lattice Wajsberg algebra with lower 

bound 0 and upper bound 1. 

Proposition 2.4[3].Let(𝐴, →, ∗ ,1) be a lattice Wajsberg algebra. Then the 

following axioms are satisfied for all 𝑥, 𝑦, 𝑧 ∈ 𝐴, 

(i) If 𝑥 ≤ 𝑦 then 𝑥 → 𝑧 ≥ 𝑦 → 𝑧 and 𝑧 → 𝑥 ≤ 𝑧 → 𝑦 

(ii) 𝑥 ≤ 𝑦 → 𝑧 if and only 𝑖𝑓 𝑦 ≤ 𝑥 → 𝑧 

(iii) (𝑥 ∨  𝑦)∗ = (𝑥∗˄ 𝑦∗) 

(iv) (𝑥 ∧  𝑦)∗ = (𝑥∗ ∨  𝑦∗) 

(v) (𝑥 ∨  𝑦) → 𝑧 = (𝑥 → 𝑧)  ∧  (𝑦 → 𝑧) 

(vi) 𝑥 → (𝑦 ∧  𝑧) = (𝑥 → 𝑦) ∧  (𝑥 → 𝑧) 

(vii) (𝑥 → 𝑦) ∨ (𝑦 → 𝑥) = 1 

(viii) 𝑥 → (𝑦 ∨ 𝑧) = (𝑥 → 𝑦) ∨  (𝑥 → 𝑧) 

(ix) (𝑥 ∧  𝑦) → 𝑧 = (𝑥 → 𝑧)  ∨  (𝑦 → 𝑧) 

(x) (𝑥 ∧  𝑦) ∨ 𝑧 = (𝑥 ∨  𝑧)  ∧  (𝑦 ∨  𝑧) 

(xi) (𝑥 ∧  𝑦) → 𝑧 = (𝑥 → 𝑦) → (𝑥 → 𝑧). 

Definition 2.5[11]. Let(𝐴, ∨, ∧, ⊗, →, 0, 1) be an algebra of type (2, 2, 2, 2, 

0, 0). Then it is called a residuated lattice, if the following axioms are satisfied 

for all 𝑥, 𝑦, 𝑧 ∈ 𝐴, 

(i) (𝐴, ∨, ∧, 0, 1) is a bounded lattice, 

(ii) (𝐴,⊗, 1) is commutative monoid, 

(iii)  𝑥 ⊗ y ≤ 𝑧 if and only if   𝑥 ≤ 𝑦 → 𝑧. 

Definition 2.6[3]. Let (𝐴, ∨, ∧, ∗, →, 1) be a lattice Wajsberg algebra. If a 

binary operation “ ⊗ " on 𝐴 satisfies 𝑥 ⊗ 𝑦 = (𝑥 → 𝑦∗)∗ for all 𝑥, 𝑦 ∈ 𝐴. 
Then (𝐴, ∨, ∧, ⊗, →, ∗, 0, 1) is called a residuated lattice Wajsberg 

algebra. 
Definition 2.7[4].Let 𝐴 be a lattice Wajsberg algebra. Let 𝐼 be a non-empty 

subset of 𝐴, then 𝐼 is called aWI-ideal of lattice Wajsberg algebra 𝐴, if the 

following axioms are satisfied for all𝑥, 𝑦 ∈ 𝐴, 

(i) 0 ∈ 𝐼 

(ii) (𝑥 → 𝑦)∗ ∈ 𝐼and 𝑦 ∈ 𝐼 imply 𝑥 ∈ 𝐼 . 

Definition 2.8[4].Let 𝐿  be a lattice. An ideal 𝐼 of 𝐿 is a non-empty subset 

of  𝐿 is called a lattice ideal, if the following axioms are satisfied                              

for all 𝑥, 𝑦 ∈ 𝐴, 

(i) 𝑥 ∈ 𝐼, 𝑦 ∈ 𝐿 and 𝑦 ≤ 𝑥 imply 𝑦 ∈ 𝐼 
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(ii) 𝑥, 𝑦 ∈ 𝐼 implies 𝑥 ∨ 𝑦 ∈ 𝐼. 

Definition 2.9[7]. Let 𝐴 be a residuated lattice Wajsberg algebra and  𝐼 be a 

non-empty subset of 𝐴.Then 𝐼 is called a 𝑊𝐼-ideal of residuated lattice 

Wajsberg algebra 𝐴, if the following axioms are satisfiedfor all 𝑥, 𝑦 ∈ 𝐴, 

(i) 0 ∈ 𝐼 

(ii) 𝑥 ⊗ 𝑦 ∈ 𝐼 and 𝑦 ∈ 𝐼 imply 𝑥 ∈ 𝐼  
(iii) (𝑥 → 𝑦)∗ ∈ 𝐼 and  𝑦 ∈ 𝐼 imply 𝑥 ∈ 𝐼. 

Definition 2.10[13].Let 𝐴 be a set. A function 𝜇: 𝐴 → [0, 1] is called a fuzzy 

subset on 𝐴 for each 𝑥 ∈ 𝐴, the value of 𝜇(𝑥) describes a degree of 

membership of 𝑥 in 𝜇. 

Definition 2.11[5].Let 𝐴 be a lattice Wajsberg algebra. Then the fuzzy subset 

𝜇 of 𝐴 is called a fuzzy 𝑊𝐼-ideal of  𝐴, if the following axioms are satisfied 

for all 𝑥, 𝑦 ∈ 𝐴, 

(i) 𝜇(0) ≥ 𝜇(𝑥) 

(ii) 𝜇(𝑥) ≥ min{ 𝜇((𝑥 → 𝑦)∗), 𝜇(𝑦)}. 

Definition 2.12[5].A fuzzy subset𝜇 of a lattice Wajsberg algebra 𝐴 is called a 

fuzzy lattice ideal if for all 𝑥, 𝑦 ∈ 𝐴, 
(i) If  𝑦 ≤ 𝑥 then 𝜇(𝑦) ≥ 𝜇(𝑥) 

(ii) 𝜇(𝑥 ∨ 𝑦) ≥ min{𝜇(𝑥), 𝜇(𝑦)}. 

Definition 2.13[8]. Let 𝐴 be a residuated lattice Wajsberg algebra. Then the 

fuzzy subset 𝜇 of 𝐴 is called a 𝐹𝑊𝐼-ideal of residuated lattice Wajsberg 

algebra 𝐴, if the following axioms are satisfied for all 𝑥, 𝑦 ∈ 𝐴, 

(i) 𝜇(0) ≥ 𝜇(𝑥) 

(ii) 𝜇(𝑥) ≥ min{ 𝜇(𝑥 ⊗ 𝑦), 𝜇(𝑦)} 

(iii) 𝜇(𝑥) ≥ min{ 𝜇((𝑥 → 𝑦)∗), 𝜇(𝑦)}. 

Definition 2.14[2]. An intuitionistic fuzzy subset 𝑆 is a non-empty set 𝑋 is an 

object having the form 𝑆 = {(𝑥, 𝜇𝑠(𝑥), 𝛾𝑠(𝑥))|𝑥 ∈ 𝑋} = (𝜇𝑠, 𝛾𝑠)where the 

functions 𝜇𝑠(𝑥): 𝑋 → [0, 1]denote the degree of membership and the degree of 

non-membership respectively and 0 ≤ 𝜇𝑠(𝑥) + 𝛾𝑠(𝑥) ≤ 1 for any 𝑥 ∈ 𝑋.  

Definition 2.15[13]. If 𝜇 and ѵ are fuzzy sets in 𝐴, define 𝜇 ≤ ѵ if and only if 

𝜇(𝑥) ≤ ѵ(𝑥) for all 𝑥 ∈ 𝐴.  

Definition 2.16[13]. The level set 𝜇𝑡 defined by 𝜇𝑡 = {𝑥 ∈ 𝐴/𝜇(𝑥) ≥ 𝑡}, 
where𝑡 ∈ [0, 1], then 𝜇𝑡 is also denoted by 𝑈(𝜇; 𝑡). 
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3. Properties of Intuitionistic FWI-ideal of a 

residuated lattice Wajsberg algebra 

In this section, we introduce the concept of an intuitionistic FWI-ideal 

and intuitionistic fuzzy lattice ideals. Also, we obtain some properties of an 

intuitionistic 𝐹𝑊𝐼-ideal. 

Definition 3.1. Let 𝐴 be a residuated lattice Wajsberg algebra.                        

An intuitionistic fuzzy set  𝑆 = (𝜇𝑠, 𝛾𝑠) of 𝐴 is called an intuitionistic         

FWI-ideal of residuated lattice Wajsberg algebra 𝐴 if it satisfies the following 

inequalities for all 𝑥, 𝑦 ∈ 𝐴, 

(i) 𝜇𝑠(0) ≥ 𝜇𝑠(𝑥) and 𝛾𝑠(0) ≤ 𝛾𝑠(𝑥) 

(ii) 𝜇𝑠(𝑥) ≥ min {𝜇𝑠(𝑥 ⊗ 𝑦), 𝜇𝑠(𝑦)}  
(iii) 𝛾𝑠(𝑥) ≤ max {𝛾𝑠(𝑥 ⊗ 𝑦), 𝛾𝑠(𝑦)}  
(iv) 𝜇𝑠(𝑥) ≥ min {𝜇𝑠((𝑥 → 𝑦)∗, 𝜇𝑠(𝑦) 

(v) 𝛾𝑠(𝑥) ≤ max {𝛾𝑠((𝑥 → 𝑦)∗, 𝛾𝑠(𝑦)} . 

Example 3.2. Consider a set 𝐴={0, 𝑎, 𝑏, 𝑐, 𝑑,𝑟, 𝑠, 𝑡, 1}. Define a partial 

ordering  “≤” on 𝐴, such that 0 ≤ 𝑎 ≤ 𝑏 ≤ 𝑐 ≤ 𝑑 ≤ 𝑟 ≤ 𝑠 ≤ 𝑡 ≤ 1  with  a 

binary operations“ ⊗ ”and" → ”and a quasi-complement " ∗ "on 𝐴  as in 

following tables 3.1 and 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1: Complement                             Table 3.2: Implication 

Define ∨ and ∧ operations on 𝐴 as follows:                    

 (𝑥 ∨  𝑦) = (𝑥 → 𝑦) → 𝑦, 
 (𝑥 ∧  𝑦) = (𝑥∗ → 𝑦∗) → 𝑦∗)∗,  

𝑥 𝑥∗ 

0 1 

𝑎 𝑡 

𝑏 𝑏 

𝑐 𝑟 

𝑑 𝑑 

𝑟 𝑐 

𝑠 𝑏 

𝑡 𝑎 

1 0 

→ 0 𝑎 𝑏 𝑐   𝑑 𝑟 𝑠 𝑡 1 

0 1 1 1 1 1 1 1 1 1 

𝑎 𝑡 1 1 𝑡 1 1 𝑡 1 1 

𝑏 𝑏 𝑡 1 𝑠 𝑡 1 𝑠 𝑡 1 

𝑐 𝑟 𝑟 𝑟 1 1 1 1 1 1 

𝑑 𝑑 𝑟 𝑟 𝑡 1 1 𝑡 1 1 

𝑟 𝑐 𝑑 𝑟 𝑠 𝑡 1 𝑠 𝑡 1 

𝑠 𝑏 𝑏 𝑏 𝑟 𝑟 𝑟 1 1 1 

𝑡 𝑎 𝑏 𝑏 𝑑 𝑟 𝑟 𝑡 1 1 

1 0 𝑎 𝑏 𝑐   𝑑 𝑟 𝑠 𝑡 1 
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 𝑥 ⊗ 𝑦 = (𝑥 → 𝑦∗)∗ for all 𝑥, 𝑦 ∈ 𝐴. 
Then, 𝐴 is a residuated lattice Wajsberg algebra. 

Consider an intuitionistic fuzzy set 𝑆 = (𝜇𝑠, 𝛾𝑠) on 𝐴 as,  

 

 𝜇𝑠(𝑥) = {
1      if  𝑥 ∈ (0, 𝑞)    for all 𝑥 ∈ 𝐴
0.54     otherwise   for all 𝑥 ∈ 𝐴

; 

 

  𝛾𝑠(𝑥) = {
0  if  𝑥 ∈ (0, 𝑞)        for all 𝑥 ∈ 𝐴
0.36    otherwise    for all 𝑥 ∈ 𝐴

 

Then, 𝑆 is an intuitionistic FWI-ideal of 𝐴. 
In the same Example 3.2, we consider an intuitionistic fuzzy set 𝑆 = (𝜇𝑠, 𝛾𝑠) 

on 𝐴 as,       

 𝜇𝑠(𝑥) = {1      if  𝑥 ∈ {0, 𝑎, 𝑏}     for all 𝑥 ∈ 𝐴
0.55     otherwise        for all 𝑥 ∈ 𝐴

;  

 

  𝛾𝑠(𝑥) = {
0  if  𝑥 ∈ {0, 𝑎, 𝑏}        for all 𝑥 ∈ 𝐴
0.42    otherwise       for all 𝑥 ∈ 𝐴

 

Then, 𝑆 is not an intuitionistic 𝐹𝑊𝐼-ideal of 𝐴.  

Since 𝜇𝑠(𝑥) ≱ min {𝜇𝑠(𝑠 ⊗ 𝑏), 𝜇𝑠(𝑏)} and 𝛾𝑠(𝑥) ≰ max{𝛾𝑠(𝑠 ⊗ 𝑏), 𝛾𝑠(𝑏)}. 

Proposition 3.3. Every intuitionistic 𝐹𝑊𝐼-ideal 𝑆 = (𝜇𝑠, 𝛾𝑠) of residuated 

lattice Wajsberg algebra 𝐴 is an intuitionistic monotonic. That is, if  𝑥 ≤ 𝑦, 

then 𝜇𝑠(𝑥) ≥ 𝜇𝑠(𝑦) and   𝛾𝑠(𝑥) ≤ 𝛾𝑠(𝑦). 

Proof. Let 𝑆 = (𝜇𝑠, 𝛾𝑠) be an intuitionistic 𝐹𝑊𝐼-ideal of 𝐴. 
Let 𝑥, 𝑦 ∈ 𝐴, 𝑥 ≤ 𝑦. 
Then  𝑥 ⊗ 𝑦 = (𝑥 → 𝑦∗)∗                                         [From the definition 2.6]               

          =  (𝑥 → 𝑥)∗ = 1∗ = 0                         [From (i) of definition 2.2]      

𝜇𝑠(𝑥) ≥ min {𝜇𝑠(𝑥 ⊗ 𝑦), 𝜇𝑠(𝑦)}                             [From (ii) of definition 3.1] 

We have  𝜇𝑠(𝑥) ≥ 𝜇𝑠(𝑦) 

Now,𝛾𝑠(𝑥) ≤ max{𝛾𝑠(𝑥 ⊗ 𝑦), 𝛾𝑠(𝑦)}                     [From (iii) of definition 3.1] 

       = max{𝛾𝑠(0), 𝛾𝑠(𝑦)} = 𝛾𝑠(𝑦)               [From the definition 2.6]                                  

Hence  𝛾𝑠(𝑥) ≤ 𝛾𝑠(𝑦) 

And      𝜇𝑠(𝑥) ≥ min {𝜇𝑠(𝑥 → 𝑦)∗, 𝜇𝑠(𝑦)}              [From (iv) of definition 3.1] 

           = min{𝜇𝑠(0), 𝜇𝑠(𝑦)} = 𝜇𝑠(𝑦)          [From (ii) of definition 2.7] 

We have 𝜇𝑠(𝑥) ≥ 𝜇𝑠(𝑦) 

Now, 𝛾𝑠(𝑥) ≤ max{𝛾𝑠(𝑥 → 𝑦)∗, 𝛾𝑠(𝑦)}                   [From (v) of definition 3.1] 

        = max{𝛾𝑠(0), 𝛾𝑠(𝑦)} = 𝛾𝑠(𝑦)               [From (ii) of definition 2.7] 

Therefore,  𝛾𝑠(𝑥) ≤ 𝛾𝑠(𝑦). ∎ 

Example 3.4. Let 𝐴 be a residuated lattice Wajsberg algebra defined in 

example 3.2, define an intuitionistic fuzzy set 𝑆 = (𝜇𝑠, 𝛾𝑠) of 𝐴 as follows, 
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(i) 𝜇𝑠(0) = 𝜇𝑠(𝑐) = 1 

(ii) 𝜇𝑠(𝑥) = 𝑚 for any 𝑥 ∈ {𝑎, 𝑏, 𝑐, 𝑑, 𝑟, 𝑠, 𝑡, 1} 

(iii) 𝛾𝑠(0) = 𝛾𝑠(𝑐) = 0 

(iv) 𝛾𝑠(𝑥) = 𝑛 for any 𝑥 ∈ {𝑎, 𝑏, 𝑐, 𝑑, 𝑟, 𝑠, 𝑡, 1}. 

Where 𝑚, 𝑛 ∈ [0, 1] and 𝑚 + 𝑛 ≤ 1. Then 𝑆 = (𝜇𝑠, 𝛾𝑠) is an intuitionistic 

𝐹𝑊𝐼-ideal of 𝐴. 

Example 3.5. Consider a set𝐴 = {𝑎, 𝑏, 𝑝, 𝑞, 𝑐, 𝑑, 1}. Define a partial 

ordering  “≤” on 𝐴, such that 0 ≤ 𝑎 ≤ 𝑏 ≤ 𝑝 ≤ 𝑞 ≤ 𝑐 ≤ 𝑑 ≤ 1 with a binary 

operations“ ⊗ ”and " → ”and a quasi-complement " ∗ "on 𝐴  as in following 

tables 3.3 and 3.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.3: Complement                       Table 3.4: Implication 

Define ∨ and ∧ operations on 𝐴 as follows:              

 (𝑥 ∨  𝑦) = (𝑥 → 𝑦) → 𝑦, 
 (𝑥 ∧  𝑦) = (𝑥∗ → 𝑦∗) → 𝑦∗)∗, 
 𝑥 ⊗ 𝑦 = (𝑥 → 𝑦∗)∗ for all 𝑥, 𝑦 ∈ 𝐴. 
Then, 𝐴 is a residuated lattice Wajsberg algebra. 

Consider an intuitionistic fuzzy set 𝑆 = (𝜇𝑠, 𝛾𝑠) on 𝐴 as,  

𝜇𝑠(𝑥) = {
1      if  𝑥 ∈ (0, 𝑞)    for all 𝑥 ∈ 𝐴
0.54     otherwise   for all 𝑥 ∈ 𝐴

; 

 

 𝛾𝑠(𝑥) = {
0  if  𝑥 ∈ (0, 𝑞)        for all 𝑥 ∈ 𝐴
0.36    otherwise    for all 𝑥 ∈ 𝐴

 

Then, 𝑆 is an intuitionistic 𝐹𝑊𝐼-ideal of 𝐴. 
In the same Example 3.5, we consider an intuitionistic fuzzy set 𝑆 = (𝜇𝑠, 𝛾𝑠) 

on 𝐴 as,       

𝑥 𝑥∗ 

0 1 

𝑎 𝑏 

𝑏 𝑎 

𝑝 0 

𝑞 0 

𝑐 0 

𝑑 0 

1 0 

→ 0 𝑎 𝑏 𝑝 𝑞 𝑐 𝑑 1 

0 1 1 1 1 1 1 1 1 

𝑎 𝑏 1 𝑏 1 1 1 1 1 

𝑏 𝑎 𝑎 1 1 1 1 1 1 

𝑝 0 𝑎 𝑏 1 1 1 1 1 

𝑞 0 𝑎 𝑏 𝑝 1 1 1 1 

𝑐 0 𝑎 𝑏 𝑝 𝑑 1 𝑑 1 

𝑑 0 𝑎 𝑏 𝑝 𝑐 𝑐 1 1 

1 0 𝑎 𝑏 𝑝 𝑞 𝑐 𝑑 1 
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 𝜇𝑠(𝑥) = {1      if  𝑥 ∈ {0, 𝑎, 𝑏}     for all 𝑥 ∈ 𝐴
0.55     otherwise        for all 𝑥 ∈ 𝐴

;     

 

 𝛾𝑠(𝑥) = {
0  if  𝑥 ∈ {0, 𝑎, 𝑏}        for all 𝑥 ∈ 𝐴
0.42    otherwise       for all 𝑥 ∈ 𝐴

 

Then, 𝑆 is not an intuitionistic 𝐹𝑊𝐼-ideal of 𝐴.  

Since 𝜇𝑠(𝑥) ≱ min {𝜇𝑠(𝑐 ⊗ 𝑎), 𝜇𝑠(𝑎)} and 𝛾𝑠(𝑥) ≰ max{𝛾𝑠(𝑐 ⊗ 𝑎), 𝛾𝑠(𝑎)}. 

Proposition 3.6. Let 𝑆 = (𝜇𝑠, 𝛾𝑠) be an intuitionistic 𝐹𝑊𝐼-ideal of residuated 

lattice Wajsberg algebra 𝐴. For any 𝑥, 𝑦, 𝑧 ∈ 𝐴 which satisfies 𝑥 ≤ 𝑦∗ → 𝑧 then 

𝜇𝑠(𝑥) ≥ min {𝜇𝑠(𝑦), 𝜇𝑠(𝑧)} and 𝛾𝑠(𝑥) ≤ max{𝛾𝑠(𝑦), 𝛾𝑠(𝑧)}. 

Proof. Let𝑆 = (𝜇𝑠, 𝛾𝑠) be an intuitionistic 𝐹𝑊𝐼-ideal of 𝐴. If  𝑥 ≤ 𝑦∗ → 𝑧 

Then, we have 1 = 𝑥 → (𝑦∗ → 𝑧) = 𝑧∗ → (𝑥 → 𝑦) 

= (𝑥 → 𝑦)∗ → 𝑧 for all 𝑥, 𝑦, 𝑧 ∈ 𝐴                      [From (x) of definition 2.2] 

And   ((𝑥 → 𝑦)∗ → 𝑧)∗) = 0.  

It follows that, 

𝜇𝑠(𝑥) ≥ min{𝜇𝑠(𝑥 ⊗ 𝑦), 𝜇𝑠(𝑦)}                        [From (ii) of definition 3.1] 

 ≥ min {min {𝜇𝑠((𝑥 ⊗ 𝑦) → 𝑧), 𝜇𝑠(𝑧)}, 𝜇𝑠(𝑦)} 

= min{min{𝜇𝑠((0) → 𝑧), 𝜇𝑠(𝑧)} , 𝜇𝑠(𝑦)}          [From the definition 2.6] 

 = min{min{𝜇𝑠(0), 𝜇𝑠(𝑧)} , 𝜇𝑠(𝑦)} = min{𝜇𝑠(𝑦), 𝜇𝑠(𝑧)} 

                                                                           [From (ii) of definition 3.1] 

We have  𝜇𝑠(𝑥) ≥ min {𝜇𝑠(𝑦), 𝜇𝑠(𝑧)}  for all 𝑥, 𝑦, 𝑧 ∈ 𝐴 

Now,𝛾𝑠(𝑥) ≤ max {max{𝛾𝑠((𝑥 ⊗ 𝑦), 𝛾𝑠(𝑦))} 

 ≤ max {max{ 𝛾𝑠 (((𝑥 ⊗ 𝑦) → 𝑧), 𝛾𝑠(𝑧)} , 𝛾𝑠(𝑦)} 

 = max{max{𝛾𝑠((0) → 𝑧), 𝛾𝑠(𝑧)} , 𝛾𝑠(𝑦)} [From the definition 2.6] 

 = max {max{𝛾𝑠(0), 𝛾𝑠(𝑧)} , 𝛾𝑠(𝑦)} 

 = max {𝛾𝑠(𝑦), 𝛾𝑠(𝑧)}                                [From (iii) of definition 3.1] 

Hence 𝛾𝑠(𝑥) ≤ max {𝛾𝑠(𝑦), 𝛾𝑠(𝑧)} for all 𝑥, 𝑦, 𝑧 ∈ 𝐴 

Now, 𝜇𝑠(𝑥) ≥ min{𝜇𝑠((𝑥 → 𝑦)∗), 𝜇𝑠(𝑦)}           [From (iv) of definition 3.1] 

        ≥ min{min{𝜇𝑠(𝑥 → 𝑦)∗ → 𝑧)∗) , 𝜇𝑠(𝑧)} , 𝜇𝑠(𝑦)} 

        = min {min{𝜇𝑠(0),  𝜇𝑠(𝑧)} , 𝜇𝑠(𝑦)} 

        = min {𝜇𝑠(𝑦), 𝜇𝑠(𝑧)}                        [From (ii) of definition 3.1] 

We have  𝜇𝑠(𝑥) ≥ min {𝜇𝑠(𝑦), 𝜇𝑠(𝑧)} for all 𝑥, 𝑦, 𝑧 ∈ 𝐴 

And 𝛾𝑠(𝑥) ≤ max{𝛾𝑠((𝑥 → 𝑦∗), 𝛾𝑠(𝑦))}             [From (v) of definition 3.1] 

      ≤ max {max{𝛾𝑠((𝑥 → 𝑦∗) → 𝑧)∗), 𝛾𝑠(𝑧)} , 𝛾𝑠(𝑦)}  

      = max {max{𝛾𝑠(0), 𝛾𝑠(𝑧)} , 𝛾𝑠(𝑦)} 

      = max {𝛾𝑠(𝑦), 𝛾𝑠(𝑧)}                          [From (iii) of definition 3.1] 

Hence, 𝛾𝑠(𝑥) ≤ max {𝛾𝑠(𝑦), 𝛾𝑠(𝑧)}  for all 𝑥, 𝑦, 𝑧 ∈ 𝐴.∎ 
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Definition 3.7. An intuitionistic fuzzy set 𝑆 = (𝜇𝑠, 𝛾𝑠) of residuated lattice 

Wajsberg algebra 𝐴 is called an intuitionistic fuzzy lattice ideal of 𝐴 if it 

satisfies the following axioms for all𝑥, 𝑦 ∈ 𝐴, 

(i) 𝑆 = (𝜇𝑠, 𝛾𝑠) is intuitionistic monotonic 

(ii) 𝜇𝑠(𝑥 ∨  𝑦) ≥ min{𝜇𝑠(𝑥), 𝜇𝑠(𝑦)} 

(iii) 𝛾𝑠(𝑥 ∨  𝑦) ≤ max{𝛾𝑠(𝑥), 𝛾𝑠(𝑦)}. 

Remark 3.8. In the Definition 3.7(ii) and (iii) can be equivalently replaced by   

𝜇𝑠(𝑥 ∨  𝑦) = min{𝜇𝑠(𝑥), 𝜇𝑠(𝑦)}  and 𝛾𝑠(𝑥 ∨  𝑦) = max {𝛾𝑠(𝑥), 𝛾𝑠(𝑦)} 

respectively by 𝛾. 

Example 3.9. Let 𝐴 be a residuated lattice Wajsberg algebra defined in the 

Example 3.2 and 𝑆 = (𝜇𝑠, 𝛾𝑠) be an intuitionistic fuzzy set of 𝐴 defined by 

                  𝜇𝑠(𝑥) = {1      if  𝑥 ∈ (0, 𝑑)   for all 𝑥 ∈ 𝐴
𝑚       otherwise    for all 𝑥 ∈ 𝐴

; 

𝛾𝑠(𝑥) = {0      if  𝑥 ∈ (0, 𝑑)   for all 𝑥 ∈ 𝐴
𝑛       otherwise    for all 𝑥 ∈ 𝐴

 

 

Where 𝑚, 𝑛 ∈ [0, 1] and 𝑚 + 𝑛 ≤ 1.                       [From the definition 3.11] 

Then, 𝑆 = (𝜇𝑠, 𝛾𝑠) is an intuitionistic fuzzy lattice ideal of residuated lattice 

Wajsberg   algebra 𝐴. 

Proposition 3.10. Let𝐴be a residuated lattice Wajsberg algebra. Every 

intuitionistic  𝐹𝑊𝐼-ideal of 𝐴 is an intuitionistic fuzzy lattice ideal of 𝐴. 

Proof. Let 𝑆 = (𝜇𝑠, 𝛾𝑠) be an intuitionistic fuzzy lattice ideal of 𝐴. 
Then we have 𝑆 = (𝜇𝑠, 𝛾𝑠) is intuitionistic monotonic.   [From proposition 3.6] 

Now ((𝑥 ∨  𝑦) → 𝑦)∗ = (((𝑥 → 𝑦) → 𝑦)) → 𝑦)∗   From (ii) of definition 2.3] 

= (𝑥 → 𝑦)∗ ≤ (𝑥∗)∗ for all  𝑥, 𝑦 ∈ 𝐴       [From (ix) of proposition 2.2] 

It follows that 

𝜇𝑠(𝑥 ∨  𝑦) ≥ min{𝜇𝑠(𝑥 ∨  𝑦) ⊗ 𝑦, 𝜇𝑠(𝑦)} 

                                                             [From definition 3.1 and definition 3.7] 

                                    ≥ min{𝜇𝑠(𝑥 → 𝑦) → 𝑦) ⊗ 𝑦, 𝜇𝑠(𝑦)}  
                                                                    [From (ii) of definition 2.3] 

                                    ≥ min {𝜇𝑠(0), 𝜇𝑠(𝑦)} 

                                    ≥ min{𝜇𝑠(𝑥), 𝜇𝑠(𝑦)}for all 𝑥, 𝑦 ∈ 𝐴  
                                                                  [From (i) of proposition 2.10]                    

                         𝛾𝑠(𝑥) ≤ max {𝛾𝑠((𝑥 ∨  𝑦) ⊗ 𝑦), 𝛾𝑠(𝑦)} 

                                   ≤ max{𝛾𝑠((𝑥 → 𝑦) → 𝑦) ⊗ 𝑦) , 𝛾𝑠(𝑦)}  
                                                                    [From (ii) of definition 2.3] 

                                   ≤ max {𝛾𝑠(0), 𝛾𝑠(𝑦)} 
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                                   ≤ max{𝛾𝑠(𝑥), 𝛾𝑠(𝑦)}for all 𝑥, 𝑦 ∈ 𝐴 

                                                                  [From (ii) of definition 2.10] 

And we have  

𝜇𝑠(𝑥 ∨  𝑦) ≥ min{𝜇𝑠(𝑥 ∨  𝑦) → 𝑦)∗) , 𝜇𝑠(𝑦)} ≥ min  {𝜇𝑠(𝑥), 𝜇𝑠(𝑦)} 

𝛾𝑠(𝑥) ≤ max {𝛾𝑠((𝑥 ∨  𝑦) → 𝑦)∗), 𝛾𝑠(𝑦)} ≤ max{𝛾𝑠(𝑥), 𝛾𝑠(𝑦)} 

for all 𝑥, 𝑦 ∈ 𝐴. 

Hence, we have 𝑆 = (𝜇𝑠, 𝛾𝑠)is an intuitionistic fuzzy lattice ideal of    

residuated   lattice Wajsberg algebra 𝐴. ∎ 

Proposition 3.11. Let 𝐴 be a residuated lattice Wajsberg algebra. An 

intuitionistic fuzzy set 𝑆 = (𝜇𝑠, 𝛾𝑠) is an intuitionistic FWI-ideal of 𝐴 if and 

only if the fuzzy subsets 𝜇𝑠 and 𝛾𝑠
𝑐 are 𝐹𝑊𝐼-ideal of 𝐴, where 𝛾𝑠

𝑐(𝑥) = 1 −
𝛾𝑠(𝑥)for all 𝑥 ∈ 𝐴. 

Proof. Let 𝑆 = (𝜇𝑠, 𝛾𝑠) be an intuitionistic FWI-ideal of 𝐴. 
Then 𝜇𝑠 is a FWI-ideal of 𝐴.  

Now, we have 𝛾𝑠
𝑐 = 1 − 𝛾𝑠(0) 

                  ≥ 1 − 𝛾𝑠(𝑥)                             [From (i) of proposition 2.10] 

𝛾𝑠
𝑐(0) = 𝛾𝑠

𝑐(𝑥)  for all 𝑥, 𝑦 ∈ 𝐴 

 And   𝛾𝑠
𝑐(𝑥) = 1 − 𝛾𝑠(𝑥) 

          ≥ 1 − max {𝛾𝑠(𝑥 ⊗ 𝑦), 𝛾𝑠(𝑦)} 

          = min{ 1 − 𝛾𝑠(𝑥 ⊗ 𝑦), 1 −  𝛾𝑠(𝑦)} 

          = min{ 𝛾𝑠
𝑐(𝑥 ⊗ 𝑦), 𝛾𝑠(𝑦)}   

 𝛾𝑠
𝑐(𝑥) = 1 − 𝛾𝑠(𝑥) 

            ≥ 1 − max {𝛾𝑠((𝑥 → 𝑦)∗), 𝛾𝑠(𝑦)} 

            = min{ 1 − 𝛾𝑠((𝑥 → 𝑦)∗), 1 − 𝛾𝑠(𝑦)} 

𝛾𝑠
𝑐(𝑥) = min{ 𝛾𝑠

𝑐((𝑥 → 𝑦)∗), 𝛾𝑠(𝑦)}for all 𝑥, 𝑦 ∈ 𝐴 

Hence, we have 𝛾𝑠
𝑐 is a FWI-ideal of 𝐴. 

Conversely, assume that 𝜇𝑠 and 𝛾𝑠
𝑐 are FWI-ideal of 𝐴. 

Then, we have 𝜇𝑠(0) ≥ 𝜇𝑠(𝑥)and 1 − 𝛾𝑠(0) = 𝛾𝑠
𝑐(0) ≥ 𝛾𝑠

𝑐(𝑥) = 1 − 𝛾𝑠(𝑥) 

𝛾𝑠(0) ≤ 𝛾𝑠(𝑥)   for all 𝑥, 𝑦 ∈ 𝐴 

Now, 𝜇𝑠(𝑥) ≥ min {𝜇𝑠
𝑐(𝑥 ⊗ 𝑦), 𝜇𝑠

𝑐(𝑦)} 

        = min {1 − 𝜇𝑠(𝑥 ⊗ 𝑦), 1 − 𝜇𝑠(𝑦)} 

        = 1 − max {𝜇𝑠(𝑥 ⊗ 𝑦), 𝜇𝑠(𝑦)} 

𝛾𝑠(𝑥) ≤ max {𝛾𝑠(𝑥 ⊗ 𝑦), 𝛾𝑠(𝑦)}   for all 𝑥, 𝑦 ∈ 𝐴 

 𝜇𝑠(𝑥) ≥ min {𝜇𝑠
𝑐(𝑥 → 𝑦)∗, 𝜇𝑠

𝑐(𝑦)} 

           = min {1 − 𝜇𝑠((𝑥 → 𝑦)∗), 1 − 𝜇𝑠(𝑦)} 

           = 1 − max {𝜇𝑠((𝑥 → 𝑦)∗), 𝜇𝑠(𝑦)} 

𝛾𝑠(𝑥) ≤ max{𝛾((𝑥 → 𝑦)∗), 𝛾𝑠(𝑦)}for all 𝑥, 𝑦 ∈ 𝐴 

Hence, we have 𝑆 = (𝜇𝑠, 𝛾𝑠) is an intuitionistic 𝐹𝑊𝐼-ideal of 𝐴.∎ 



Intuitionistic FWI-ideals of residuated lattice Wajsberg algebras 

189 

 

Proposition 3.12. Let 𝐴 be a residuated lattice Wajsberg algebra and 𝑆 =
(𝜇𝑠, 𝛾𝑠) is an intuitionistic 𝐹𝑊𝐼-ideal of𝐴. Then 𝑆 = (𝜇𝑠, 𝛾𝑠) is an intuitionistic 

FWI-ideal of 𝐴 if and only if (𝜇𝑠, 𝜇𝑠
𝑐) and (𝛾𝑠

𝑐, 𝛾𝑠) are intuitionistic 𝐹𝑊𝐼-ideal 

of 𝐴. 

Proof. Let 𝑆 = (𝜇𝑠, 𝛾𝑠) be an intuitionistic 𝐹𝑊𝐼-ideal of 𝐴. 

Then, 𝜇𝑠 and 𝛾𝑠
𝑐 are 𝐹𝑊𝐼-ideal of 𝐴[From proposition 3.11] 

Hence, we have (𝜇𝑠, 𝜇𝑠
𝑐) and (𝛾𝑠

𝑐, 𝛾𝑠) are intuitionistic 𝐹𝑊𝐼-ideal of 𝐴. 
Conversely, if (𝜇𝑠, 𝜇𝑠

𝑐) and (𝛾𝑠
𝑐 , 𝛾𝑠) are intuitionistic 𝐹𝑊𝐼-idealof 𝐴 

                                                                                    [From proposition 3.11] 

Then, the fuzzy sets 𝜇𝑠 and 𝛾𝑠
𝑐 are 𝐹𝑊𝐼-ideal of 𝐴 

Hence, 𝑆 = (𝜇𝑠, 𝛾𝑠) is an intuitonistic 𝐹𝑊𝐼-ideal of 𝐴. ∎ 

Proposition 3.13. Let 𝐴 be residuated lattice Wajsberg algebra, 𝑉 a non-empty 

subset of [0, 1] and {𝐼𝑡/ 𝑡 ∈ 𝑉} a collection of 𝐹𝑊𝐼 -ideal of 𝐴 such that  

(i) 𝐴 = 𝐼𝑡  𝑡∈𝑣
⋃  

(ii) 𝑟 > 𝑡 if and only if 𝐼𝑟 ⊆ 𝐼𝑡 for any 𝑟, 𝑡 ∈ 𝑉 then the intuitionistic fuzzy 

set 𝑆 = (𝜇𝑠, 𝛾𝑠) of 𝐴  defined by 𝜇𝑠 = sup{𝑡 ∈ 𝑉/𝑥 ∈ 𝐼𝑡} and𝛾𝑠 =
inf{𝑡 ∈ 𝑉/𝑥 ∈ 𝐼𝑡} for any 𝑥 ∈ 𝐴 is intuitionistic 𝐹𝑊𝐼 -ideal of 𝐴. 

Proof. According to proposition 3.10, it is sufficient to show that 𝜇𝑠 and 𝛾𝑠
𝑐   

are    𝐹𝑊𝐼–idealof 𝐴 for all𝑥 ∈ 𝐴. 

𝜇𝑠(0) = sup {𝑡 ∈ 𝑉/0 ∈ 𝐼𝑡} = sup𝑉 ≥ 𝜇𝑠(𝑥)      [From (i) of definition 3.1] 

If there exists 𝑥, 𝑦 ∈ 𝐴 such that 𝜇𝑠(𝑥) < min {𝜇𝑠(𝑥 ⊗ 𝑦), 𝜇𝑠(𝑦)} and      

𝜇𝑠(𝑥) < min {𝜇𝑠((𝑥 → 𝑦)∗), 𝜇𝑠(𝑦)}. 

There exists 𝑡1 such that 𝜇𝑠(𝑥) < 𝑡1 < min {𝜇𝑠(𝑥 ⊗ 𝑦), 𝜇𝑠(𝑦)} and    

𝜇𝑠(𝑥) < 𝑡1 < min {𝜇𝑠((𝑥 → 𝑦)∗), 𝜇𝑠(𝑦)} 

It follows that 𝑡1 such that𝑡1 < 𝜇𝑠(𝑥 ⊗ 𝑦),𝑡1 < 𝜇𝑠((𝑥 → 𝑦)∗),𝑡1 < 𝜇𝑠(𝑦) and 

Hence, there exist 𝑡2, 𝑡3 ∈ 𝑉, 𝑡2 > 𝑡1, 𝑡3 > 𝑡1, (𝑥 ⊗ 𝑦) ∈ 𝐼𝑡2
, (𝑥 → 𝑦)∗) ∈ 𝐼𝑡2

 

and 𝑦 ∈ 𝐼𝑡3
 

It follows that (𝑥 ⊗ 𝑦) ∈ 𝐼𝑡2⋀𝑡3
 , (𝑥 → 𝑦)∗) ∈ 𝐼𝑡2⋀𝑡3

 and 𝑦 ∈ 𝐼𝑡2⋀𝑡3
 

Now, we have 𝑥 ∈ 𝐼𝑡2⋀𝑡3
 

That is, 𝜇𝑠(𝑥) = sup {𝑡 ∈
𝑉

𝑥
∈ 𝐼𝑡} ≥ 𝑡2⋀𝑡3 > 𝑡1            [From definition 2.16] 

Therefore, 𝜇𝑠(𝑥) > 𝑡1 

This is a contradiction. 

Hence, we have 𝜇𝑠 is a 𝐹𝑊𝐼 -ideal of 𝐴. 𝛾𝑠
𝑐is a𝐹𝑊𝐼 -ideal, which can be 

proved by similar method. ∎ 
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4.  Conclusions 

In this paper, we have introduced the notions of intuitionistic       

𝐹𝑊𝐼 –ideal and intuitionistic fuzzy lattice ideal of residuated Wajsberg 

algebras. Also, we have shown that every intuitionistic 𝐹𝑊𝐼- ideal of 

residuated lattice Wajsberg algebra is an intuitionistic fuzzy lattice ideal of 

residuated lattice Wajsberg algebra. Further, we have discussed its converse 

part. 
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1. Introduction 

 

       The topic of the fuzzy semi-analytical methods(fuzzy series method) for 

solving the fuzzy initial value problems(FIVPs) has been rapidly growing in 

recent years, whereas the fuzzy series solutions of FIVP have been studied by 

several authors during the past few years. Several fuzzy semi-analytical 

methods have been proposed to obtain the fuzzy series solution of  the linear 

and non-linear FIVB which are mostly first order problems. Some of these 

methods have been proposed to obtain the fuzzy series solutions of the high 

order FIVB. 

       Fuzzy homotopy analysis method was used for the first time to solve the 

fuzzy differential equations in 2012. Researchers and scientists are continuing 

to develop this method for solving various types of the fuzzy initial value 

problems because it represents an efficient and effective technique. 

       In the following we will review some of the findings of the researchers 

regarding this method. In 2012, Hashemi, Malekinagad and Marasi[4]  

suggested and applied the Fuzzy homotopy analysis method for solving a 

system of fuzzy differential equations with fuzzy initial conditions. In 2013, 

Abu-Arqub, El-Ajou1 and Momani[6] studied and developed the Fuzzy 

homotopy analysis method to obtain the analytical solutions of the fuzzy initial 

value problems. In 2014, Jameel, Ghoreishi and Ismail[8] introduced and 

applied the Fuzzy homotopy analysis method to obtain the approximate-

analytical solutions of the high order fuzzy initial value problems. In 2015, Al-

Jassar[9] introduced and presented fuzzy semi-analytical methods (including 

the fuzzy homotopy analysis method) to obtain the numerical and 

approximate-analytical solutions of the linear and non-linear fuzzy initial value 

problems. In 2016, Otadi and Mosleh[12] studied and developed the fuzzy 

homotopy analysis method to obtain numerical and approximate-analytical 

solutions of the hybrid fuzzy ordinary differential equations with the fuzzy 

initial conditions. As well, In 2016, Lee, Kumaresan and Ratnavelu[11] 

suggested a solution of the fuzzy fractional differential equations with fuzzy 

initial conditions by using the fuzzy homotopy analysis method. In 2017, 

Padma and Kaliyappan[14] introduced and presented fuzzy semi-analytical 

methods(including the fuzzy homotopy analysis transform method) to obtain 

the numerical and approximate-analytical solutions of the fuzzy fractional 

initial value problems. In 2018, Sevindir, Cetinkaya and Tabak[16] introduced 

and presented fuzzy semi-analytical methods(including the fuzzy homotopy 

analysis method) to obtain the numerical and approximate-analytical solutions 

of the first order fuzzy initial value problems. Also, In 2018, Jameel, Saaban 

and Altaie[15] suggested and applied a new concepts for solving the first order 

non-linear fuzzy initial value problems by using the fuzzy optimal homotopy 
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asymptotic method. In 2020, Nematallah and Najafi[18] introduced and 

applied the fuzzy homotopy analysis method to obtain the fuzzy semi-

analytical solution of the fuzzy fractional initial value problems based on the 

concepts of generalized Hukuhara differentiability. As well, In 2020, Ali and 

Ibraheem[17] studied and developed some fuzzy analytical and numerical 

solutions of the linear first order fuzzy initial value problems by using fuzzy 

homotopy analysis method based on the Padè Approximate method. 

       In this work, we have studied and applied the fuzzy homotopy analysis 

method to find the fuzzy series solution(fuzzy approximate-analytical solution) 

of the second order fuzzy autonomous ordinary differential equation with    

real variable coefficients(real-valued function coefficients). The fuzzy semi-

analytical solutions that we have obtained during this work are accurate 

solutions and very close to the fuzzy exact-analytical solutions, based on the 

comparison that we have introduced between the results that we have obtained 

and the fuzzy exact-analytical solutions. 

 

2. Basic definitions in fuzzy set theory 

 

       In this section, we will present some of the fundamental definitions and 

the primitive concepts related to the fuzzy set theory, which are very necessary 

for understanding this subject. 

 

Definition (𝟏), [𝟏] (Fuzzy Set) 

The fuzzy set Ã can be defined as:  

                    Ã = {( x , µÃ(x) )  ∶   x ∈  X ;   0 ≤  µÃ(x)   ≤ 1}                            (1) 

where X is the universal set and µÃ(x) is the grade of membership of x in Ã. 

Definition (𝟐), [𝟕] (α – Level  Set) 

The α - level ( or α - cut ) set of a fuzzy set Ã can be defined as: 

               Aα = {x ∈ X ∶  µÃ(x) ≥  α   ;   α ∈ [0,1]} .                                          (2) 

Definition (𝟑), [𝟗] (Fuzzy Number) 

A fuzzy number ũ is an ordered pair of functions ( u (α) , u (α) ) , 0 ≤ α ≤ 1 , 

with the following conditions:   

 1) u (α) is a bounded left continuous and non-decreasing function on [0,1] . 

 2) u (α) is a bounded left continuous and non-increasing function on [0,1] .  
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 3) u (α) ≤ u (α) , 0 ≤ α ≤ 1.                                                                          (3) 

Remark (1), [9] : 

1) The crisp number u is simply represented by :  

u (α) = u (α) = u , 0 ≤ α ≤ 1 .                                                                         (4) 

2) The set of all the fuzzy numbers is denoted by  E1. 

Remark (𝟐), [𝟏𝟑]:                                                                                                                                                         

The distance between two arbitrary fuzzy numbers ũ = (u , u) and ṽ = (v , v) 

can be defined as: 

    D (ũ , ṽ) = [ ∫ ( u (α) - v (α)
1

0
)
2dα  +  ∫ ( u (α) - v (α)

1

0
)
2dα ]

1

2
                 (5) 

Remark (𝟑), [𝟏𝟑]: 

(E1,D) is a complete metric space. 

Definition (𝟒), [𝟗] (Fuzzy Function) 

A mapping  F ∶ T →  E1  for some interval  T ⊆ E1  is called a fuzzy function 

or fuzzy process with non-fuzzy variable (crisp variable), and we denote α - 

level sets by: 

 [ F(t) ]α = [ F (t ;  α)  ,   F (t ;  α)]                                                                    (6) 

Where  t ∈ T , α ∈ [0,1]. we refer to  F  and  F  as the lower and upper 

branches on F. 

Definition (5), [𝟗] (H-Difference) 

Let u , v ∈ E1  . If there exist  w ∈ E1  such that u = v + w  then w is called the 

H-difference (Hukuhara-difference) of  u and v  and it is denoted by w=  u ⊝ 

v, where u ⊝ v ≠ u + (-1) v.                                                                                                                                                                                                     

Definition (6), [𝟏𝟑] (Fuzzy Derivative) 

Let  F : T → E1   for some interval  T ⊆ E1  and  t0  ∈ T. We  say  that  F  is H-

differential(Hukuhara-differential) at t0 , if there exists an element  Fˊ(t0) ∈
E1 such that for all  h> 0  (sufficiently small) , ∃ F (t0 +h)⊝F(t0) , F(t0) ⊝ F 

(t0 - h) and the limits(in the metric D) 
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lim
h→0

F(t0 + h) ⊝ F(t0)

h
= lim

h→0

F(t0) ⊝ F(t0 − h) 

h
=  Fˊ(t0)                             (7) 

Then  Fˊ(t0)  is called the fuzzy derivative(H-derivative) of  F at  t0 . where  D 

is the distance between two fuzzy numbers. 

Definition (7), [𝟗] (Nth Order Fuzzy Derivative) 

Let F′ : T → E1   for some interval T ⊆ E1  and t0  ∈ T. We  say  that  F′  is H- 

differential(Hukuhara-differential) at t0, if there exists an element F(n)(t0) ∈
E1  such that for all h > 0 (sufficientlysmall), ∃ F(n−1)(t0 + h) ⊝
F(n−1)(t0) , F

(n−1)(t0)⊝F(n−1) (t0 - h) and the limits(in the metric D) 

lim
h→0

F(n−1)(t0+h) ⊝ F(n−1)(t0)

h
=

 lim
h→0

F(n−1)(t0)⊝F(n−1)(t0−h) 

h
= F(n)(t0)                                                               (8) 

Then  F(n)(t0)  is called  the nth order fuzzy derivative (H-derivative of order 

n) of  F at  t0.    

Theorem(1), [9]: 

Let F ∶  T → E1 for some interval T ⊆ E1  be an nth order Hukuhara 

differentiable functions at t ∈ T and denote 

 [ F(t) ]α  =  [ F (t ;  α) ,   F (t ;  α)], ∀ α ∈ [0,1].     

Then the boundary functions F (t ;  α) ,   F (t ;  α) are both nth order Hukuhara 

differentiable functions and  

      [ F(n)(t) ]α  =  [ F(n)(t ;  α) ,   F (n)(t ;  α)], ∀ α ∈ [0,1].                           (9) 

3. Fuzzy autonomous differential equation 

       A fuzzy ordinary differential equation is said to be autonomous if it is 

independent of it's independent crisp variable t. This is to say an explicit nth 

order fuzzy autonomous differential equation is of the following form[13] : 

x(n)(t) = f ( x (t) , x′(t) , x′′(t) , … . , x(n−1)(t)) , t ∈ [t0 , h]                         (10) 

with the fuzzy initial conditions : 

 x(t0) = x0  ,  x′(t0) = x0
′   ,  x′′(t0) = x0

′′  , … ,  x(n−1)(t0) = x0
(n−1)
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where : 

x  is a fuzzy function of the crisp variable  t  ,  

f (x (t) , x′(t) , x′′(t) , … . , x(n−1)(t)) is a fuzzy function of  the crisp variable  

t  and the fuzzy variable  x  , 

x(n)(t) is the fuzzy derivative of the  x (t)  ,  x′(t)  ,   x′′(t) , … ., x(n−1)(t) , 

and  x(t0)   ,  x′(t0)  ,  x′′(t0) , … ,  x(n−1)(t0) are fuzzy numbers. 

       The fuzzy differential equations that are dependent on t are called non-

autonomous, and a system of fuzzy autonomous differential equations is called 

a fuzzy autonomous system. 

       The main idea in solving the fuzzy autonomous differential equation is to 

convert it into a system of non-fuzzy(crisp) differential equations, and then 

solve this system by the known and commonly used methods of solving the 

non-fuzzy differential equations. 

Now it is possible to replace (10) by the following equivalent system of the nth 

order crisp ordinary differential equations: 

 x(n)(t) = f ( x , x′, x′′ , … , x(n−1))  

=  F( x , x′ ,  x′′ , … ,  x(n−1) , x  , x
′
 , x

′′
 , … , x

(n−1)
 ) ;                                                                         

 x(t0) =  x 0 ,  x′(t0) = x 0
′  ,  x′′(t0) =  x 0

′′  , … ,   x(n−1)(t0) =  x 0
(n−1)

  ,  (11)                                                                                                           

x
(n)

(t) =  f ( x , x′, x′′ , … , x(n−1))  

=  G( x , x′ ,  x′′ , … ,  x(n−1) , x  , x
′
 , x

′′
 , … , x

(n−1)
 ) ;                                                                         

x (t0) = x0  , x
′
(t0) = x0

′
 ,  x

′′
(t0) = x0

′′
, … ,   x

(n−1)
(t0) = x0

(n−1)
             (12)                                                                                                         

Where 

 F( x , x′ ,  x′′ , … ,  x(n−1) , x  , x
′
 , x

′′
 , … , x

(n−1)
 )= 

 Min{ f (t , u) ∶ u ∈  [x , x′ ,  x′′ , … ,  x(n−1) , x  , x
′
 , x

′′
 , … , x

(n−1)
] },        (13)                                                                                                                                                                                                                                    

G( x , x′ ,  x′′ , … ,  x(n−1) , x  , x
′
 , x

′′
 , … , x

(n−1)
 )= 

 Max{ f (t , u) ∶ u ∈  [x , x′ ,  x′′ , … ,  x(n−1) , x  , x
′
 , x

′′
 , … , x

(n−1)
] } .      (14)                                                                                                           
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The parametric form of system (13-14) is given by:  

x(n)(t , α) =  F( x(t , α) , x′(t , α) ,  x′′(t , α) , … ,  x(n−1)(t , α) , x (t , α) ,

x
′
(t , α) , x

′′
(t , α) , … , x

(n−1)
(t , α) )                                                                      

 x(t0 , α) =  x 0(α) ,  x′(t0 ,  α) = x 0
′ (α) ,  x′′(t0 , α) =  x 0

′′ (α) , … ,   

x(n−1)(t0 , α) =  x 0
(n−1)

(α)                                                                            (15)                                                                                                   

x
(n)

(t , α) =  G( x(t , α) , x′(t , α) ,  x′′(t , α) , … ,  x(n−1)(t , α) , x (t , α) ,

x
′
(t , α) , x

′′
(t , α) , … , x

(n−1)
(t , α) )                                                                      

x (t0 , α) = x0(α)  , x
′
(t0 , α) = x0

′
(α) ,  x

′′
(t0 , α) = x0

′′
(α)  , … ,   

x
(n−1)

(t0 ,α) = x0
(n−1)

(α)                                                                               (16)  

Where  t ∈ [t0 , h] and α ∈ [0 ,1]. 

The following theorem ensures the existence and uniqueness of the fuzzy 

solution of the nth order fuzzy autonomous differential equation. 

Theorem(2), [13] : 

If we return to problem (10), 

x(n)(t) = f ( x (t) , x′(t) , x′′(t) , … . , x(n−1)(t))   ,   t ∈ [t0 , h]           

Let  fi : T → E1   , 1 ≤ i ≤ n   be a continuous fuzzy functions, T= [t0 , h ] and 

assume that there exist a real numbers  ki  > 0  such that 

D( fi( t , zi) , fi(t  , wi )) ≤ ki D(zi , wi)                                                        (17)                                         

For all t ∈ T and all zi , wi  ∈ E1 . 

Then the above nth order FIVB has a unique fuzzy solution on T  in each case.  

4. Fuzzy homotopy analysis method 
 

       A fuzzy homotopy analysis method is one of the fuzzy semi- analytical 

methods used to obtain the fuzzy series solution(fuzzy approximate-analytical 

solution) of the FIVBs. This technique utilizes homotopy in order to generate a 

convergent fuzzy series of fuzzy linear equations from fuzzy non-linear ones. 

This means that this technique is based on generating a convergent fuzzy 

series of fuzzy solutions to approximate the fuzzy analytical solution of the 

FIVB. 



H. Sabr, B. Abood, and M. Suhhiem 

198 
 

       The basic mathematical concepts of  the fuzzy homotopy analysis method  

are the same as the basic mathematical concepts of the homotopy analysis 

method, but with the use of the concepts of the fuzzy set theory. This means 

that solving any FIVB by using fuzzy homotopy analysis method  is based on 

converting the FIVB  into a system of non-fuzzy(crisp) initial value problems 

by using the steps that we explained in section(3), and then using the 

homotopy analyss method to solve this system. 

       The fuzzy homotopy analysis method provides us with both the freedom 

to choose proper base fuzzy functions for approximating a non-linear fuzzy 

problem and a simple way to ensure the convergence of the fuzzy series 

solution. 

 

5. Description of the method 

       To describe the basic mathematical ideas of the fuzzy homotopy analysis 

method, we consider the following nth order FIVB : 

                                             [N(x(t)]α = 0    ,                                               (18)                                                                                                               

Where N is the fuzzy non-linear operator , t denotes the independent crisp 

variable , x(t) is an unknown fuzzy function . 

By the concepts of section(3), We can conclude that: 

[N(x(t)]α = [ [N(x(t)]α
L  , [N(x(t)]α 

U ]                                                            (19) 

Since 0 = [ 0 , 0], we can get: 

[N(x(t)]α
L = 0                                                                                               (20i) 

[N(x(t)]α
U = 0                                                                                              (20ii) 

Now, we construct the zero-order fuzzy deformation equation: 

[(1 − w)L (θ(t ;  w) − x0(t))]α = [w h N(θ(t ;  w))]α ,                              (21)                         

Where w ∈ [0 , 1] is the homotopy embedding parameter, h ∈ [−1 , 0) is the 

convergence control parameter , L is the fuzzy linear operator , x0(t) is the 

fuzzy initial guess of x(t) and θ(t;w) is a fuzzy function. 

By the concepts of section(3), We can get: 

(1 − w)L( [θ(t ;  w)]α
L − [x0(t)]α 

L ) = w h( [N(θ(t ;  w))]α
L  )                     (22i) 

(1 − w)L( [θ(t ;  w)]α
U − [x0(t)]α 

U ) = w h( [N(θ(t ;  w))]α
U )                    (22ii)  
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Obviously , when w = 0 and w = 1 , both  

[θ(t ; 0)]α = [x0(t)]α ,                                                                                  (23)                                                                                       

 [θ(t ; 1)]α = [x(t)]α                                                                                     (24)                                                                                                                                                                

Hold, therefore when w is increasing  from 0 to 1 , the fuzzy solutions 

[θ(t ;  w)]α
L   and  [θ(t ;  w)]α

U  varies from the fuzzy initial guess [x0(t)]α to 

the fuzzy solution[x(t)]α .  

Thus, we have: 

[θ(t ; 0)]α
L = [x0(t)]α

L                                                                                     (25i) 

[θ(t ; 0)]α
U = [x0(t)]α

U                                                                                  (25ii) 

[θ(t ; 1)]α
L = [x(t)]α

L                                                                                      (26i) 

[θ(t ; 1)]α
U = [x(t)]α

U                                                                                    (26ii)                                                                            

By expanding [θ(t ;w) ]α in Taylor series with respect to w , one has:   

[θ(t ;w)]α = [x0(t)]α + ∑ [xm(t)wm]α
∞
m=1                                                  (27)                                          

Where  

[xm(t)]α =
1

m!
 
∂m [θ(t ;w)]α

∂wm |
w=0

                                                                      (28)  

By the concepts of parametric form in section(3), We can conclude that: 

[θ(t ;w)]α
L = [x0(t)]α

L + ∑ [xm(t)]α
L∞

m=1  wm                                              (29i) 

[θ(t ;w)]α
U = [x0(t)]α

U + ∑ [xm(t)]α
U∞

m=1  wm                                             (29ii) 

Where 

[x0(t)]α
L =

1

m!
 
∂m [θ(t ; w)]α

L

∂wm
|
w=0

                                                                     (30i) 

[x0(t)]α
U =

1

m!
 
∂m [θ(t ; w)]α

U

∂wm
|
w=0

                                                                    (30ii)                                                                        

If the fuzzy linear operator , the fuzzy initial guess , the auxiliary parameter  h 

, and the auxiliary fuzzy function are so properly chosen , then the fuzzy series 

(27) converges at w = 1 , and one has:  

[θ(t ; 1)]α = [x(t)]α = [x0(t)]α + ∑ [xm(t)]α
∞
m=1                                        (31)   
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Where 

[θ(t ; 1)]α
L = [x(t)]α

L  = [x0(t)]α
L + ∑ [xm(t)]α

L∞
m=1                                      (32i)                                         

[θ(t ; 1)]α
U = [x(t)]α

U  = [x0(t)]α
U + ∑ [xm(t)]α

U∞
m=1                                    (32ii)                                                                                                  

Which must be one of the fuzzy solutions of the problem(18). 

If  h =  −1 , (21) becomes  

[(1 − w)L (θ(t ;  w) − x0(t))]α + [w N(θ(t ;  w))]α = 0 ,                          (33) 

Where 

(1 − w)L( [θ(t ;  w)]α
L − [x0(t)]α 

L ) + w ( [N(θ(t ;  w))]α
L  )  =0                 (34i) 

(1 − w)L( [θ(t ;  w)]α
U − [x0(t)]α 

U ) + w ( [N(θ(t ;  w))]α
U ) =0                (34ii) 

Which is used mostly in the fuzzy homotopy analysis method. 

We define the fuzzy vectors  

[ x⃗ i ]α = { [ x0(t)]α , [x1(t)]α , [ x2(t)]α , … , [ xi(t)]α }                               (35) 

Where 

[ x⃗ i ]α
L = { [ x0(t)]α

L  , [ x1(t)]α
L  , [ x2(t)]α

L  , … , [ xi(t)]α
L  }                             (36i) 

[ x⃗ i ]α
U = { [ x0(t)]α

U , [ x1(t)]α
U , [ x2(t)]α

U , … , [ xi(t)]α
U }                           (36ii)                                                                                                                           

Now, by differentiating (21) m- times with respect to the parameter w and then 

setting w = 0 and finally dividing them by m! , we have the mth-order fuzzy 

deformation equation: 

L( [xm(t)]α − χm[xm−1(t)]α ) = h( [Rm(x⃗ m−1) ]α )                                   (37)                                        

Where                                                       [ Rm(x⃗ m−1) ]α  =
1

(m−1)!
 
∂m−1[N(θ(t ; w))]α 

∂wm−1 |
w=0

                                             (38)  

By the concepts of parametric form in section(3), We get: 

L( [xm(t)]α
L − χm[xm−1(t)]α 

L ) = h ( [Rm(x⃗ m−1)]α 
L )                                   (39i) 

L( [xm(t)]α
U − χm[xm−1(t)]α 

U ) = h ( [Rm(x⃗ m−1)]α 
U )                                 (39ii) 

Where 
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[Rm(x⃗ m−1)]α 
L =

1

(m−1)!
 
∂m−1( [N(θ(t ; w))]α

L  )       

∂wm−1 |
w=0

                                       (40i)                                       

[Rm(x⃗ m−1)]α 
U =

1

(m−1)!
 
∂m−1( [N(θ(t ; w))]α

U )       

∂wm−1 |
w=0

                                      (40ii)  

χm = {
0 ,   m ≤ 1 ,
1 ,   m > 1 .

                                                                                         (41)                                                                                          

6. Applied example 

       In this section, one fuzzy problem has been solved in order to clarify the 

efficiency and the accuracy of the method. According to Liao's book [3], the 

optimal value of h was found to be approximately −1 ≤ h < 0. In addition, 

the practical examples in[3,5,10] showed that the optimal value of h can        

be determined while solving the problem by experimenting with a number          

of different values of h. The optimal value of h depends greatly on the nature 

of the problem, but still h = −1 is an optimal value and achieves a rapid 

convergence. 

Example 1: Consider the second order fuzzy autonomous differential equation 

x′′(t) + x(t) = 0  ,                                                                                         (42) 

Subject to the fuzzy initial conditions : 

[x(0)]α = [0,0] ,  [x′(0)]α = [0.01α + 0.02 , −0.01α + 0.04] , α ∈ [0,1] .                                           

Solution:  

The fuzzy linear operator is :  

[L(θ(t;w))]α = [ [L(θ(t;w))]α
L  , [L(θ(t;w))]α

U ]                                          (43) 

Where  

[L(θ(t;w))]α
L = [

∂2θ(t;w)

∂t2
]
α

L

                                                                           (44i) 

[L(θ(t;w))]α
U = [

∂2θ(t;w)

∂t2
]
α

U

                                                                         (44ii) 

We define the fuzzy non-linear operator as :  

[N(θ(x;w))]α = [ [N(θ(x;w))]α
L  , [N(θ(x;w))]α

U ]                                      (45) 

Where  
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[N(θ(x;w))]α
L =

∂2[θ(t;w)]α
L

∂t2
+ [θ(t;w)]α

L                                                       (46i) 

[N(θ(x;w))]α
U =

∂2[θ(t;w)]α
U

∂t2
+ [θ(t;w)]α

U                                                    (46ii) 

The fuzzy series solution is : 

[x(t)]α = [ [x(t)]α
L  , [x(t)]α 

U ]                                                                         (47) 

Where  

[x(t)]α
L = [x0(t)]α

L + [x1(t)]α
L + [x2(t)]α

L + [x3(t)]α
L + ⋯                          (48i) 

[x(t)]α
U = [x0(t)]α

U + [x1(t)]α
U + [x2(t)]α

U + [x3(t)]α
U + ⋯                        (48ii) 

By Taylor series expansion , the fuzzy initial approximation is: 

[x0(t)]α = [ [x0(t)]α
L  , [x0(t)]α 

U ]                                                                   (49)   

Where                                                                     

[x0(t)]α
L = 0.01 αt + 0.02 t                                                                          (50i) 

[x0(t)]α
U = −0.01 αt + 0.04 t                                                                     (50ii) 

To find [x1(t)]α = [ [x1(t)]α
L  , [x1(t)]α 

U ]  

From(29), we can find  

[θ(t;w)]α
L = [x0(t)]α

L + w[x1(t)]α
L                                                               (51i) 

[θ(t;w)]α
U = [x0(t)]α

U + w[x1(t)]α
U                                                             (51ii) 

From(37), we can find  

L([x1(t)]α
L − 0) = h[R1]α

L                                                                             (52i) 

L([x1(t)]α
U − 0) = h[R1]α

U                                                                           (52ii) 

Then from(38), we can get : 

[R1]α
L = [N(θ(t;w))]α

L|w=0                                                                          (53i) 

[R1]α
U = [N(θ(t;w))]α

U|w=0                                                                        (53ii) 

Then , we apply the following steps :  
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∂[θ(t;w)]α
L

∂t
=

∂[x0(t)]α
L

∂t
+ w

∂[x1(t)]α
L

∂t
                                                                   (54i) 

∂[θ(t;w)]α
U

∂t
=

∂[x0(t)]α
U

∂t
+ w

∂[x1(t)]α
U

∂t
                                                                 (54ii) 

𝜕2[θ(t;w)]α
L

∂t2
=

∂2[x0(t)]α
L

∂t2
+ w

∂2[x1(t)]α
L

∂t2
                                                              (55i) 

𝜕2[θ(t;w)]α
U

∂t2
=

∂2[x0(t)]α
U

∂t2
+ w

∂2[x1(t)]α
U

∂t2
                                                             (55ii) 

[N(θ(x;w))]α
L =

∂2[x0(t)]α
L

∂t2
+ w

∂2[x1(t)]α
L

∂t2
+ [x0(t)]α

L + w[x1(t)]α
L               (56i) 

[N(θ(x;w))]α
U =

∂2[x0(t)]α
U

∂t2
+ w

∂2[x1(t)]α
U

∂t2
+ [x0(t)]α

U + w[x1(t)]α
U             (56ii) 

[R1]α
L =

∂2[x0(t)]α
L

∂t2
+ [x0(t)]α

L                                                                          (57i) 

[R1]α
U =

∂2[x0(t)]α
U

∂t2
+ [x0(t)]α

U                                                                       (57ii) 

[R1]α
L = 0.01 αt + 0.02 t                                                                              (58i) 

[R1]α
U = −0.01 αt + 0.04 t                                                                         (58ii) 

L([x1(t)]α
L) = 0.01 αht + 0.02 ht                                                                (59i) 

L([x1(t)]α
U) = −0.01 αht + 0.04 ht                                                            (59ii) 

[x1(t)]α
L = ∬(0.01 αht + 0.02 ht )  dt dt                                                    (60i) 

[x1(t)]α
U = ∬(−0.01 αht + 0.04 ht )  dt dt                                                (60ii) 

[x1(t)]α
L = 0.001667 αht3 + 0.003333 ht3                                                (61i) 

[x1(t)]α
U = −0.001667 αht3 + 0.006667 ht3                                           (61ii) 

Now, to find [x2(t)]α = [ [x2(t)]α
L  , [x2(t)]α 

U ] 

From(29  ), we can find  

[θ(t;w)]α
L = [x0(t)]α

L + w[x1(t)]α
L + w2[x2(t)]α

L                                        (62i) 

[θ(t;w)]α
U = [x0(t)]α

U + w[x1(t)]α
U + w2[x2(t)]α

U                                     (62ii) 

From(37 ), we can find  
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L([x2(t)]α
L − [x1(t)]α

L) = h[R2]α
L                                                                  (63i) 

L([x2(t)]α
U − [x1(t)]α

U) = h[R2]α
U                                                               (63ii) 

Then from (38 ) , we can get : 

[R2]α
L =

∂[N(θ(t;w))]α
L

∂w
|
w=0

                                                                              (64i) 

[R2]α
U =

∂[N(θ(t;w))]α
U

∂w
|
w=0

                                                                             (64ii) 

Then , we apply the following steps :  

∂[θ(t;w)]α
L

∂t
=

∂[x0(t)]α
L

∂t
+ w

∂[x1(t)]α
L

∂t
+ w2 ∂[x2(t)]α

L

∂t
                                            (65i) 

∂[θ(t;w)]α
U

∂t
=

∂[x0(t)]α
U

∂t
+ w

∂[x1(t)]α
U

∂t
+ w2 ∂[x2(t)]α

U

∂t
                                           (65ii) 

𝜕2[θ(t;w)]α
L

∂𝑡2 =
𝜕2[x0(t)]α

L

∂𝑡2 + w
𝜕2[x1(t)]α

L

∂𝑡2 + w2 𝜕2[x2(t)]α
L

∂𝑡2                                       (66i) 

𝜕2[θ(t;w)]α
U

∂𝑡2 =
𝜕2[x0(t)]α

U

∂𝑡2 + w
𝜕2[x1(t)]α

U

∂𝑡2 + w2 𝜕2[x2(t)]α
U

∂𝑡2                                     (66ii) 

[N(θ(x;w))]α
L =

∂2[x0(t)]α
L

∂t2
+ w

∂2[x1(t)]α
L

∂t2
+ w2 ∂2[x2(t)]α

L

∂t2
+ [x0(t)]α

L +

w[x1(t)]α
L + w2[x2(t)]α

L                                                                                (67i) 

[N(θ(x;w))]α
U =

∂2[x0(t)]α
U

∂t2
+ w

∂2[x1(t)]α
U

∂t2
+ w2 ∂2[x2(t)]α

U

∂t2
+ [x0(t)]α

U +

w[x1(t)]α
U + w2[x2(t)]α

U                                                                              (67ii) 

∂[N(θ(t;w))]α
L

∂w
=

∂2[x1(t)]α
L

∂t2
+ 2w

∂2[x2(t)]α
L

∂t2
+ [x1(t)]α

L + 2w[x2(t)]α
L                 (68i) 

∂[N(θ(t;w))]α
U

∂w
=

∂2[x1(t)]α
U

∂t2
+ 2w

∂2[x2(t)]α
U

∂t2
+ [x1(t)]α

U + 2w[x2(t)]α
U              (68ii) 

[R2]α
L =

∂2[x1(t)]α
L

∂t2
+ [x1(t)]α

L                                                                          (69i) 

[R2]α
U =

∂2[x1(t)]α
U

∂t2
+ [x1(t)]α

U                                                                       (69ii) 

[R2]α
L = 0.010002 αht + 0.019998 ht + 0.001667 αht3 + 0.003333 ht3         

,                                                                                                                    (70i)  

[R2]α
U = −0.010002 αht + 0.040002 ht − 0.001667 αht3 + 0.006667 ht3     

.                                                                                                                    (70ii) 
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L([x2(t)]α
L − [x1(t)]α

L) = 0.010002 αh2t + 0.019998 h2t +
0.001667 αh2t3 + 0.003333 h2t3     (71i)               

L([x2(t)]α
U − [x1(t)]α

U) = −0.010002 αh2t + 0.040002 h2t −
0.001667 αh2t3 + 0.006667 h2t3 (71ii) 

[x2(t)]α
L − [x1(t)]α

L = ∬(0.010002 αh2t + 0.019998 h2t +
0.001667 αh2t3 + 0.003333 h2t3) dtdt ,                                                                                   
(72i) 

[x2(t)]α
U − [x1(t)]α

U = ∬(−0.010002αh2t + 0.040002h2t −
0.001667αh2t3 + 0.006667h2t3) dtdt .                                                                                  
(72ii) 

[x2(t)]α
L − [x1(t)]α

L =  

0.001667 αh2t3 + 0.003333 h2t3 + 0.000083 αh2t5 + 0.000167 h2t5           
,                                                                                                                      (73i)                                                                                          

[x2(t)]α
U − [x1(t)]α

U = −0.001667 αh2t3 + 0.006667 h2t3 −
0.000083 αh2t5 + 0.000333 h2t5         .                                                                                                                    

(73ii) 

[x2(t)]α
L = 0.001667 αh2t3 + 0.003333 h2t3 + 0.000083 αh2t5 +

0.000167 h2t5 + 0.001667 αht3 + 0.003333 ht3                                     (74i) 

[x2(t)]α
U = −0.001667 αh2t3 + 0.006667 h2t3 − 0.000083 αh2t5 +

0.000333 h2t5 − 0.001667 αht3 + 0.006667 ht3                                    (74ii) 

 Now, to find  [x3(t)]α = [ [x3(t)]α
L  , [x3(t)]α 

U ] :  

From(29), we can find  

[θ(t;w)]α
L = [x0(t)]α

L + w[x1(t)]α
L + w2[x2(t)]α

L + w3[x3(t)]α
L                 (75i) 

[θ(t;w)]α
U = [x0(t)]α

U + w[x1(t)]α
U + w2[x2(t)]α

U + w3[x3(t)]α
U              (75ii) 

From(37), we can find  

L([x3(t)]α
L − [x2(t)]α

L) = h[R3]α
L                                                                  (76i) 

L([x3(t)]α
U − [x2(t)]α

U) = h[R3]α
U                                                               (76ii) 

Then from(38), we can get :  
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[R3]α
L =

1

2

∂2[N(θ(t;w))]α
L

∂w2 |
w=0

                                                                          (77i) 

[R3]α
U =

1

2

∂2[N(θ(t;w))]α
U

∂w2 |
w=0

                                                                         (77ii) 

Then , we apply the following steps :  

∂[θ(t;w)]α
L

∂t
=

∂[x0(t)]α
L

∂t
+ w

∂[x1(t)]α
L

∂t
+ w2 ∂[x2(t)]α

L

∂t
+ w3 ∂[x3(t)]α

L

∂t
                      (78i) 

∂[θ(t;w)]α
U

∂t
=

∂[x0(t)]α
U

∂t
+ w

∂[x1(t)]α
U

∂t
+ w2 ∂[x2(t)]α

U

∂t
+ w3 ∂[x3(t)]α

U

∂t
                    (78ii) 

∂2[θ(t;w)]α
L

∂t2
=

∂2[x0(t)]α
L

∂t2
+ w

∂2[x1(t)]α
L

∂t2
+ w2 ∂2[x2(t)]α

L

∂t2
+ w3 ∂2[x3(t)]α

L

∂t2
              (79i) 

∂2[θ(t;w)]α
U

∂t2
=

∂2[x0(t)]α
U

∂t2
+ w

∂2[x1(t)]α
U

∂t2
+ w2 ∂2[x2(t)]α

U

∂t2
+ w3 ∂2[x3(t)]α

U

∂t2
            (79ii) 

[N(θ(x;w))]α
L =

∂2[x0(t)]α
L

∂t2
+ w

∂2[x1(t)]α
L

∂t2
+ w2 ∂2[x2(t)]α

L

∂t2
+ w3 ∂3[x3(t)]α

L

∂t2
+

[x0(t)]α
L + w[x1(t)]α

L + w2[x2(t)]α
L + w3[x3(t)]α

L                                       (80i) 

[N(θ(x;w))]α
U =

∂2[x0(t)]α
U

∂t2
+ w

∂2[x1(t)]α
U

∂t2
+ w2 ∂2[x2(t)]α

U

∂t2
+ w3 ∂3[x3(t)]α

U

∂t2
+

[x0(t)]α
U + w[x1(t)]α

U + w2[x2(t)]α
U + w3[x3(t)]α

U                                    (80ii) 

∂[N(θ(t;w))]α
L

∂w
=

∂2[x1(t)]α
L

∂t2
+ 2w

∂2[x2(t)]α
L

∂t2
+ 3w2 ∂3[x3(t)]α

L

∂t2
+ [x1(t)]α

L +

2w[x2(t)]α
L + 3w2[x3(t)]α

L                                                                            (81i) 

∂[N(θ(t;w))]α
U

∂w
=

∂2[x1(t)]α
U

∂t2
+ 2w

∂2[x2(t)]α
U

∂t2
+ 3w2 ∂3[x3(t)]α

U

∂t2
+ [x1(t)]α

U +

2w[x2(t)]α
U + 3w2[x3(t)]α

U                                                                         (81ii) 

∂2[N(θ(t;w))]α
L

∂w2 = 2
∂2[x2(t)]α

L

∂t2
+ 6w

∂3[x3(t)]α
L

∂t2
+ 2[x2(t)]α

L + 6w[x3(t)]α
L         (82i) 

∂2[N(θ(t;w))]α
U

∂w2
= 2

∂2[x2(t)]α
U

∂t2
+ 6w

∂3[x3(t)]α
U

∂t2
+ 2[x2(t)]α

U + 6w[x3(t)]α
U       (82ii) 

[R3]α
L =

∂2[x2(t)]α
L

∂t2
+ [x2(t)]α

L                                                                        (83i) 

[R3]α
U =

∂2[x2(t)]α
U

∂t2
+ [x2(t)]α

U                                                                       (83ii) 

[R3]α
L = 0.010002 αh2t + 0.019998 h2t + 0.003327 αh2t3 +

0.006673 h2t3 + 0.010002 αht + 0.019998 ht + 0.000083 αh2t5 +
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0.000167 h2t5 + 0.001667 αht3 + 0.003333 ht3                                                                  

(84i)    

[R3]α
U = −0.010002 αh2t + 0.040002 h2t − 0.003327 αh2t3 +

0.013327 h2t3 − 0.010002 αht + 0.040002 ht − 0.000083 αh2t5 +
0.000333 h2t5 − 0.001667 αht3 + 0.006667 ht3                                    (84ii)  

L([x3(t)]α
L − [x2(t)]α

L) = 0.010002 αh3t + 0.019998 h3t +
0.003327 αh3t3 + 0.006673 h3t3 + 0.010002 αh2t + 0.019998 h2t +
0.000083 αh3t5 + 0.000167 h3t5 + 0.001667 αh2t3 + 0.003333 h2t3                                                              

(85i)     

 L([x3(t)]α
U − [x2(t)]α

U) = −0.010002 αh3t + 0.040002 h3t −
0.003327 αh3t3 + 0.013327 h3t3 − 0.010002 αh2t + 040002 h2t −
0.000083 αh3t5 + 0.000333 h3t5 − 0.001667 αh2t3 + 0.006667 h2t3                                                             

(85ii)  

[x3(t)]α
L − [x2(t)]α

L = ∬(0.010002 αh3t + 0.019998 h3t +
0.003327 αh3t3 + 0.00667 h3t3 + 0.010002 αh2t + 0.019998 h2t +
0.000083 αh3t5 + 0.000167 h3t5 + 0.001667 αh2t3 +
0.003333 h2t3)  dt dt                                                   (86i) 

[x3(t)]α
U − [x2(t)]α

U = ∬(−0.010002 αh3t + 0.040002 h3t −
0.003327 αh3t3 + 0.013327h3t3 − 0.010002 αh2t + 0.040002 h2t −
0.000083 αh3t5 + 0.000333 h3t5 − 0.001667 αh2t3 +
0.006667 h2t3)  dt dt                                                  (86ii) 

[x3(t)]α
L − [x2(t)]α

L = 0.001667 αh3t3 + 0.000333 h3t3 +
0.000166 αh3t5 + 0.000334 h3t5 + 0.001667 αh2t3 + 0.000333 h2t3 +
0.000002 αh3t7 + 0.000004 h3t7 + 0.000083 αh2t5 + 0.000167 h2t5                                                               
(87i) 

[x3(t)]α
U − [x2(t)]α

U = −0.001667 αh3t3 + 0.006667 h3t3 −
0.000166 αh3t5 + 0.000666 h3t5 − 0.001667 αh2t3 + 0.006667 h2t3 −
0.000002 αh3t7 + 0.000008 h3t7 − 0.000083 αh2t5 + 0.000333 h2t5                                                             
(87ii) 

[x3(t)]α
L = 0.001667 αh3t3 + 0.000333 h3t3 + 0.000166 αh3t5 +

0.000334 h3t5 + 0.003334 αh2t3 + 0.003666 h2t3 + 0.000002 αh3t7 +
0.000004 h3t7 + 0.000334 h2t5 + 0.000166 αh2t5 + 0.001667 αht3 +
0.003333 ht3                                                                                                (88i) 

[x3(t)]α
U = −0.001667 αh3t3 + 0.006667 h3t3 − 0.000166 αh3t5 +

0.000666 h3t5 − 0.003334 αh2t3 + 0.013334 h2t3 − 0.000002 αh3t7 +
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0.000008 h3t7 − 0.000166 αh2t5 + 0.000666  h2t5 − 0.001667 αht3 +
0.006667 ht3                                                                                               (88ii) 

Then, the fuzzy series solution is: 

[x(t)]α = [ [x(t)]α
L  , [x(t)]α

U]                                                                          (89) 

Where  

[x(t)]α
L = 0.01 αt + 0.02 t + 0.005001 αht3 + 0.009999 ht3 +

0.005001 αh2t3 + 0.006999 h2t3 + 0.000249 αh2t5 + 0.000501 h2t5 +
0.001667 αh3t3 + 0.000333 h3t3 + 0.000166 αh3t5 + 0.000334 h3t5 +
0.000002 αh3t7 + 0.000004 h3t7 + ⋯                                                      (90i) 

[x(t)]α
U = −0.01 αt + 0.04 t − 0.005001 αht3 + 0.020001 ht3 −

0.005001 αh2t3 + 0.020001 h2t3 − 0.000249 αh2t5 + 0.000999 h2t5 −
0.001667 αh3t3 + 0.006667 h3t3 − 0.000166 αh3t5 + 0.000666 h3t5 −
0.000002 αh3t7 + 0.000008 h3t7 + ⋯                                                     (90ii) 

The fuzzy series solution at h = −1, will be  

[x(t)]α = [ [x(t)]α
L  , [x(t)]α

U]                                                                          (91) 

Where  

[x(t)]α
L =  

0.01 αt + 0.02 t − 0.001667 αt3 − 0.003333 t3 + 0.000083 αt5 +
0.000167 t5 − 0.000002 αt7 − 0.000004 t7 + ⋯                                     (92i) 

[x(t)]α
U = −0.01 αt + 0.04 t + 0.001667 αt3 − 0.006667 t3 −

0.000083 αt5 + 0.000333 t5 + 0.000002 αt7 − 0.000008 t7 + ⋯                                    
(92ii) 

7. Discussion 

       When solving a fuzzy autonomous differential equation by using the fuzzy 

homotopy analysis method , the accuracy of the results depends greatly on the 

value of the parameter h, other factors also affect, including : the number of 

terms of the solution series, the value of the constant α and the period to which 

the variable t belongs. The fuzzy semi-analytical solutions that we obtained 

during this work are accurate solutions and very close to the fuzzy exact-

analytical solutions, based on the comparison that we will make between the 

results that we obtained and the fuzzy exact-analytical solutions to the chosen 

problem.  
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If we go back to example(1) : 

x′′(t) + x(t) = 0 ,  t ∈ [0 , 0.5]                                                                    (93)                                                                   

The fuzzy exact-analytical solution for this problem is :              

[x(t)]α = [ [x(t)]α
L  , [x(t)]α

U ]                                                                         (94) 

Where 

[x(t)]α
L = ( 0.02 + 0.01α )sint                                                                    (95i) 

[x(t)]α
U = ( 0.04 − 0.01α )sint                                                                   (95ii) 

While the fuzzy semi-analytical solution that we got(at h = −1, α = 0.3) is :  

[x(t)]α = [ [x(t)]α
L  , [x(t)]α

U ]                                                                         (96) 

Where 

[x(t)]α
L = 0.023 t −  0.003833 t3  +  0.000122 t5  −  0.000005 t7   + ⋯          

,                                                                                                                      (97i)    

[x(t)]α
U =  0.037 t −  0.006167 t3  +  0.000308 t5  −  0.000007 t7   + ⋯         

.                                                                                                                    (97ii)    

Also,  the fuzzy semi-analytical solution that we got(at h = −1, α = 0.4) is :  

[x(t)]α = [ [x(t)]α
L  , [x(t)]α

U ]                                                                         (98) 

Where 

[x(t)]α
L = 0.024 t −  0.004 t3  +  0.0002 t5  −  0.000005 t7   + ⋯           (99i) 

[x(t)]α
U =   0.036 t −  0.006 t3  +  0.0003 t5  −  0.000007 t7   + ⋯        (99ii)   

We test the accuracy of the obtained solutions by computing the absolute 

errors 

   [error]α
L   = | [xexact(t)]α

L  − [xseries(t)]α
L  |                                               (100i) 

  [error]α
U  = | [xexact(t)]α

U − [xseries(t)]α
U |                                              (100ii)                        

The following tables provides a comparison between the fuzzy exact-analytical 

solution and the fuzzy semi- analytical solution for this problem.  

     t [xseries(t)]α
L  [error]r

L [xseries(t)]α
U [error]r

U 
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Table 1. 

Compar

ison of 

the 

results 

of 

exampl

e(1), 

α =
0.3. 

Table 2. Comparison of the results of example(1), α = 0.4. 

8. Conclusion 

       In this work, we have studied the fuzzy approximate-analytical solutions 

of the second order fuzzy autonomous differential equation. Obviously the 

accuracy of the results that can be obtained when solving using the fuzzy 

homotopy analysis method, these results may improve further when increasing 

the number of terms of the solution series or using another value for the 

parameter h. The value of the variable t greatly affects the accuracy of the 

results,  if the value of the variable t is close to the initial value, the results will 

be more accurate. Also, the value of the constant α greatly affects the accuracy 

of the results. Certainly, the best value of the constant α cannot be determined, 

as it changes from one problem to another. 
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1 Introduction
The study of δ-open sets was initiated by Veličko[Velicko, 1968] in 1968. Fol-

lowing this Raychaudhuri and Mukherjee[Raychaudhuri and Mukherjee, 1993]
established the concept of δ-preopen sets. Later, Ekici[Ekici, 2009] introduced
the concept of e∗-open sets as a generalization of e-open sets. The aim of this
paper is to introduce and study a new class of sets called, δ-preregular e∗-open
sets using δ-preinterior and e∗-closure operators. The notion of δpe∗-continuity is
also introduced which is stronger than δ-precontinuity.Finally, we obtain decom-
positions of complete continuity and decompositions of perfect continuity.

Throughout this paper, (U,τ ) and (V,η)(or simply U and V ) represent topo-
logical spaces on which no separation axioms are assumed unless explicitly stated
and f:(U,τ )→(V,η) or simply f:U→ V denotes a function f of a topological space
U into a topological space V. Let N ⊆ U, then
cl(N) = ∩{F: N ⊆ F and F c ∈ τ} is the closure of N and
int(N) = ∪{O: O ⊆ N and O ∈ τ} is the interior of N.

2 Preliminaries
Definition 2.1. A set M ⊆ U is called δ-closed[Velicko, 1968] if M = δ-cl(M)
where δ-cl(M)={p∈U:int(cl(G))∩M 6=φ,G∈τ and p∈G }.

Definition 2.2. A set M ⊆ U is called
(1) e-open[Ekici, 2008c] if M ⊆ cl(δ-int(M))∪int(δ-cl(M)) and e-closed if cl(δ-
int(M))∩int(δ-cl(M))⊆M.
(2) a-open[Ekici, 2008d] if M⊆ int(cl(δ-int(M))) and a-closed if cl(int(δ-cl(M)))⊆M.
(3)e∗-open[Ekici, 2009] if M⊆ cl(int(δ-cl(M))) and e∗-closed if int(cl(δ-int(M)))⊆M
.
(4)δ-semiopen[Park et al., 1997] if M⊆cl(δ-int(M))) and δ-semiclosed if int(δ-
cl(M))⊆M).
(5)δ-preopen[Raychaudhuri and Mukherjee, 1993] if M⊆int(δ-cl(M)) and δ-preclosed
if cl(δ-int(M))⊆M.
(6)regular-open[Stone, 1937] if M = int(cl(M)) and regular-closed if M=cl(int(M)).

Definition 2.3. [Ekici, 2008b] A subet M of a space U is said to be a δ-dense set
if δ-cl(M)=U.

The class of open(resp,closed, regular open,δ-preopen, δ-semiopen, e∗-open
and clopen) sets of (U,τ ) is denoted by O(U) (resp,C(U), RO(U), δPO(U), δSO(U),
e∗O(U) and CO(U)).

214



On δ-preregular e∗-open sets in topological spaces

Theorem 2.1. [Raychaudhuri and Mukherjee, 1993] Let M be a subset of a space
(U,τ ), then δ-pcl(M)=M∪cl(δ-int(M)) and δ-pint(M)=M∩int(δ-cl(M)).

Theorem 2.2. [Ekici, 2009]Let M be a subset of a space (U,τ ),then:
(i) e∗-cl(M) = M∪ int(cl(δ-int(M)) and e∗-int(M) = M∩cl(int(δ-cl(M))
(ii) int(cl(δ-int(M))=e∗-cl(δ-int(M))=δ-int(e∗-cl(M)).

Theorem 2.3. Let M be a subset of a space (U,τ ),then:
(i)δ-pint(e∗-cl(M))=e∗-cl(M)∩ int(δ-cl(M)).
(ii)δ-pint(e∗-cl(M))=δ-pint(M)∪ int(cl(δ-int(M)).
(iii)δ-pint(e∗-cl(M))=δ-pint(M)∪ e∗-cl(δ-int(M))
(iv)δ-pint(e∗-cl(M))=δ-pint(M)∪ δ-int(e∗-cl(M)).
(v) δ-pint(e∗-cl(M)) = (M∩int(δ-cl(M))∪ int(cl(δ-int(M))

Lemma 2.1. [Benchalli et al., 2017]For a subset M of a space (U,τ ),the following
are equivalent:
(a)M is clopen;
(b)M is δ-open and δ-closed;
(c)M is regular-open and regular-closed.

Definition 2.4. [Kohli and Singh, 2009] A space (U,τ ) is called δ-partition if
δO(U)=C(U).

Definition 2.5. [Caldas and Jafari, 2016] A space (U,τ ) is a δ-door space if every
subset of U is δ-open or δ-closed.

Theorem 2.4. [Caldas and Jafari, 2016] If (U,τ ) is a δ-door space, then every
δ-preopen set in (U,τ ) is δ-open.

3 δ-preregular e∗-open sets in topological spaces
Definition 3.1. A subset N of a space (U,τ ) is said to be δ-preregular e∗-open(briefly
δpe∗-open) if N =δ-pint(e∗-cl(N)). The complement of a δ-preregular e∗-open is
called a δ-preregular e∗-closed(briefly δpe∗-closed) set.
Clearly, N is δpe∗-closed if and only if N = δ-pcl(e∗-int(N))

The class of δpe∗-open (resp,δpe∗-closed) sets of (U,τ ) will be denoted by
δPE∗O(U)(resp,δPE∗C(U)).

Theorem 3.1. Let (U,τ ) be a topological space and M, N⊆ U. Then the following
hold:
(i) If M ⊆ N, then δ-pint(e∗-cl(M) ⊆ δ-pint(e∗-cl(N)).
(ii) If M ∈δPO(U), then M ⊆ δ-pint(e∗-cl(M)).
(iii) If M ∈e∗C(U), then e∗-cl(δ-pint(M)) ⊆ M.
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(iv) δ-pint(e∗-cl(N)) is δpe∗-open
(v) If M ∈e∗C(U), then δ-pint(M) is δpe∗-open..
Proof:(i)Obvious.
(ii) Let M ∈ δPO(U). As M ⊆ e∗-cl(M),then M ⊆ δ-pint(e∗-pcl(M).
(iii) Let M ∈ e∗C(U). Since δ-pint(M) ⊆ M, then e∗-cl(δ-pint(M)) ⊆ M.
(iv) We have
δ-pint(e∗-cl(δ-pint(e∗-cl(M)) ⊆ δ-pint(e∗-cl(e∗-cl(M)) = δ-pint(e∗-cl(M) and
δ-pint(e∗-cl(δ-pint(e∗-cl(M))) ⊇ δ-pint(δ-pint(e∗-cl(M)) = δ-pint(e∗-cl(M).
Hence δ-pint(e∗-cl(δ-pint(e∗-cl(M))) = δ-pint(e∗-cl(M).
(v) Suppose that M ∈ e∗C(U). By (i),
δ-pint(e∗-cl(δ-pint(M))⊆ δ-pint(e∗-cl(M)=δ-pint(M).
On the other hand, we have
δ-pint(M) ⊆ e∗-cl(δ-pint(M) so that
δ-pint(M) ⊆ δ-pint(e∗-cl(δ-pint(M)).
Therefore δ-pint(e∗-cl(δ-pint(M))=δ-pint(M).
This shows that δ-pint(M) is δpe∗-open.

Theorem 3.2. (i)Every δpe∗-open set is δ-preopen(hence e-open,e∗-open).
(ii)Every δpe∗-open set is e∗-closed..
Proof: (i)Let M be δpe∗-open,then by Theorem 2.3(i),
δ-pint(e∗-cl(M))=e∗-cl(M)∩int(δ-cl(M).
Therefore, M ⊆int(δ-cl(M), M is δ-preopen.
(ii)Let N be δpe∗-open.By Theorem 2.3(ii), N =δ-pint(N)∪int(cl(δ-int(N))).
Therefore,int(cl(δ-int(N)))⊆N. Thus N is e∗-closed.

Remark 3.1. By the following example,we show that every δ-preopen(resp,e∗-
closed) set need not be a δpe∗-open set

Example 3.1. Let U = {a,b,c,d} and τ = {U, φ, {a}, {b}, {a,b}, {a,c}, {a,b,c}}.
Then {a,b,c} is a δ-preopen set but {a,b,c} /∈ δPE∗O(U) and {d} is e∗-closed but
{d} /∈ δPE∗O(U)it is not δpe∗-open

Corolary 3.1. For a topological space (U,τ ), we have
δ-PO(U)∩δ-PC(U) ⊆ δPE∗O(U)⊆ e∗O(U)∩e∗C(U).
Proof: Obvious.
The converse inclusions in the above corollary need not be true as seen from the
following example

Example 3.2. Let (U,τ ) as in Example 3.1,then {b} is δpe∗-open but it is not
δ-preclopen. Moreover, {a,d} is e∗-clopen but not δpe∗-open

Remark 3.2. The notions of δpe∗-open sets and δ-open sets (hence a-open sets,
δ-semiopen sets, δ∗-sets) are independent of each other.
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Example 3.3. Consider (U,τ ) as in Example 3.1.The set {a} is δpe∗-open but it is
not δ∗-set. Moreover, {a,b,c} is δ-open but not δpe∗-open

Theorem 3.3. In a δ-partition space (U,τ ), a subset M of U is δpe∗-open if and
only if it is δ-preopen.
Proof: Necessity:It follows from Theorem 3.2(i) .
Sufficiency:Let N be δ-preopen. Since (U,τ ) is δ-partition and by Theorem 2.3(ii),
we have δ-pint(e∗-cl(M)) = δ-pint(M)∪ int(cl(δ-int(M))

= M ∪ int(cl(cl(M))
= M ∪int(cl(M)
= M ∪δ-int(cl(M)
= M ∪δ-int(δ-int(M)
= M ∪δ-int(M) = M

Therefore, δ-pint(e∗-cl(M)) = M.Hence M is δpe∗-open.

Theorem 3.4. A subset N ⊆ U is δpe∗-open if and only if N is e∗-closed and δ-
preopen.
Proof: Necessity:It follows from Theorem 3.2.
Sufficiency:Let N be both e∗-closed and δ-preopen. Then N = e∗-cl(N) and N =
δ-pint(N). Therefore, δ-pint(e∗-cl(N)) = δ-pint(N) = N. Hence N is δpe∗-open.

Remark 3.3. The class of δpe∗-open sets is not closed under finite union as well
as finite intersection. It will be shown in the following example.

Example 3.4. Consider (U,τ ) as in Example 3.1. Let A = {a,c} and B = {b,c},the
A and B are δpe∗-open sets but A ∪ B = {a,b,c} /∈ δPE∗O(U).
Moreover,C = {a,b,d} and D = {b,c,d} are δpe∗-open sets but
C ∩ D = {b,d} /∈ δPE∗O(U).

Theorem 3.5. For a subset M of a space (U,τ ),the following are equivalent:
(i) M is δpe∗-open.
(ii) M = e∗-cl(M)∩ int(δ-cl(M)).
(iii) M = δ-pint(M)∪ int(cl(δ-int(M)).
(iv)M = δ-pint(M)∪ e∗-cl(δ-int(M))
(v) M = δ-pint(M)∪ δ-int(e∗-cl(M)).
(vi) M = (M∩int(δ-cl(M))∪ int(cl(δ-int(M)).
Proof:It follows from Theorem 2.3

Theorem 3.6. In any space (U,τ ) , the empty set is the only subset which is
nowhere δ-dense and δpe∗-open.
Proof: Suppose M is nowhere δ-dense and δpe∗-open. Then by Theorem 2.3(i), M
= δ-pint(e∗-cl(M)) =e∗-cl(M)∩ int(δ-cl(M)= e∗-cl(M)∩φ = φ.
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Lemma 3.1. If (U,τ ) is a δ-door space, then any finite intersection of δ-preopen
sets is δ-preopen.
Proof:Obvious since δO(X) is closed under finite intersection.

Theorem 3.7. If (U,τ ) is a δ-door space, then any finite intersection of δpe∗-open
sets is δpe∗-open.
Proof:Let {Ai:i=1,2,...,n} be a finite family of δpe∗-open. Since the space (U,τ )

is δ-door, then by Lemma 3.1, we have
n⋂

i=n

Ai∈δPO(U).

By Theorem 3.1(ii),
n⋂

i=n

Ai⊆ δ-pint(e∗-cl(
n⋂

i=n

Ai).

For each i, we have
n⋂

i=n

Ai⊆ Ai and thus δ-pint(e∗-cl(
n⋂

i=n

Ai)⊆ δ-pint(e∗-cl(Ai) =

Ai. Therefore, δ-pint(e∗-cl(
n⋂

i=n

Ai)⊆
n⋂

i=n

Ai.

Lemma 3.2. If a subset M of a space (U,τ ) is regular open,then
M = int(cl(M)=int(δ-cl(M)).

Theorem 3.8. Every regular open set is δpe∗-open.
Proof: Let M be regular open. Then M=int(cl(M))=int(δ-cl(M)). By Theorem
2.6(i), δ-pint(e∗-cl(M)) = e∗-cl(M)∩int(δ-cl(M))=e∗-cl(M)∩M=M. This shows that
M is δpe∗-open.

Definition 3.2. A subset M of a space (U,τ ) is called δ∗-set if
int(δ-cl(M))⊆cl(δ-int(M))

Theorem 3.9. (i) Every δ-semiopen set is δ∗-set.
(ii)Every δ-semiclosed set is δ∗-set.
Proof:Clear

Definition 3.3. A subset M of a space (U,τ ) is called
b∗-open if M = cl(δ-int(M))∪ int(δ-cl(M)).
b∗-closed if M = cl(δ-int(M))∩ int(δ-cl(M))

Theorem 3.10. A subset M of a space (U,τ ) is regular open if and only if it is
b∗-closed.
Proof:Let M be regular open. Then by Lemma 3.2, M = int(cl(M)=int(δ-cl(M)).
Since every regular open set is δ-open, we have cl(δ-int(M))∩ int(δ-cl(M)) =
cl(M)∩ M = M. Hence A is b∗-closed.
Conversely, let M be b∗-closed.Then int(cl(δ-int(M))⊆int(δ-cl(δ-int(M))⊆ cl(δ-
int(M))∩ int(δ-cl(M))=M. By Definition 3.3, we have M ⊆ int(δ-cl(M)) ⊆ int(δ-
cl(cl(δ-int(M))) = int(cl(cl(δ-int(M))) = int(cl(δ-int(M))).
Therefore, M = int(cl(δ-int(M)). Now, int(cl(M)) = int(cl(int(cl(δ-int(M))) = int(cl(δ-
int(M)) = M. Hence M is regular open.
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Theorem 3.11. (i) Every b∗-closed set is δ-preopen.
(ii)Every b∗-closed set is δ-semiopen.
(iii)Every b∗-closed set is δpe∗-open.
Proof:(i) and (ii) are obvious
(iii)Let M be b∗-closed,then we have M = int(cl(δ-int(M)). Then δ-pint(e∗-cl(M))
= δ-pint(M) ∪ int(cl(δ-int(M)) = δ-pint(M) ∪ M = M.Hence M is δpe∗-open

Remark 3.4. The above discussions can be summarized in the following diagram:
DIAGRAM

regular open −→ δ-open −→ a-open −→ δ-semiopen −→ δ∗-set
l ↓ ↓

b∗-closed −→ δpe∗-open −→ δ-preopen −→ e-open −→ e∗-open

Theorem 3.12. For a subset M of a space (U,τ ), the following are equivalent:
(i) M is regular open;
(ii) M is δpe∗-open and δ-open;
(iii) M is δpe∗-open and a-open;
(iv) M is δpe∗-open and δ-semiopen;
(v) M is δpe∗-open and δ∗-set.
Proof: (i) −→(ii)−→(iii)−→(iv)−→(v):Follows from the above diagram
(v)−→(i):Let M be δpe∗-open and δ∗-set.Then int(δ-cl(M))⊆cl(δ-int(M)) and
int(δ-cl(M))⊆ int(cl(δ-int(M))⊆int(δ-cl(δ-int(M))⊆int(δ-cl(M)).
Therefore we have int(δ-cl(M))=int(cl(δ-int(M)).
Since M is δpe∗-open, M = δ-pint(δ-pcl(M))

=(M∪int(cl(δ-int(M))∩int(δ-cl(M))
=int(δ-cl(M)∩int(δ-cl(M))
=int(δ-cl(M)).

Therefore M =int(δ-cl(M))=int(cl(M)) and hence M is regular open.

Theorem 3.13. For a subset M of a space (U,τ ), the following are equivalent:
(i) M is regular open.
(ii) M is δpe∗-open and δ-semiclosed.
(iii) M is e∗-closed and a-open.
Proof: (i)−→(ii):It follows from Theorem 3.8
(ii)−→(i):Let M be δpe∗-open and δ-semiclosed. Since every δ-semiclosed set is
δ∗-set. Hence by Theorem 3.12(v), M is regular open.
(ii) −→(iii):Clear
(i)←→(iii):It is shown in Theorem 3 [Ekici, 2008b]

Corolary 3.2. For a subset M of a space (U,τ ), the following are equivalent:
(i) M is regular open;
(ii) M is δpe∗-open and δ-open;
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(iii) M is δpe∗-open and a-open;
(iv) M is δpe∗-open and δ-semiopen;
(v) M is δpe∗-open and δ∗-set;.
(vi) M is δpe∗-open and δ-semiclosed;
(vii) M is e∗-closed and a-open;
(viii) M is b∗-closed.

Theorem 3.14. For a subset M of a space (U,τ ), the following are equivalent:
(i) M is clopen;
(ii) M is δ-open and δ-closed;
(iii) M is regular open and regular closed;
(iv) M is δpe∗-open and δ-closed.
Proof: (i)←→(ii)←→(iii):Follows from Lemma 2.1
(iii)−→(iv). It follows from Theorem 3.8
(iv)−→(ii)Let M be δpe∗-open and δ-closed.By Theorem 2.3(i) , we have N =
e∗-cl(N) ∩ int(δ-cl(N)) = e∗-cl(N) ∩δ-int(δ-cl(N))=δ-pcl(N)∩δ-int(N)=δ-int(N).
Therefore M is δ-open.

4 Decompositions of complete continuity
In this section, the notion of regular δ-preopen continuity is introduced and

the decompositions of complete continuity are discussed.

Definition 4.1. A function f:(U,τ )→(V,σ) is said to be
(i) δpe∗-continuous if the inverse image of every open subset of (V,σ) is δpe∗-open
set in (U,τ ).
(ii)perfectly continuous[Noiri, 1984] (resp,e-continuous[Ekici, 2008c], e∗-continuous[Ekici,
2009], δ-almost continuous[Raychaudhuri and Mukherjee, 1993], δ∗-continuous,
contra-super-continuous[Jafari and Noiri, 1999], completely continuous[Arya and
Gupta, 1974], RC-continuous[Dontchev and Noiri, 1998], super-continuous[Munshi
and Bassan, 1982], contra continuous[Dontchev, 1996], a-continuous[Ekici, 2008d],
δ-semicontinuous[Noiri, 2003], contra e∗-continuous[Ekici, 2008a], contra δ-
semicontinuous[Ekici, 2004], contra b∗-continuous) if the inverse image of every
open subset of (V,σ) is clopen (resp,e-open,e∗-open,δ-preopen,δ∗-set, δ-closed,
regular open, regular closed, δ-open, closed, a-open, δ-semiopen, e∗-closed, δ-
semiclosed, b∗-closed) set in (U,τ )

By Theorems 3.9 and 3.11, we obtain the following theorem.

Theorem 4.1. (i) Every contra b∗-continuous set is δ-almost continuous.
(ii)Every contra b∗-continuous set is δ-semicontinuous
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(iii)Every contra b∗-continuous set is δpe∗-continuous.
(iv) Every δ-semicontinuous set is δ∗-continuous.
(v)Every contra δ-semicontinuous is δ∗-continuous.

Remark 4.1. By Diagram I, we have the following diagram:
DIAGRAM II

c.cont. −→ s.cont. −→ a.cont. −→ δs.cont. −→ δ∗.cont.
l ↓ ↓

cb∗.cont.−→δpe∗.cont.−→δp.cont. −→ e.cont. −→ e∗.cont.

where c.cont.=completely continuity, s.cont.=super continuity, a.cont.=a-continuity,
δs.cont.=δ-semicontinuity, δ∗.cont.=δ∗-continuity, cb∗.cont.=contra b∗-continuity,
δpe∗.cont.=δ-preregular e∗-continuity, δp.cont.=δ-precontinuity, e.cont.=e-continuity,
e∗.cont.=e∗-continuity

Theorem 4.2. For a function f:(U,τ )→(V,η), the following are equivalent:
(i) f is completely continuous;
(ii)f is δpe∗-continuous and super continuous;
(iii)f is δpe∗-continuous and a-continuous;
(iv) f is contra e∗-continuous and a-continuous;
(v)f is δpe∗-continuous and δ-semicontinuous;
(vi)f is δpe∗-continuous and contra δ-semicontinuous;
(vii)f is δpe∗-continuous and δ∗-continuous;
(viii) f is contra b∗-continuous.

Remark 4.2. (i) δpe∗-continuity and super-continuity(hence a-continuity,δ-semicontinuity,
δ∗∗-continuity) are independent notions.
(ii) δpe∗-continuity and contra δ-semicontinuity are independent notions.

Example 4.1. Let (U,τ ) be a space as in Example 3.1 and let η = {U, φ, {a}, {b},
{a,b}, {a,b,c}}
(i) Define f:(U,τ ) → (U,η) by f(a) = f(c) = a , f(b) = b and f(d) = d. Clearly
f is super-continuous but for {a,b}∈ O(V), f−1({a,b}) = {a,b,c} /∈ δPE∗O(U).
Therefore f is not δpe∗-continuous.
Define g:(U,τ ) → (U,η) by g(a) = b, g(b) = g(c) = g(d) = a.Then g is δpe∗-
continuous but for {a} ∈ O(V), g−1({a}) = {b,c,d} /∈ q∗O(U). Therefore g is not
q∗-continuous.
(ii)Define f:(U,τ ) → (U,η) by f(a) = f(c) = f(d) = b and f(b) = a. Clearly f is
δ-semiregular-continuous but for {b}∈ O(V), f−1({b}) = {a,c,d} /∈ δPE∗PO(U).
Therefore f is not δpe∗-continuous.
Define g:(U,τ )→ (U,η) by g(a) = g(b)=g(d)=a,g(c) = b.Then g is δpe∗-continuous
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but for {a} ∈ O(V), g−1({a}) = {a,b,d} /∈ δSC(U).Therefore g is not contra δ-
semicontinuous.

5 Decompositions of perfectly continuity

In this section, the decompositions of perfectly continuity are obtained.

Theorem 5.1. For a function f:(U,τ )→ (U,η), the following are equivalent:
(i) f is perfectly continuous;
(ii) f is super continuous and contra super continuous;
(iii) f is completely continuous and RC-continuous;
(iv) f is δpe∗-continuous and contra super continuous.
Proof: It is a direct consequence of Theorem 3.14

Remark 5.1. As shown by the following examples,δpe∗-continuity and contra su-
per continuity are independent of each other.

Example 5.1. Consider (U,τ ) as in Example 3.1 and (U,η) as in Example 4.1. De-
fine f: (U,τ )→ (U,η) by f(a) = f(c) = f(d) = a and f(b) = c. Then f is contra super
continuous but it is not δpe∗-continuous since {a}∈ O(V), f−1({a}) = {a,c,d} /∈
δPE∗O(U). Define g: (U,τ )→ (U,η) by g(a) =b, g(b) = g(c) = g(d) = a.Then g is
δpe∗-continuous but it is not contra super continuous since {a} ∈ O(V), g−1({a})
= {b,c,d} /∈ δC(U).

6 Conclusions:

The notions of sets and functions in topological spaces and fuzzy topolog-
ical spaces are extensively developed and used in many engineering problems,
information systems, particle physics, computational topology and mathemati-
cal sciences. By researching generalizations of closed sets, some new continuity
have been founded and they turn out to be useful in the study of digital topology.
Therefore, δpe∗-continuous functions defined by δpe∗-open sets will have many
possibilities of applications in digital topology and computer graphics.
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With 𝒕 ∈ ℕ we define the sets 𝑲𝒕 and 𝑲𝒕
∗ containing all positive integers that 

converge to 1 in t iterations in the form of Collatz algorithm. The following are 

the properties of the {𝑲𝒕}𝒕∈ℕ and {𝑲𝒕
∗}𝒕∈ℕ: countability, empty intersection 

between the elements of the same family, and - at the end of the work - we 

conjecture that both of the two families are a partition of ℕ𝟎. We demonstrate 

also that each set  𝑲𝒕 and 𝑲𝒕
∗ is the union of two sets, a set includes even positive 

integers, the other, if it is non-empty, includes odd positive integers different 

from 1 and we go on proving that the maximum of each set  𝑲𝒕 and 𝑲𝒕
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1 Introduction  

Let us consider the Collatz conjecture (Leggerini, 2004), also known as the 

3𝑛 + 1  problem. We start from a positive integer n, if it is even we divide it by 

two, if it is odd we multiply it by three and add one to it, then we start over by 

applying the same rules on the number obtained. For example, starting from 3 

the sequence is generated: 3, 10, 5, 16, 8, 4, 2, 1. In the second form of the 

algorithm of 3𝑛 + 1 we calculate 
3𝑛+1

2
 if n is odd. With 3 we obtain the sequence 

3, 5, 8, 4, 2, 1. It is conjectured that, from any positive integer we start, the 

sequences always arrive at 1 in a finite number of steps. It seems that all 

trajectories fall into the banal cycle 4, 2, 1 if n > 2. The conjecture has not yet 

been proven and many mathematicians believe the question be undecidable 

(Conway, J. H, 1972). By applying the algorithm to a positive integer n, a 

sequence of integers is generated which we will call a sequence or trajectory 

of n which we will denote with 𝑇(𝑛) (оr 𝑇∗(𝑛) with the second form of the 

algorithm). For example 𝑇(5) = {5,16,8,4,2,1} and 𝑇∗(3) = {3,5,8,4,2,1}. Let 

ℕ = {0, 1, 2 … } and ℕ0 = {1, 2, 3 … }. If 𝑖 ∈ ℕ and 𝑛 ∈ ℕ0, we denote by 𝑇𝑖(𝑛) 

the element of place i in the trajectory 𝑇(𝑛). If 𝑖 = 0 we set 𝑇0(𝑛) = 𝑛. The 

same meaning will have 𝑇𝑖
∗(𝑛). For example 𝑇0(5) = 5, 𝑇3(5) = 4,  𝑇2

∗(3) = 8. 

We define convergent a trajectory that contains the number 1. In any trajectory 

containing 1 we will ignore the terms subsequent.  If the trajectory generated by 

the integer n converges we will say that the number n converges. Any number 

of a trajectory will be treated as a positive integer. The term ”t-convergent” will 

be equivalent to ”convergent in t iterations”. We will call the number t the 

convergence time. The notation 𝑘𝑡 will indicate that the positive integer k is t-

convergent. In the following TC will be the set of convergence times of the 

converging positive integers. 

  

 

2  The two forms of Collatz Conjecture 

First form. With 𝑛 ∈ ℕ0 e 𝑖 ∈ ℕ0 the algorithm is the iteration of the 

function: 

 

              𝑇𝑖(𝑛) = {
𝑇𝑖−1(𝑛)

2
     if  𝑇𝑖−1(𝑛) ≡ 0(𝑚𝑜𝑑2)

3 ⋅ 𝑇𝑖−1(𝑛) + 1     if  𝑇𝑖−1(𝑛) ≡ 1(𝑚𝑜𝑑2)
     (2.1) 

 

with 𝑇0(𝑛) = 𝑛 if  𝑖 = 0. 

Second form. With 𝑛 ∈ ℕ0 and 𝑖 ∈ ℕ0, the algorithm is the iteration of the 

function: 



Michele Ventrone 

227 

 

              𝑇𝑖
∗(𝑛) = {

𝑇𝑖−1
∗ (𝑛)

2
     if  𝑇𝑖−1

∗ (𝑛) ≡ 0(𝑚𝑜𝑑 2)

3𝑇𝑖−1
∗ (𝑛)+1

2
     if  𝑇𝑖−1

∗ (𝑛) ≡ 1(𝑚𝑜𝑑 2)
    (2.2) 

 

with 𝑇0
∗(𝑛) = 𝑛  𝑖𝑓 𝑖 = 0. 

   

3  Construction of the sets K 

Let us put in the same set 𝐾𝑡 the totality of positive integers t-convergent  

with the algorithm in the first form: 

 

              ∀𝑡 ∈ ℕ, 𝐾𝑡 = {𝑘 ∈ 𝑁0: 𝑘 = 𝑘𝑡}.                                                               (3.1) 

 

For example, applying the algorithm in the first form: 

 

𝐾0 = {1} because 1 converges to 1 in zero iterations;  

𝐾1 = {2} because 2 converges to 1 in an iteration;  

𝐾2 = {4} because 4 converges to 1 in two iterations; 

                    …      …      …      …                                            

 

If the Collatz algorithm is used in the second form, in (3.1) we will add to 𝐾𝑡 

and its elements the symbol ∗, that is: 

 

               ∀𝑡 ∈ ℕ, 𝐾𝑡
∗ = {𝑘∗ ∈ ℕ0: 𝑘∗ = 𝑘𝑡

∗}.      (3.2) 

 

Proposition 3.1. (Basic) 

∀𝑡 ∈ ℕ, 𝐾𝑡 e 𝐾𝑡
∗ are non-empty. 

 

Proof. Trivially: whatever 𝑡 ∈ ℕ, the number 2𝑡 converges to 1 in t iterations, 

hence in 𝐾𝑡 there is at least 2𝑡. For the same reason 𝑘𝑡
∗ is also non-empty. □ 

 

 

We consider the set TC of all times of convergence. Since each 𝑡 ∈ ℕ can be 

associated with a 𝐾𝑡 and a 𝐾𝑡
∗ by means of 2𝑡 and vice versa, we can state that 

𝑇𝐶 = ℕ and that the families {𝐾𝑡}𝑡∈ℕ and {𝐾𝑡
∗}𝑡∈ℕ are countable.  

 

The following corollaries then hold. 

 

Corollary 3.2. 

Any positive or null integer is a time of convergence. 
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Corollary 3.3. 

Each of the families {𝐾𝑡}𝑡∈ℕ and {𝐾𝑡
∗}𝑡∈ℕ is countable. 

 

Proposition 3.4.  

If 𝑡1 𝑎𝑛𝑑 𝑡2, with 𝑡1 ≠ 𝑡2, are in the set TC, then it results: 

 

 i)       𝐾𝑡1
∩ 𝐾𝑡2

= ∅ 

 i*)      𝐾𝑡1
∗ ∩ 𝐾𝑡2

∗ = ∅ . 

 

Proof. i) Algorithm in the first form. By Proposition 3.1, 𝐾𝑡1
and 𝐾𝑡2

 are 

non-empty. Assume that 𝐾𝑡1
∩ 𝐾𝑡2

≠ ∅ , with 𝑡1 ≠ 𝑡2. If 𝑘 ∈ 𝐾𝑡1
∩ 𝐾𝑡2

 then k 

must converge in the same number of iterations, so 𝑡1 = 𝑡2, against the 

hypothesis. Therefore 𝐾𝑡1
∩ 𝐾𝑡2

= ∅ . • 

i*) Algorithm in the second form. The proof is similar to the previous one: 

just insert the asterisk to the sets 𝐾𝑡 .  □ 

 

Each family {𝐾𝑡}𝑡∈ℕ and {𝐾𝑡
∗}𝑡∈ℕ divides ℕ0 into classes that we cannot 

consider at the moment of equivalence. 

 

4 Decomposition of sets K 

Let 𝑡 ∈ ℕ0. Applying the first form of the Collatz algorithm we will prove 

that each set 𝐾𝑡 is formed by a set 𝐴𝑡 and a set 𝐵𝑡, that is 𝐾𝑡 = 𝐴𝑡 ∪ 𝐵𝑡 with 𝐴𝑡  

containing only even numbers and 𝐵𝑡 empty or containing only odd numbers 

different from 1. Applying the second form of the Collatz algorithm we will 

prove that 𝐾𝑡
∗ = 𝐴𝑡

∗ ∪ 𝐵𝑡
∗  with 𝐴𝑡

∗ containing only even numbers and 𝐵𝑡
∗ empty 

or containing only odd numbers different from 1. We will also prove that the 

elements of 𝐾𝑡 can be obtained from all the elements of 𝐾𝑡−1 and the elements 

of 𝐾𝑡
∗ can be obtained from all elements of 𝐾𝑡−1

∗ . If t = 0 it is 𝐾0 = 𝐾0
∗ = {1} 

and therefore 2𝐾0 = 2𝐾0
∗ = {2} = 𝐾1 = 𝐾1

∗. Some B sets are empty such as sets 

𝐵1, 𝐵1
∗, 𝐵2, 𝐵2

∗,  𝐵3,  𝐵3
∗, 𝐵4, 𝐵4

∗, 𝐵6, 𝐵8, 𝐵10. I don't know if there are other empty 

B sets. In this study 𝐴0 = {1} , 𝐴0
∗ = {1} , 𝐵0 = ∅ and 𝐵0

∗ = ∅ . 
 

Let t ∈ ℕ. Here we will assume that 𝐾𝑡+1 is made up of two sets of numbers: 

 

1) by the doubles of the numbers of 𝐾𝑡; 

2) from the integers 𝑏 ≠ 1 which are odd solutions in ℕ0 of the equation   3𝑏 +

1 = 𝑘𝑡 , with 𝑘𝑡 ∈ 𝐾𝑡 , 𝑘𝑡  even and 𝑘𝑡 ≠ 4; 

and that 𝐾𝑡+1
∗  is formed by two sets of numbers:  
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1*) by the doubles of the numbers of 𝐾𝑡
∗; 

2*) from the integers 𝑏∗ ≠ 1 which are odd solutions in ℕ0 of the equation 

3𝑏∗+1

2
= 𝑘𝑡

∗ , with 𝑘𝑡
∗ ∈ 𝐾𝑡

∗ and 𝑘𝑡
∗ ≠ 2. 

 

Called P the set of even positive integers, we denote by 2𝐾𝑡 (set of even 

derivatives of the first type or set of even derivatives of 𝐾𝑡 or set of doubles of 

the first type) the set obtained by doubling all the numbers of 𝐾𝑡: 

              ∀𝑡 ∈ ℕ, 2𝐾𝑡 = {𝑎 ∈ 𝑃: 𝑎 = 2𝑘𝑡 , 𝑘𝑡 ∈ 𝐾𝑡}.     (4.1) 

We denote by 2𝐾𝑡
∗ (set of even derivatives of the second type or set of even 

derivatives of 𝐾𝑡
∗ or set of doubles of the second type) the set obtained by 

doubling all the numbers of 𝐾𝑡
∗: 

 

              ∀𝑡 ∈ ℕ, 2𝐾𝑡
∗ = {𝑎∗ ∈ 𝑃: 𝑎∗ = 2𝑘𝑡

∗, 𝑘𝑡
∗ ∈ 𝐾𝑡

∗} .                           (4.2) 

 

We denote by 𝐵𝑡+1 (set of odd derivatives of 𝐾𝑡 or set of odd derivatives of 

the first type) the numbers with the property 2) and by 𝐵𝑡+1
∗  (set of odd 

derivatives of 𝐾𝑡
∗ to set of odd derivatives of second type) numbers with the 

property 2∗). Called D the set of integers odd positive, the set of odd derivatives 

of 𝐾𝑡 we have: 

 

          ∀𝑡 ∈ ℕ, 𝐵𝑡+1 = {𝑏 ∈ 𝐷 − {1}: 3𝑏 + 1 = 𝑘𝑡 , 𝑘𝑡 ∈ 𝐾𝑡 ∩ 𝑃, 𝑘𝑡 ≠ 4}  (4.3) 

 

while the set of odd derivatives of 𝐾𝑡
∗ is 

 

           ∀𝑡 ∈ ℕ, 𝐵𝑡+1
∗ = {𝑏∗ ∈ 𝐷 − {1}:

3𝑏∗+1

2
= 𝑘𝑡

∗, 𝑘𝑡
∗ ∈ 𝐾𝑡

∗, 𝑘𝑡
∗ ≠ 2} .  (4.4) 

  

Theorem 4.1. (Theorem of the inclusion of doubles) 

 The even derivative of 𝐾𝑡 (𝐾𝑡
∗) is contained in 𝐾𝑡+1(𝐾𝑡+1

∗ ), that is: 

 

           a) ∀𝑡 ∈ ℕ, 2𝐾𝑡 ⊆ 𝐾𝑡+1        b) ∀𝑡 ∈ ℕ, 2𝐾𝑡
∗ ⊆ 𝐾𝑡+1

∗ .              (4.5) 

 

Proof. By Corollary 3.2 every t is a time of convergence. Given 𝑡 ∈ ℕ, we 

consider 𝐾𝑡 (which is non-empty by Proposition 3.1). Trivially: ∀𝑘𝑡 ∈ 𝐾𝑡, the 

trajectory 𝑇(𝑘𝑡) = {𝑘𝑡, … ,4,2,1} is contained in the trajectory 𝑇(2𝑘𝑡) =
{2𝑘𝑡 , 𝑘𝑡, … ,4,2,1}. This means that 2𝑘𝑡 is (t+1)-convergent, so 2𝑘𝑡 ∈ 𝐾𝑡+1. • 
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If 𝐾𝑡+1 is devoid of odd numbers, only the sign of equality holds. To prove 

it, let's suppose that 𝐾𝑡+1 is devoid of odd numbers and that, absurdly, it contains 

an even number 𝑎𝑡+1 which does not is double of any number of 𝐾𝑡. Since the 

even 𝑎𝑡+1  is also is (t+1)-convergent, the trajectory 𝑇(𝑎𝑡+1) =

{𝑎𝑡+1,
𝑎𝑡+1

2
, … ,4,2,1} will contain the trajectory 𝑇 (

𝑎𝑡+1

2
, ) =

{
𝑎𝑡+1

2
, … ,4,2,1} so 

𝑎𝑡+1

2
 is  t-convergent, that is 

𝑎𝑡+1

2
∈ 𝐾𝑡, against our hypothesis. 

It follows that 2𝐾𝑡 coincides with 𝐾𝑡+1 if this is devoid of odd. Then the relation 

a) of (4.5) holds for the arbitrariness of t. • 

In the case of 2𝐾𝑡
∗ proceed in the same way, mutatis mutandis. □ 

 

 

Theorem 4.2. (Odd derivative theorem of the first type) 

Let 𝑘𝑡 be even and 𝑘𝑡 ≠ 4 . If there is a positive integer b satisfying the equation 

 

              3𝑏 + 1 = 𝑘𝑡                      (4.6) 

 

then 

 

              𝑏 =
𝑘𝑡−1

3
        (4.7) 

 

belongs to 𝐵𝑡+1. 

 

Proof. Let b and 𝐾𝑡 satisfy the hypotheses. Since 𝑏 is odd and different from 

1, its successor is 𝑘𝑡, because to b is applied (2.1), so the trajectory 𝑇(𝑏) =

𝑇 (
𝑘𝑡−1

3
) = {

𝑘𝑡−1

3
, 𝑘𝑡, … ,4,2,1} contains the trajectory 𝑇(𝑘𝑡) = {𝑘𝑡, … ,4,2,1}. 

This means that b converges in  t + 1 iterations, that is 𝑏 ∈ 𝐵𝑡+1. □ 

 

Recall that an odd derivative 𝐵𝑡 either is empty or is formed only by odd 

positive different from 1. 

 

 

Theorem 4.3. (Theorem of strict inclusion of odd derivatives of the first type)  

The odd derivative of 𝐾𝑡(𝐾𝑡
∗) is strictly contained in 𝐾𝑡+1(𝐾𝑡+1

∗ ), that is: 

 

           a) ∀𝑡 ∈ ℕ, 𝐵𝑡+1 ⊂ 𝐾𝑡+1      b) ∀𝑡 ∈ ℕ, 𝐵𝑡+1
∗ ⊂ 𝐾𝑡+1

∗ .    (4.8) 

 

Proof. By Proposition 3.1 every 𝐾𝑡+1(𝐾𝑡+1
∗ ) is non-empty because it contains 

at least the even number 2𝑡+1, therefore 𝐵𝑡+1 even if it were empty could not 

coincide with 𝐾𝑡+1(𝐾𝑡+1
∗ ). □ 
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Theorem 4.4. (Theorem of the union of even and odd derivatives of the first type) 

The set 𝐾𝑡+1 is the union of the set of doubles of 𝐾𝑡 and of the odd derivative of 

𝐾𝑡, that is:  

 

              ∀𝑡 ∈ ℕ, 𝐾𝑡+1 = 2𝐾𝑡 ∪ 𝐵𝑡+1.                                                  (4.9) 

(remarkable equality, algorithm in first form) 

 

Proof. Let us consider 𝐾𝑡, with 𝑡 ∈ ℕ. It is necessary to demonstrate that 

1) there are no other even integers (t+1)-convergent beyond those of 2𝐾𝑡; 

2) the odd numbers (t+1)-convergent  are only those of 𝐵𝑡+1. 

 

We prove 1). We denote by 𝐴𝑡+1 the totality of even positive integers 

converging in t + 1 iterations that we know to be non-empty (each 𝐴𝑡 contains 

at least 2𝑡). It immediately turns out that ∀𝑡 ∈ ℕ, 2𝐾𝑡 ⊆ 𝐴𝑡+1. 

We show that 

              ∀𝑡 ∈ ℕ, 2𝐾𝑡 = 𝐴𝑡+1.                 (4.10) 

If for a fixed 𝑡 ∈ ℕ there were an even 𝑎𝑡+1 ∈ 𝐴𝑡+1 that was not double of any 

positive integer of 𝐾𝑡, it would be absurd because the trajectory 𝑇(𝑎𝑡+1) =

{𝑎𝑡+1,
𝑎𝑡+1

2
, … 4,2,1} would contain the trajectory 𝑇 (

𝑎𝑡+1

2
) = {

𝑎𝑡+1

2
, … ,4,2,1} 

whose seed at 
𝑎𝑡+1

2
∈ 𝐾𝑡 and whose double 𝑎𝑡+1 is in 𝐴𝑡+1, against the 

hypothesis. Hence the strict inclusion cannot hold and, by the arbitrariness of t, 

(4.10) is true. • 

 

We prove 2). With the same fixed  𝑡 ∈ ℕ, we denote by 𝛽𝑡+1 the totality of 

the odd positive integers converging in t + 1 iterations . Obviously we have 

𝐵𝑡+1 ⊆ 𝛽𝑡+1. 

We show that 

 

              ∀𝑡 ∈ ℕ, 𝐵𝑡+1 = 𝛽𝑡+1 .                           (4.11) 

 

If for the fixed t, 𝛽𝑡+1 = ∅,  then also 𝐵𝑡+1 = ∅ and therefore 𝐾𝑡+1 = 2𝐾𝑡, that 

is (4.9) for the arbitrariness of t. 

Otherwise, for fixed t, let 𝛽𝑡+1 ≠ ∅ . If there was an 𝑏𝑡+1 ∈ 𝛽𝑡+1 not coming by 

any even of 𝐾𝑡, that is such that 𝑏𝑡+1 ∉ 𝐵𝑡+1 , then an absurdity would follow 

because the trajectory 𝑇(𝑏𝑡+1) = {𝑏𝑡+1, 3𝑏𝑡+1 + 1, … ,4,2,1} would contain the 

trajectory 𝑇(3𝑏𝑡+1 + 1) = {3𝑏𝑡+1 + 1, … ,4,2,1}  whose even seed 3𝑏𝑡+1 + 1 =
𝑘𝑡 ∈ 𝐾𝑡 , therefore, by Theorem 4.2, 𝑏𝑡+1 ∈ 𝐵𝑡+1 against the hypothesis. For 

this reason strict inclusion cannot be valid and, due to the arbitrariness of t (4.11) 

is true. • 
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From 1) and 2) follows the remarkable equality (4.9). □ 

 

By (4.10), (4.9) becomes 

 

              ∀𝑡 ∈ ℕ, 𝐾𝑡+1 = 𝐴𝑡+1 ∪ 𝐵𝑡+1 .                         (4.12) 

(remarkable equality, algorithm in the first form) 

 

If for a given t the derivative 𝐵𝑡+1 of 𝐾𝑡 is empty, we have   

 

              𝐾𝑡+1 = 𝐴𝑡+1.                (4.13) 

 

We now find the numbers of 𝐵𝑡+1
∗ . 

 

Theorem 4.5. (Theorem of the odd derivative of the second type) 

Let 𝑘𝑡
∗ ∈ ℕ0, 𝑘𝑡

∗ ≠ 2 . If there exists the positive integer b satisfying the equation 

 

              3𝑏∗ + 1 = 2𝑘𝑡
∗                           (4.14) 

 

then 

 

              𝑏∗ =
2𝑘𝑡

∗−1

3
                            (4.15) 

 

belongs to 𝐵𝑡+1
∗ . 

 

Proof. Let 𝑘𝑡
∗ and 𝑏∗ satisfy the hypotheses. Since 𝑏∗ is odd and different 

from 1, its successor is 𝑘𝑡
∗,  because (2.2) is applied to 𝑏∗, so the trajectory 

𝑇(𝑏∗) = 𝑇 (
2𝑘𝑡

∗−1

3
) = {

2𝑘𝑡
∗−1

3
, 𝑘𝑡

∗, … ,4,2,1}  contains the trajectory 𝑇(𝑘𝑡
∗) =

{𝑘𝑡
∗, … ,4,2,1} . This means that 𝑏∗ converges in t + 1 iterations, that is 𝑏∗ ∈ 𝐵𝑡+1

∗ . 

□ 

Recall that an odd derivative 𝐵𝑡
∗ o is either empty or is formed only by odd 

positive integers different from 1. 

 

As shown for (4.10) it results 

 

               ∀𝑡 ∈ ℕ, 2𝐾𝑡
∗ = 𝐴𝑡+1

∗                (4.16) 
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where 𝐴𝑡+1
∗   is the totality of the even positive integers  (t+1)-convergent, that 

is of the doubles of the numbers of 𝐾𝑡
∗. Equation (4.16) is demonstrated how it 

is done for the first part of the proof of the Theorem 4.4 by adding the asterisk 

∗ to the 2𝐾𝑡 and 𝐴𝑡 sets. Equation (4.16) will occur in the proof of first part of 

Theorem 4.6. 

 

Theorem 4.6. (Theorem of the union of even and odd derivatives of the second type) 

The set 𝐾𝑡+1
∗  is the union of the set of doubles of 𝐾𝑡

∗ and the odd derivative of 

𝐾𝑡
∗, that is: 

 

              ∀𝑡 ∈ ℕ, 𝐾𝑡+1
∗ = 2𝐾𝑡

∗ ∪ 𝐵𝑡+1
∗  .                                     (4.17) 

(remarkable equality, algorithm in the second form) 

 

Proof. We proceed as in the proof of Theorem 4.4 adding the asterisk ∗ to all 

the sets and considering, in the second part, (
3𝑏𝑡+1

∗ +1

2
) as successor of 𝑏𝑡+1

∗ ∈

𝛽𝑡+1
∗  .   □ 

  

By (4.16), (4.17) can be written 

 

              ∀𝑡 ∈ ℕ, 𝐾𝑡+1
∗ = 𝐴𝑡+1

∗ ∪ 𝐵𝑡+1
∗                (4.18) 

(remarkable equality, algorithm in the second form)  

 

and if, for a certain t, the derivative 𝐵𝑡+1
∗  of  𝐾𝑡+1

∗  it is empty, then 

 

              𝐾𝑡+1
∗ = 𝐴𝑡+1

∗  .                            (4.19) 

 

5 Examples 

To obtain the set  𝐾𝑡+1 it will be necessary to double all the numbers 𝑘𝑡 of 𝐾𝑡 

in order to have 𝐴𝑡+1 and it will be necessary to determine all the numbers 𝑏 ∈
𝐵𝑡+1 starting from the even numbers 𝑘𝑡 of 𝐾𝑡, that is, it will be necessary to 

verify if  𝑘𝑡 − 1 is divisible by three when 𝑘𝑡 is even with 𝑘𝑡 ≠ 4 (Theorem 4.2 

and definition of  𝐵𝑡+1 in (4.3)). 

 

► We determine the sets 𝐾8 and 𝐾9. 

 

𝐾8 

We use the set  𝐾7 = {3,20,21,128} . We have 𝐴8 = 2𝐾7 = {6,40,42,256} . It 

turns out 𝐵8 = ∅ since none of the equations  
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(1) 3b + 1 = 20 

(2) 3b + 1 = 128 

has solutions in ℕ0. Hence 𝐾8 = 𝐴8 ∪ ∅ = {6,40,42,256}.  

𝐾9 

We use the set 𝐾8 = {6,40,42,256}. We have 𝐴9= 2𝐾8 = {12, 80, 84, 512}. We 

solve in ℕ0 the following equations: 

(1) 3b + 1 = 6 

(2) 3b + 1 = 40 

(3) 3b + 1 = 42 

(4) 3b + 1 = 256. 

The first and third equations have no solutions in ℕ0. The second and fourth 

equations have as solutions in ℕ0 13 and 85 respectively, therefore 𝐵9 = {13, 

85}. 

Thus 𝐾9 = 𝐴9 ∪ 𝐵9 = {12,80,84,512} ∪ {13,85} = {12,13,80,84,85,512} . 
 

In the same way they are obtained 

𝐾10 = {4 − 26 − 160 − 168 − 170 − 1024}  

𝐾11 = {48 − 52 − 53 − 320 − 336 − 340 − 341 − 2048}  

𝐾12 = {17 − 96 − 104 − 106 − 113 − 640 − 672 − 680 − 682 − 4096} 

… 

The underlined numbers are the odd derivatives of the previous set. 

  

To obtain the set 𝐾𝑡+1
∗  it will be necessary to double all the numbers 𝑘𝑡

∗ of 𝐾𝑡
∗ 

in order to have 𝐴𝑡+1
∗  and it will be necessary to determine all the numbers 𝑏∗ ∈

 𝐵𝑡+1
∗  starting from each 𝑘𝑡

∗ of 𝐾𝑡
∗, that is, it will be necessary to verify whether 

2𝑘𝑡
∗ − 1   is divisible by three when 𝑘𝑡

∗ ≠ 2 (Theorem 4.5 and definition of 𝐵𝑡+1
∗  

in (4.4)). 

 

► We determine the sets 𝐾5
∗ and 𝐾6

∗. 

 

𝐾5
∗ 

We consider 𝐾4
∗ = {5,16} . Its even derivative is 𝐴5

∗ = {10,32}. Of the two 

equations 
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(1) 
3𝑏∗+1

2
= 5  

(2) 
3𝑏∗+1

2
= 16  

only the first admits in ℕ0 the solution 𝑏∗= 3 therefore 𝐵5
∗ = {3} е 𝐾5

∗ = 𝐴5
∗ ∪

𝐵5
∗ = {3,10,32}. 

 

𝐾6
∗ 

We consider 𝐾5
∗ = {3,10,32} . Its even derivative is 𝐴6

∗ = {6,20,64} . Of the 

three equations 

 

(1) 
3𝑏∗+1

2
= 3  

(2) 
3𝑏∗+1

2
= 10  

(3) 
3𝑏∗+1

2
= 32  

 

only the third has solution 𝑏∗ = 21 in ℕ0. Hence 𝐵6
∗ = {21} е 𝐾6

∗ = 𝐴6
∗ ∪ 𝐵6

∗ =

{6,20,21,64} .  

 

 

In the same way they are obtained 

𝐾7
∗ = {12 − 13∗ − 40 − 42 − 128} 

𝐾8
∗ = {24 − 26 − 80 − 84 − 85∗ − 256} 

𝐾9
∗ = {17∗ − 48 − 52 − 53∗ − 160 − 168 − 170 − 512} 

𝐾10
∗ = {11∗ − 34 − 35∗ − 96 − 104 − 106 − 113∗ − 320 − 336 − 340 − 341∗

− 1024} 

... 

 

The numbers with an asterisk are the odd derivatives of the previous set. 
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6 The maxima of 𝑲𝒕 and 𝑲𝒕
∗

 

By examining the sets K, we can suppose that the number 2𝑡  is the maximum 

of every set 𝐾𝑡 and of every 𝐾𝑡
∗. This is confirmed by the subsequent Theorem 

6.2. The following Lemma 6.1 contains some obvious conclusions. 

 

Lemma 6.1. 

i) If  𝑘𝑡 ∈ 𝐾𝑡 then 2𝑘𝑡 ∈ 𝐴𝑡+1, ∀𝑡 ∈ ℕ  
ii) If 𝑎𝑡 ∈ 𝐴𝑡 then 2𝑎𝑡 ∈ 𝐴𝑡+1, ∀𝑡 ∈ ℕ0  
i∗) If 𝑘𝑡

∗ ∈ 𝐾𝑡
∗ then 2𝑘𝑡

∗ ∈ 𝐴𝑡+1
∗ , ∀𝑡 ∈ ℕ  

ii∗) If 𝑎𝑡
∗ ∈ 𝐴𝑡

∗ then 2𝑎𝑡
∗ ∈ 𝐴𝑡+1

∗ , ∀𝑡 ∈ ℕ0 . 
 

Proof. Recall that (4.10) and (4.16) hold. 

i) Let 𝑘𝑡 ∈ 𝐾𝑡, with 𝑡 ∈ ℕ. The trajectory 𝑇(𝑘𝑡) is contained in the trajectory 

𝑇(2𝑘𝑡) = {2𝑘𝑡, 𝑘𝑡 , … ,4,2,1} because 2𝑘𝑡  is an even that converges in t + 1 

iterations, that is 2𝑘𝑡 ∈ 𝐴𝑡+1. • 

ii) Let 𝑎𝑡 ∈ 𝐴𝑡, with t ∈ ℕ0. Since 𝐴𝑡 ⊆ 𝐾𝑡  is also 𝑎𝑡 ∈ 𝐾𝑡. Applying i) it 

follows that 2𝑎𝑡 ∈ 𝐴𝑡+1 ∀𝑡 ∈ ℕ0. • 

The i∗) and ii∗) prove to be the i) and ii) respectively, just asterisking the sets 

𝐾𝑡, 𝐴𝑡 and their elements.  □ 

 

Theorem 6.2.  (Maxima theorem of 𝐾𝑡 and 𝐾𝑡
∗) 

𝑖) ∀𝑡 ∈ ℕ0, 𝑚𝑎𝑥(𝐾𝑡) = 2𝑡  

i*) ∀𝑡 ∈ ℕ0, 𝑚𝑎𝑥(𝐾𝑡
∗) = 2𝑡. 

 

Proof. i) We will proceed by induction using the remarkable equality (4.12). 

If 𝑡 = 1 then max 𝑚𝑎𝑥(𝐾1) = 21 = 2.  Let us fix a 𝑡 > 1 and let, by inductive 

hypothesis 

 

              𝑚𝑎𝑥(𝐾𝑡) = 2𝑡.         (6.1) 

 

We will prove that it is also 𝑚𝑎𝑥(𝐾𝑡+1) = 2𝑡+1. To do this, it will be necessary 

to prove that 

1) max 𝑚𝑎𝑥(𝐴𝑡+1) = 2𝑡+1 

 and 

2) every number of 𝐵𝑡+1 is less than 2𝑡+1. 
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First part 

1) We show that every number of 𝐴𝑡+1 is less than or equal to 2𝑡+1 and that 

2𝑡+1is in 𝐴𝑡+1. Let 𝑘𝑡 ∈ 𝐾𝑡. Then, by hypothesis (6.1) 

 

              ∀𝑘𝑡 ∈ 𝐾𝑡, 𝑘𝑡 ≤ 2𝑡.         (6.2) 

 

By the i) of Lemma 6.1 

 

              2𝑘𝑡 ∈ 𝐴𝑡+1.          (6.3) 

 

From (6.2) it follows that 

 

              ∀𝑘𝑡 ∈ 𝐾𝑡, 2𝑘𝑡 ≤ 2𝑡+1.                      (6.4) 

 

Since for the inductive hypothesis (6.1) it is 2𝑡 ∈ 𝐾𝑡, then, for the remarkable 

equality (4.12), we have 2𝑡 ∈ 𝐴𝑡, from which, for the ii) of Lemma 6.1, it 

follows that 

 

              2𝑡+1 ∈ 𝐴𝑡+1.         (6.5) 

 

From (6.3), (6.4) and (6.5) we obtain that 𝑚𝑎𝑥(𝐴𝑡+1) = 2𝑡+1.    • 

Second part 

2) If 𝐵𝑡+1 = ∅ from (4.12) it follows that 𝐾𝑡+1 = 𝐴𝑡+1 and from 𝑚𝑎𝑥(𝐴𝑡+1) =
2𝑡+1 (First part) it follows that 𝑚𝑎𝑥(𝐾𝑡+1) = 2𝑡+1. Let 𝐵𝑡+1 ≠ ∅. We show 

that every element 𝑏𝑡+1 of 𝐵𝑡+1 is less than 2𝑡+1. The numbers of 𝐵𝑡+1 are the 

odd numbers of the form (4.7): 

 

              𝑏𝑡+1 =
𝑘𝑡−1

3
𝑐𝑜𝑛 𝑘𝑡 ∈ 𝐾𝑡 𝑎𝑛𝑑 𝑘𝑡 even     (6.6) 

 

 but, from 𝑘𝑡 − 1 < 𝑘𝑡 we get that 

 

              
𝑘𝑡−1

3
< 𝑘𝑡         (6.7) 

 

then from (6.6), (6.7) and (6.1) it follows that 

 

              𝑏𝑡+1 < 𝑘𝑡 ≤ 2𝑡        (6.8) 
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and therefore: ∀𝑏𝑡+1 ∈ 𝐵𝑡+1,  𝑏𝑡+1 < 2𝑡+1, that is 2). From the first and the 

second part it follows that all the numbers of 𝐾𝑡+1 are less than or equal to 

2𝑡+1and this proves the i).  • 

 

i*) We will proceed by induction using the remarkable equality (4.18). If 𝑡 = 1 

then 𝑚𝑎𝑥(𝐾1
∗) = 21=2. Let, by inductive hypothesis, be 

   

              𝑚𝑎𝑥(𝐾𝑡
∗) = 2𝑡 con 𝑡 > 1 .        (6.9) 

 

We will prove that it is also 𝑚𝑎𝑥(𝐾𝑡+1
∗ ) = 2𝑡+1. To do this, it will be necessary 

to prove that 

 

1*) 𝑚𝑎𝑥(𝐴𝑡+1
∗ ) = 2𝑡+1 

 

and 

 

2*) every number of 𝐵𝑡+1
∗  is less than 2𝑡+1 . 

 

First part ∗ 

1*) The proof is similar to that of the first part of  i), just adding the asterisk ∗ 

to the sets 𝐴𝑡+1, 𝐾𝑡+1 and their elements. Therefore 2𝑡+1 is the maximum of 

𝐴𝑡+1
∗  and 1*) is proved. • 

Second part ∗ 

2*) If 𝐵𝑡+1
∗ ≠ ∅ from 4.18) it follows that 𝐾𝑡+1

∗ = 𝐴𝑡+1
∗  and from 𝑚𝑎𝑥(𝐴𝑡+1

∗ ) =
2𝑡+1 (First part*) it follows that 𝑚𝑎𝑥(𝐾𝑡+1

∗ ) = 2𝑡+1. 

Let 𝐵𝑡+1
∗ ≠ ∅. We show that every 𝑏𝑡+1

∗  of 𝐵𝑡+1
∗  is less than 2𝑡+1. The numbers 

of 𝐵𝑡+1
∗  are the odd numbers of the form (4.15): 

 

              𝑏𝑡+1
∗ =

2𝑘𝑡
∗−1

3
, with 𝑘𝑡

∗ ∈ 𝐾𝑡
∗                                     (6.10) 

 

but, from 2𝑘𝑡
∗ − 1 < 2𝑘𝑡

∗ we get that 

 

              
2𝑘𝑡

∗−1

3
< 2𝑘𝑡

∗                                                  (6.11) 

 

and for the inductive hypothesis (6.9) we also have that 

 

              ∀𝑘𝑡
∗ ∈ 𝐾𝑡

∗, 2𝑘𝑡
∗ ≤ 2𝑡+1 .               (6.12) 
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Finally for (6.10), (6.11), (6.12) we can write that 𝑏𝑡+1
∗ < 2𝑘𝑡

∗ ≤ 2𝑡+1, then  
∀𝑡 > 1 all numbers 𝑏𝑡+1

∗  di 𝐵𝑡+1
∗  are less than 2𝑡+1. The 2*) is thus proved. • 

From 1*) and from 2*) it follows that all integers of 𝐾𝑡+1
∗  are less than or equal 

to 2𝑡+1 and so i*) is also proved. □ 

The following corollaries immediately follow from Theorem 6.2. 

 

Corollary 6.3. 

i) ∀𝑡 ∈ ℕ, 𝑚𝑎𝑥(2𝐾𝑡) = 2𝑡+1  

i∗) ∀𝑡 ∈ ℕ, 𝑚𝑎𝑥(2𝐾𝑡
∗) = 2𝑡+1  . 

 

Corollary 6.4. 

i) ∀𝑡 ∈ ℕ0, 𝑚𝑎𝑥(𝐴𝑡) = 2𝑡  

i∗) ∀𝑡 ∈ ℕ0, 𝑚𝑎𝑥(𝐴𝑡
∗) = 2𝑡 . 

 

Theorem 6.2 provides indications on the type of numbers contained in the 

sets K: either there is only 2𝑡 or there are positive integers less than or equal to 

2𝑡 and this means that each set K is finite. Therefore, the following corollary 

can also be stated. 

 

Corollary 6.5. 

∀𝑡 ∈ ℕ, 𝐾𝑡 𝑎𝑛𝑑 𝐾𝑡
∗  are finite. 

 

Each set K is formed by the finite numerical sets A and B. It follows that if B is 

non-empty then it has a maximum. Therefore the following corollary holds. 

 

Corollary 6.6.  

i)   If  for 𝑡 ∈ ℕ0 is 𝐵𝑡 ≠ ∅  then ∃ 𝑚𝑎𝑥(𝐵𝑡) 

i*)  If  for 𝑡 ∈ ℕ0 is 𝐵𝑡
∗ ≠ ∅  then ∃ 𝑚𝑎𝑥(𝐵𝑡

∗) . 

 

In the following paragraph 7 we will investigate the maxima of the sets B. 
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7 On the maxima of the sets B 

We give a strict increase of the maxima of the sets B. 

 

Proposition 7.1. 

i) If  𝐵𝑡+1 ≠ ∅ then ∃𝑘𝑡 ∈ 𝐾𝑡, 𝑘𝑡 ≠ 4, 𝑘𝑡 even : 𝑚𝑎𝑥(𝐵𝑡+1) <
𝑘𝑡−1

2
  

i*) If  𝐵𝑡+1
∗ ≠ ∅ then ∃𝑘𝑡

∗ ∈ 𝐾𝑡
∗, 𝑘𝑡

∗ ≠ 2: 𝑚𝑎𝑥(𝐵𝑡+1
∗ ) <

2𝑘𝑡
∗−1

2
 . 

 

Proof. i)  If 𝐵𝑡+1 ≠ ∅, then by definition of 𝐵𝑡+1 in correspondence of every 

odd 𝑏𝑡+1 ∊ 𝐵𝑡+1  will exist an even number 𝑘𝑡 ∈  𝐾𝑡 with 𝑘𝑡 ≠ 4 such that 

𝑏𝑡+1 =
𝑘𝑡−1

3
   but   

𝑘𝑡−1

3
<

𝑘𝑡−1

2
, then 𝑏𝑡+1 <

𝑘𝑡−1

2
. Then, in particular, i) holds 

also for the maximum of 𝐵𝑡+1. •  

i*) If 𝐵𝑡+1
∗ ≠ ∅, then by definition of 𝐵𝑡+1

∗  in correspondence of every odd  

𝑏𝑡+1
∗ ∈ 𝐵𝑡+1

∗  will exist an even number 𝑘𝑡
∗ ∈ 𝐾𝑡

∗ with 𝑘𝑡
∗ ≠ 2 such that 𝑏𝑡+1

∗ =

2𝑘𝑡
∗−1

3
 but 

2𝑘𝑡
∗−1

3
<

2 𝑘𝑡
∗−1

2
, then 𝑏𝑡+1

∗ <
2 𝑘𝑡

∗−1

2
. Then, in particular, also for the 

maximum of 𝐵𝑡+1
∗  holds i*). □ 

 

From Proposition 7.1 follows the following corollary which gives a plus a bit 

more large of the maxima of the sets B. 

 

Corollary 7.2. 

i) If  𝐵𝑡+1 ≠ ∅,  then 𝑚𝑎𝑥(𝐵𝑡+1) < 2𝑡                                                                              

i*) If  𝐵𝑡+1
∗ ≠ ∅, then 𝑚𝑎𝑥(𝐵𝑡+1

∗ ) < 2𝑡 . 

 

Proof.  i)  If  𝐵𝑡+1 ≠ ∅,  then  the  inequality  i)  of Proposition 7.1 holds and 

also 
𝑘𝑡−1

2
< 𝑘𝑡  but, by Theorem 6.2, the maximum of 𝐾𝑡 is 2𝑡, so 𝑚𝑎𝑥(𝐵𝑡+1

∗ ) <

2𝑡.  • 

i*) If 𝐵𝑡+1
∗ ≠ ∅,  then the inequality i*) of  Proposition 7.1 holds and also 

2𝑘𝑡
∗−1

2
< 𝑘𝑡

∗  but, by Theorem 6.2, the maximum of 𝐾𝑡
∗ is 2𝑡, so 𝑚𝑎𝑥(𝐵𝑡+1

∗ ) <

2𝑡.  □ 
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In some cases it is possible to determine the maximum of the sets B. Let's see 

how. The numbers of 𝐵𝑡+1and of 𝐵𝑡+1 
∗ come from the integer solutions, if they 

exist, of the equations 

  

              𝑏𝑡+1 =
𝑘𝑡−1

3
  with  𝑘𝑡 ∈ 𝐾𝑡, 𝑘𝑡 even and 𝑘𝑡 ≠ 4     (7.1) 

 

              𝑏𝑡+1
∗ =

2𝑘𝑡
∗−1

3
 with  𝑘𝑡

∗ ∈ 𝐾𝑡
∗ and  𝑘𝑡

∗ ≠ 2           (7.2) 

 

by the Theorems, respectively, 4.2 and 4.5. In fact, the largest odd integer that 

can be obtained from (7.1), if we substitute the maximum of 𝐾𝑡  for 𝑘𝑡, is  
2𝑡−1

3
, 

which is integer if 2𝑡 − 1 is divisible by three. Likewise, the largest odd integer 

which can be obtained from (7.2), if we replace 𝑘𝑡
∗  by the maximum of 𝐾𝑡

∗, is  

2𝑡+1−1

3
, which is integer if  2𝑡+1 − 1 is divisible by 3. We can therefore state the 

following theorem. 

 

Theorem 7.3. 

i) If  2𝑡 − 1 ≡ 0(𝑚𝑜𝑑 3), with  𝑡 ∈ ℕ0  and  𝑡 > 2, then 𝑚𝑎𝑥(𝐵𝑡+1) =
2𝑡−1

3
 

i*) If  2𝑡+1 − 1 ≡ 0(𝑚𝑜𝑑 3), with  𝑡 ∈ ℕ0 and 𝑡 > 1, then 𝑚𝑎𝑥(𝐵𝑡+1
∗ ) =

2𝑡+1−1

3
. 

  

 

SECOND DEMONSTRATION OF THE THEOREM 7.3 

 

Proof.  i) By hypothesis the number 2𝑡 is t-convergent and the equation 3𝑏 +

1 = 2𝑡 is satisfied by 𝑏 =
2𝑡−1

3
  which is different from 1 because 𝑡 > 2, 

therefore, by theorem 4.2 it is 𝑏 ∈ 𝐵𝑡+1. Assume that ∃𝛽 ∈ 𝐵𝑡+1: 𝑏 < 𝛽 that is, 

taking into account the form of b and β, we suppose that it is  
2𝑡−1

3
<

𝑘𝑡−1

3
 with 𝑘𝑡 ∈ 𝐾𝑡 e 𝑘𝑡 even; from this it follows that 2𝑡 < 𝑘𝑡, absurd thing 

because the maximum of 𝐾𝑡 is 2𝑡. Then it must turn out ∀𝛽 ∈ 𝐵𝑡+1: 𝛽 ≤ 𝑏, that 

is the thesis. •  
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i*) By hypothesis the number 2𝑡 is (t+1)-convergent and the equation 3𝑏 + 1 =

2𝑡+1  is satisfied by 𝑏 =
2𝑡+1−1

3
  which is different from 1 because 𝑡 > 1, 

therefore, by theorem 4.5 it is 𝑏∗ ∈ 𝐵𝑡+1
∗ . Assume that  ∃𝛽∗ ∈ 𝐵𝑡+1

∗ : 𝑏∗ < 𝛽∗ that 

is, taking into account the form of 𝑏∗ and 𝛽∗, supposing it is 
2𝑡+1−1

3
<

2𝑘𝑡
∗−1

3
  with  𝑘𝑡

∗ ∈ 𝐾𝑡
∗, from this it follows that 2𝑡 < 𝑘𝑡

∗, which is absurd because 

the maximum of 𝐾𝑡
∗ is 2𝑡. Then it must turn out ∀𝛽∗ ∈ 𝐵𝑡+1

∗ : 𝛽∗ ≤ 𝑏∗ that is the 

thesis. □ 
 

For example: 

• ... 

  
• for 𝑡 = 14 risults 214 − 1 ≡ 0(𝑚𝑜𝑑3), then 𝑚𝑎𝑥(𝐵15) = 𝑚𝑎𝑥(𝐵14

∗ ) = 5461 

• for 𝑡 = 16 risults 216 − 1 ≡ 0(𝑚𝑜𝑑3), then 𝑚𝑎𝑥(𝐵17) = 𝑚𝑎𝑥(𝐵16
∗ ) = 21845 

• for 𝑡 = 18 risults 218 − 1 ≡ 0(𝑚𝑜𝑑3), then 𝑚𝑎𝑥(𝐵19) = 𝑚𝑎𝑥(𝐵18
∗ ) = 87381 

 

• .... 

 

8 On the intersection of 𝑲𝒕 and 𝑲𝒕
∗ 

In this paragraph we will prove that the intersection of the sets 𝐾𝑡 and 𝐾𝑡
∗ is 

{2𝑡}. 

 

Lemma 8.1. 

The intersection of the odd derivatives of the first type t-convergent and of the 

even derivatives of the second type t-convergent is empty, that is 

 

              ∀𝑡 ∈ ℕ0, 𝐵𝑡 ∩ 𝐴𝑡
∗ = ∅.                                (8.1) 

 

Proof. Obviously, because an odd derivative either is empty or is made up of 

odd integers different from 1 and an even derivative contains only even 

numbers. □ 

 

Lemma 8.2. 

The intersection of the odd derivatives of the second type t-convergent and of 

the even derivatives of the first type t-convergent is empty, that is 

 

               ∀𝑡 ∈ ℕ0, 𝐵𝑡
∗ ∩ 𝐴𝑡 = ∅.       (8.2) 
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Proof. Obviously, because an odd derivative either is empty or is made up of 

odd integers different from 1 and an even derivative contains only even 

numbers. □ 

 

Lemma 8.3. 

The intersection of the odd derivatives of the first type t-convergent and of the 

odd derivatives of the second type t-convergent is empty, that is 

 

               ∀𝑡 ∈ ℕ0, 𝐵𝑡 ∩ 𝐵𝑡
∗ = ∅.       (8.3) 

 

Proof. Trivially, if 𝑡 = 1 the sets 𝐵1 and 𝐵1
∗ are both empty. Assume absurdly 

that for 𝑡 > 1 it results 𝐵𝑡 ∩ 𝐵𝑡
∗ ≠ ∅ and consider every 𝑛𝑡 ∈ 𝐵𝑡 ∩ 𝐵𝑡

∗. 

 

From 

𝑛𝑡 ∈ 𝐵𝑡 = {𝑛𝑡 ∈ 𝐷 − {1}: 3𝑛𝑡 + 1 = 𝑘𝑡−1, 𝑘𝑡−1 ∈ 𝐾𝑡−1 ⋂ 𝑃 , 𝑘𝑡−1 ≠
4, 𝑘𝑡−1 − 1 ≡ 0(𝑚𝑜𝑑 3)}  

 

follows that nt is an odd integer of the form (4.7), that is  𝑛𝑡 =
𝑘𝑡−1−1

3
. 

 

From 

𝑛𝑡 ∈ 𝐵𝑡
∗ = {𝑛𝑡 ∈ 𝐷 − {1}:

3𝑛𝑡 + 1

2
= 𝑘𝑡−1

∗ , 𝑘𝑡−1
∗ ∈ 𝐾𝑡−1

∗ , 𝑘𝑡−1
∗ ≠ 2, 2𝑘𝑡−1

∗ − 1

≡ 0(𝑚𝑜𝑑 3)} 

it follows that nt is an odd integer of the form (4.15), that is  𝑛𝑡 =
2𝑘𝑡−1

∗ −1

3
. 

By equating the two expressions of 𝑛𝑡 we have  
𝑘𝑡−1−1

3
=

2𝑘𝑡−1
∗ −1

3
  and therefore 

 

               𝑘𝑡−1 = 2𝑘𝑡−1
∗ .        (8.4) 

 

Equality (8.4)  is  manifestly  absurd  because 𝑘𝑡−1 is (t-1)-convergent and 2𝑘𝑡−1
∗  

is t-convergent. Therefore it makes no sense to suppose that the intersection 

𝐵𝑡 ∩ 𝐵𝑡
∗ for 𝑡 > 1 is non-empty and (8.3) is proved. □ 

 

Lemma 8.4. 

The intersection of 𝐾𝑡 and 𝐾𝑡
∗ is equal to the intersection of the even derivatives 

of  𝐾𝑡−1 and of the derivatives even of 𝐾𝑡
∗, that is 

 

              ∀𝑡 ∈ ℕ0, 𝐾𝑡 ∩ 𝐾𝑡
∗ = 𝐴𝑡 ∩ 𝐴𝑡

∗.     (8.5) 
 

Proof. We will use the notable equalities 4.12) and 4.18). We have ∀𝑡 ∈ ℕ0: 
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               𝐾𝑡 ∩ 𝐾𝑡
∗ = (𝐴𝑡 ∪ 𝐵𝑡) ∩ (𝐴𝑡

∗ ∪ 𝐵𝑡
∗) =         

                                      

= ((𝐴𝑡 ∪ 𝐵𝑡) ∩ 𝐴𝑡
∗) ∪ ((𝐴𝑡 ∪ 𝐵𝑡) ∩ 𝐵𝑡

∗) = 

 

= (𝐴𝑡 ∩ 𝐴𝑡
∗) ∪ (𝐵𝑡 ∩ 𝐴𝑡

∗) ∪ (𝐴𝑡 ∩ 𝐵𝑡
∗) ∪ (𝐵𝑡 ∩ 𝐵𝑡

∗).                    (8.6) 

  

The thesis follows by applying, in order, Lemmas 8.1, 8.2 and 8.3 to the second, 

third and fourth intersection in the last line of (8.6).  □ 

 

Lemma 8.5. 

The intersection of the even derivatives of the first and second type t-convergent 

is {2𝑡}, that is: 

 

               ∀𝑡 ∈ ℕ0, 𝐴𝑡 ∩ 𝐴𝑡
∗ = {2𝑡}.         (8.7) 

 

Proof. Applying the equalities (4.10) and (4.16) to the intersection 𝐴𝑡 ∩ 𝐴𝑡
∗ 

we have:  

 

              ∀𝑡 ∈ ℕ0, 𝐴𝑡 ∩ 𝐴𝑡
∗ = 2𝐾𝑡−1 ∩ 2𝐾𝑡−1

∗ = 2(𝐾𝑡−1 ∩ 𝐾𝑡−1
∗ ).   (8.8) 

 

Applying Lemma 8.4 to the intersection in the last parenthesis of (8.8) we have 

 

              ∀𝑡 ∈ ℕ0, 2(𝐾𝑡−1 ∩ 𝐾𝑡−1
∗ ) = 2(𝐴𝑡−1 ∩ 𝐴𝑡−1

∗ ) = 

                                      = 2(2𝐾𝑡−2 ∩ 2𝐾𝑡−2
∗ ) = 22(𝐾𝑡−2 ∩ 𝐾𝑡−2

∗ ).   (8.9) 

Applying Lemma 8.4 again to the intersection in the last parenthesis of (8.9) and 

iterating, we obtain 

 

       ∀𝑡 ∈ ℕ0, 22(𝐾𝑡−2 ∩ 𝐾𝑡−2
∗ ) = 22(𝐴𝑡−2 ∩ 𝐴𝑡−2

∗ ) = ⋯ = 2𝑡−1(𝐾1 ∩ 𝐾1
∗).     (8.10) 

 

Finally, applying Lemma 8.4 again to the intersection in the last parenthesis of 

(8.10), we have 

 

            ∀𝑡 ∈ ℕ0, 2𝑡−1(𝐾1 ∩ 𝐾1
∗) = 2𝑡−1(𝐴1 ∩ 𝐴1

∗ ) = 2𝑡−1(2𝐾0 ∩ 2𝐾0
∗) =   

 

                  = 2𝑡(𝐾0 ∩ 𝐾0
∗) = 2𝑡({1} ∩ {1}) = {2𝑡} .      □                        (8.11)   

 

Theorem 8.6. 

The intersection between 𝐾𝑡 and 𝐾𝑡
∗ is equal to {2𝑡}, that is 

 

              ∀𝑡 ∈ ℕ0, 𝐾𝑡 ∩ 𝐾𝑡
∗ = {2𝑡}.                  (8.12) 
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Proof. Applying Lemma 8.4 to the intersection 𝐾𝑡 ∩ 𝐾𝑡
∗, we have (8.5). 

Applying the Lemma 8.5 at the intersection 𝐴𝑡 ∩ 𝐴𝑡
∗ we obtain (8.12).  □ 

 

 

9   Conclusions  
Collatz's conjecture can be re-proposed using the sets K and their first 

properties. We have seen that the sets 𝐾𝑡 and 𝐾𝑡
∗ are non-empty (Basic  3.1) and 

they are also two by two disjoint (Corollary 3.4). So, if the following coverage 

equalities of ℕ0 were also true: 

  

   a)  ⋃ 𝐾𝑡
+∞
𝑡=0 = ℕ0 ,    𝑡 ∈ ℕ                b)  ⋃ 𝐾𝑡

∗+∞
𝑡=0 = ℕ0 ,       𝑡 ∈ ℕ 

  

we could say that each of the families {𝐾𝑡}𝑡∈ℕ and  {𝐾𝑡
∗}𝑡∈ℕ is a partition of ℕ0. 

In this case the Collatz conjecture would be proved.   
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1 Introduction
There are many interesting functions from the family of Dihedral groups to set

of natural numbers. For the Dihedral group Dn of order 2n, Cavior [1975] proved
that the number of subgroups is d(n) + σ(n) where σ(n) is the sum of positive
divisors of n and d(n) denote number of positive divisors of n. For elemen-
tary facts about dihedral groups see Conrad [Retrieveda]. Conrad [Retrievedb]
describes the subgroups of Dn, including the normal subgroups. using characteri-
zation of dihedral groups in terms of generators and relations. Calugareanu [2004]
presents a formula for the total number of subgroups of a finite abelian group. In
Tărnăuceanu [2010] an arithmetic method is developed to count the number of
some types of subgroups of finite abelian groups.

Subgroups of groups of smaller sizes are widely studied because their group
properties can be easily verified and larger groups are usually studied in terms of
their subgroups (see Miller [1940]). In this paper we characterize and compute
the different basis of Dihedral groups. Also we describe all mixed and non-mixed
normal subgroups of Dihedral groups via conjugacy classes.

2 Notations and Basic Results
Most of the notations, definitions and results we mentioned here are standard

and can be found in Gallian [1994] and Dummit and Foote [2003]. For any given
natural number n denote:

d(n) = the number of positive divisors of n.
σ(n) = the sum of positive divisors of n.
ϕ(n) = the number of non- negative integers less than n and relatively

prime to n.

Also, the greatest common divisor of m and n is denoted by (m,n). Let G be a
group and a1, a2, . . . , ap ∈ G. Then the subgroup generated by a1, a2, . . . , ap is
denoted by < a1, a2, . . . , ap >.

Definition 2.1. A group generated by two elements r and s with orders n and 2
such that srs−1 = r−1 is said to be the nth dihedral group and is denoted by Dn.

Theorem 2.1. For each divisor d of n, the group Zn has a unique subgroup of
order d, namely

〈n
d

〉
.

Theorem 2.2. For each divisor d of n, the group Zn has exactly ϕ(d) elements of
order d, namely {kn

d
: 0 ≤ k ≤ d− 1, (k, d) = 1}.
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Theorem 2.3. The number of subgroups of Zn is d(n), namely
〈n
d

〉
where d is a

divisor of n.

Theorem 2.4. Let G be a group generated by a and b such that an = e, b2 = e
and bab−1 = a−1. If the size of G is 2n then G is isomorphic to Dn.

By theorem 2.4, we make an abstract definition for dihedral groups.

Definition 2.2. For n ≥ 3, letRn = {r0, r1, . . . , rn−1} and Sn = {s0, s1, . . . , sn−1}.
Define a binary operation on Gn = Rn ∪ Sn by the following relations:

ri · rj = ri+j mod(n) ri · sj = si+j mod(n)

si · sj = ri−j mod(n) si · rj = si−j mod(n) for all 0 ≤ i, j ≤ n− 1.

Then (Gn, ·) is a group of order 2n.

Note that in the group (Gn, ·), the identity element is r0, ri = rj if and only if
i = j mod(n), si = sj if and only if i = j mod(n), the inverse of ri is rn−i and
the inverse of si is si for all 0 ≤ i, j ≤ n − 1. It is also clear that ri1 = ri and
rj · s0 = sj for all 0 ≤ i, j ≤ n − 1. Since Gn is a group of order 2n and can be
generated by r1 and s0 such that:

rn1 = rn = r0, s
2
0 = r0 and s0r1s−10 = s0r1s0 = s−1s0 = r−1 = rn−1 = r−11 .

Therefore the group Gn is isomorphic to Dn =< r1, s0 >. The elements of Rn

are called rotations and that of Sn are called reflections. A subgroup of Dn which
contain both rotations and reflections is called a mixed subgroup and subgroups
contain rotations only is called non-mixed subgroup. From the groupDn, we have
the following.

Theorem 2.5. Rn is a subgroup of Dn and is isomorphic to Zn.

Theorem 2.6. If n is even, the number of elements of order 2 in Dn is n + 1,
namely {rn/2, sj : 0 ≤ j ≤ n− 1}.

Theorem 2.7. If n is odd, the number of elements of order 2 in Dn is n, namely
{sj : 0 ≤ j ≤ n− 1}.

Theorem 2.8. If d divide n and d 6= 2, the number of elements of order d in Dn is
ϕ(d) namely {rkn/d : 0 ≤ k ≤ d− 1, (k, d) = 1}.

Theorem 2.9. If a and b are two elements in Dn, then < a, b >= {akbm : 0 ≤
k,m ≤ n− 1}

Definition 2.3. LetG be a finite group. An element y ∈ G is said to be a conjugate
of x ∈ G iff y = gxg−1, for some g in G.
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This relation conjugacy in a group G is an equivalence relation on G. The
equivalence class determined by the element x is denoted by cl(x). Thus cl(x) =
{gxg−1 : g ∈ G}. The summation,

∑
x∈G

|cl(x)|, where summation runs over one

element from each conjugacy class of x is called the class equation of G.

Definition 2.4. A subgroup H of the group G is said to be a normal subgroup if
ghg−1 ∈ H for all g ∈ G and h ∈ H .

A normal subgroup which contain rotations alone is called a non- mixed nor-
mal subgroup and normal subgroups which contains both reflections and rotations
is called mixed normal subgroup.

Theorem 2.10. Every normal subgroup is a union of conjugacy classes.

Theorem 2.11. Every subgroup of a cyclic normal subgroup of the group G is
also normal in G.

3 Subgroups of Dn

Theorem 3.1. The number of non-mixed subgroups of Dn is d(n), namely
{< rn/d >: d is a divisor of n}.

Proof. The non-mixed subgroups of Dn are subgroups of Rn. Since Rn is
isomorphic to Zn, for each divisor d of n, the group Rn has a unique subgroup of
order d, namely < rn/d >. Hence the number of non-mixed subgroups of Dn is
d(n), namely {< rn/d >: d is a divisor of n}. 2

Theorem 3.2. Every mixed subgroup of Dn has even order of which half of them
are rotation and half of them are reflection.

Proof. Let H be a mixed subgroup of Dn containing a reflection s. Let
A denote the set of rotations of H and B denote the set of all reflections of H .
Define a map ψ : A → B by ψ(r) = r · s for all r ∈ A. If sj is an element in B
then sj · s is an element of A and ψ(sj · s) = sjss = sj . Hence ψ is onto. Also
ψ(r) = ψ(r′) =⇒ rs = r′s =⇒ r = r′ and hence ψ is one-one. 2

Theorem 3.3. Every mixed subgroup of Dn is Dihedral.

Proof. Let H be a mixed subgroup of Dn. By theorem 3.2 , |H| = 2d for
some d and H ∩ Rn =< rn/d >. Since order of H is 2d and < rn/d > is its
subgroup of order d, we have H =< rn/d > ∪ < rn/d > s =< rn/d, s >, for
some s in H . Since (rn/d)

d = ro, s
2 = r0 and srn/ds−1 = (rn/d)

−1, we have
H ≡ Dd and hence the proof. 2
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Corolary 3.1. If H is a mixed subgroup of Dn then,

1. |H| = 2d, for some d which divides n.

2. H ≡ Dn =< rn/d, s > for some s ∈ H .

Here we have a usual question: If d divides n, does there exist a subgroup of
order 2d? If it exists, how many?

Theorem 3.4. If d divides n, the number of mixed subgroups of order 2d is
n

d
.

Proof. By the corollary 3.1, it is clear that the mixed subgroups Dn of order
2d are {< rn/d, sj >: 0 ≤ j ≤ n− 1}, all of them need not be distinct. Suppose
< rn/d, si >=< rn/d, sj > for some 0 ≤ i, j ≤ n− 1.

< rn/d, si > =< rn/d, sj >

⇐⇒ < rn/d > ∪ < rn/d > si =< rn/d > ∪ < rn/d > sj

⇐⇒ < rn/d > si =< rn/d > sj

⇐⇒ sis
−1
j ∈< rn/d >

⇐⇒ sis
−1
j = rkn/d for some 0 ≤ k ≤ d− 1

⇐⇒ sisj = rkn/d

⇐⇒ ri−j = rkn/d

⇐⇒ i− j ≡ kn

d
mod(n) for some 0 ≤ k ≤ d− 1

⇐⇒ d(i− j) ≡ 0mod(n)

⇐⇒ i− j ≡ 0mod
(n
d

)
⇐⇒ i ≡ j mod

(n
d

)
Hence the number of distinct mixed subgroups of order 2d in Dn is

n

d
, namely

{< rn/d, si >: 0 ≤ i <
n

d
}. 2

Theorem 3.5. The number of mixed subgroups of Dn is σ(n).

Proof. By theorem 3.4, the mixed subgroups ofDn is
∑
d/n

n

d
=
∑
d/n

d = σ(n).

They are ∪d/n{< rn/d, si >: 0 ≤ i ≤ n

d
− 1}. 2

From theorem 3.1 and theorem3.5 we have,

Theorem 3.6. The number of subgroups of Dn is σ(n) + d(n).
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Theorem 3.7. The number of abelian subgroups of Dn is d(n)+n if n is odd and
d(n) + n+

n

2
if n is even.

Proof. All non-mixed subgroups of Dn are cyclic and hence abelian. So by
theorem 3.1, there are d(n) non- mixed abelian subgroups for Dn. If n is odd, by
theorem 3.3 and corollary 3.1, the mixed abelian subgroups of Dn are of order 2
and hence there are n such subgroups. Thus if n is odd, the number of abelian
subgroups of Dn is d(n) + n. If n is even, by theorem 3.3 and corollary 3.1, the
mixed abelian subgroups of Dn are of order 2 and 4, and hence there are n +

n

2
such subgroups. Thus if n is even, the number of abelian subgroups of Dn is
d(n) + n+

n

2
. 2

Theorem 3.8. The number of cyclic subgroups of Dn is d(n) + n.

Proof. By theorem 3.1, the number of non-mixed cyclic subgroups of Dn is
d(n). Also by theorem 3.3 and corollary 3.1,the mixed cyclic subgroups of Dn is
n. Hence the number of cyclic subgroups of Dn is d(n) + n. 2

4 Basis of Dn

A basis of Dn which contain both rotation and reflection is called a mixed
basis and other basis is called non-mixed basis. By the definition 2.2, it is obvious
that two rotations cannot generate Dn. Hence non-mixed basis of Dn are basis
consisting of two reflections.

Theorem 4.1. For n ≥ 3, the number of mixed basis of Dn is nϕ(n).

Proof. Let sj(0 ≤ j ≤ n − 1) be a reflection in Dn. Then for any 0 ≤ i ≤
n− 1,

< ri, sj > = {rmi stj : 0 ≤ m, t ≤ n− 1} ; by theorem 2.9

= {rmi sj, rmi r0 : 0 ≤ m ≤ n− 1} ; since stj = sj or r0

= {rmi sj, rmi : 0 ≤ m ≤ n− 1}
= {rmi sj : 0 ≤ m ≤ n− 1} ∪ {rmi : 0 ≤ m ≤ n− 1}
=< ri > sj∪ < ri >= Dn if and only if (i, n) = 1

Hence corresponding to each reflection sj(0 ≤ j ≤ n − 1) there are ϕ(n) mixed
bases, namely {{sj, ri} : 0 ≤ i ≤ n− 1 and (i, n) = 1}. So the number of mixed
basis for Dn(n ≥ 3) is nϕ(n). 2

Theorem 4.2. For n ≥ 3, the number of non-mixed basis of Dn is
nϕ(n)

2
.
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Proof. Since the dimension of Dn is 2, any basis of Dn contain exactly
two elements. The subgroup generated by two rotations always lies in Rn and
hence cannot form a basis. Therefore any non- mixed basis of Dn contain exactly
two reflections. : Let sj(0 ≤ j ≤ n − 1) be a reflection in Dn. Then for any
0 ≤ i ≤ n− 1,

< si, sj > =< ri−jsj, sj >=< ri−j, sj >
∼= Dn if and only if i− j ≡ k mod(n) and (k, n) = 1

Hence corresponding to each reflection sj(0 ≤ j ≤ n − 1) there are ϕ(n) non-
mixed basis for Dn namely {{si+j, sj} : 0 ≤ i ≤ n − 1 and (i, n) = 1}. If
{si, sj} is a mixed basis corresponding to the reflection si, then it is also a ba-
sis corresponding to the reflection sj . Hence the number of non-mixed basis for

Dn(n ≥ 3) is
nϕ(n)

2
. 2

Theorem 4.3. For n ≥ 3, the number of different basis for Dn is
3n

2
ϕ(n).

Proof. The collection of all different bases of Dn(n ≥ 3) is the union
of all mixed and non-mixed bases. Hence the different bases of Dn(n ≥ 3) is
nϕ(n)

2
+ nϕ(n) =

3n

2
ϕ(n). 2

5 Congugacy classes of Dn

In this section we will compute all conjugacy classes and class equation of
Dihedral groups.

Theorem 5.1. If n is odd, the number of conjugacy classes in Dn is
n+ 3

2
.

Proof. Let ri(0 ≤ i ≤ n− 1) be a rotation in Dn. Then

cl(ri) = {rjrir−1j , sjris
−1
j : 0 ≤ j ≤ n− 1}

= {rjrir−j, sjrisj : 0 ≤ j ≤ n− 1}
= {ri, sjrisj : 0 ≤ j ≤ n− 1}
= {ri, sj−isj : 0 ≤ j ≤ n− 1}
= {ri, r−i}

Since n is odd, ri = r−i if and only if i = 0. Therefore

cl(r0) = {r0} and cl(ri) = {ri, r−i}, a two element set, for all 1 ≤ i ≤ n− 1.
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Also,

cl(s0) = {rjs0r−1j , sjs0s
−1
j : 0 ≤ j ≤ n− 1}

= {rjs0r−1j , sjs0sj : 0 ≤ j ≤ n− 1}
= {rjs0r−j, sjs0sj : 0 ≤ j ≤ n− 1}
= {s2j : 0 ≤ j ≤ n− 1}
= {sj : 0 ≤ j ≤ n− 1}, since n odd.

Hence, if n is odd, {{sj : 0 ≤ j ≤ n− 1}, {r0}, {ri, r−i } : 1 ≤ i ≤ (n− 1)/2}
are the conjugacy classes of Dn. Thus if n is odd, the number of conjugacy class

of Dn is
(n− 1)

2
+ 2 =

(n+ 3)

2
. 2

Corolary 5.1. The class equation of Dn(n odd ) is 1+ 2+ 2+ . . .+2+ n = 2n,
the summation runs over (n− 1)/2 times.

Theorem 5.2. If n is even, the number of conjugacy classes in Dn is
n+ 6

2
.

Proof. Let ri(0 ≤ i ≤ n− 1) be a rotation in Dn. Then

cl(ri) = {rjrir−1j , sjris
−1
j : 0 ≤ j ≤ n− 1} = {rjrir−j, sjrisj : 0 ≤ j ≤ n− 1}

= {ri, sjrisj : 0 ≤ j ≤ n− 1}
= {ri, sj−isj : 0 ≤ j ≤ n− 1}
= {ri, r−i}

Since n is even ri = r−i if and only if i = 0 or
n

2
. Therefore

cl(r0) = {r0}, cl(rn/2) = {rn/2} and cl(ri) = {ri, r−i}, a two element set, for all

1 ≤ i ≤ n− 1 and i 6= n

2
.

Also,

cl(s0) = {rjs0r−1j , sjs0s
−1
j : 0 ≤ j ≤ n− 1}

= {rjs0r−1j , sjs0sj : 0 ≤ j ≤ n− 1}
= {rjs0r−j, sjs0sj : 0 ≤ j ≤ n− 1}
= {s2j : 0 ≤ j ≤ n/2− 1}
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Again,

cl(s1) = {rjs1r−1j , sjs1s
−1
j : 0 ≤ j ≤ n− 1}

= {rjs1r−1j , sjs1sj : 0 ≤ j ≤ n− 1}
= {rjs1r−j, sjs1sj : 0 ≤ j ≤ n− 1}
= {s2j+1 : 0 ≤ j ≤ n− 1}
= {s2j+1 : 0 ≤ j ≤ n/2− 1}

Hence, if n is even,{
{s2j : 0 ≤ j < n/2}, {s2j+1 : 0 ≤ j < n/2}, {r0}, {rn/2},

{ri, r−i } : 1 ≤ i ≤ (n− 2)/2

}
are the conjugacy classes of Dn. Thus if n is even, the number of conjugacy class

of Dn is
(n− 2)

2
+ 4 =

(n+ 6)

2
. 2

Corolary 5.2. The class equation of Dn(n even ) is 1 + 1 + 2 + 2 + . . . + 2 +
n/2 + n/2 = 2n, the summation runs over (n− 2)/2 times.

Corolary 5.3. Each conjugacy class of Dn contains either rotations alone or re-
flections alone.

Corolary 5.4. The number of conjugacy classes of Dn which contain rotations

alone is
(n+ 1)

2
if n is odd and

(n+ 2)

2
if n is even.

Corolary 5.5. The number of conjugacy classes of Dn which contain reflec-

tions alone is 1, namely Dn, if n is odd and is 2, namely
{
{s2j : 0 ≤ j <

n/2}, {s2j+1 : 0 ≤ j < n/2}
}

, if n is even.

6 Normal subgroups of Dn

In this section we will describe all mixed and non-mixed normal subgroups of
Dn.

Theorem 6.1. The number of non-mixed normal subgroups of Dn is d(n).

Proof. Since Rn is a cyclic normal subgroup of Dn, by theorem 2.11, the
non-mixed subgroups and non-mixed normal subgroup of Dn are same. Hence
the number of non-mixed normal subgroups of Dn is d(n). 2
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Theorem 6.2. The number of mixed normal subgroups of Dn is 1 if n odd and 3
if n even.

Proof. Since normal subgroups are union of conjugacy classes, a mixed
normal subgroup contain at least one conjugacy class having reflection. If n is odd,
there is only one conjugacy class having reflection, namely {sj : 0 ≤ j ≤ n−1}.
Therefore Dn is the only mixed normal subgroup of Dn if n is odd. If n even,
{s2j : 0 ≤ j < n/2} and {s2j+1 : 0 ≤ j < n/2} are the only conjugacy
classes having reflection. Therefore {s2j, r2j : 0 ≤ j < n/2}, {s2j+1, r2j :
0 ≤ j < n/2} and Dn are the only mixed normal subgroups of Dn if n is even.
Therefore the number of mixed normal subgroups of Dn is 3 if n is even.

2

Corolary 6.1. The number of normal subgroups of Dn is d(n) + 1 if n odd and
d(n) + 3 if n even.

7 Conclusion
In this paper, it is proved that the number of mixed basis and non-mixed basis

for Dn(n ≥ 3) are nϕ(n) and
nϕ(n)

2
respectively, where ϕ(n)is the number of

non- negative integers less than n and relatively prime to n. Also it is shown that

the number of different bases for Dn(n ≥ 3) is
3n

2
ϕ(n). If n is odd, the number

of conjugacy classes in Dn is
n+ 3

2
and if n is even, the number of conjugacy

classes in Dn is
n+ 6

2
. Finally we have shown that the number of non-mixed

normal subgroups of Dn is d(n) and the number of mixed normal subgroups of
Dn is 1 if n odd and 3 if n even.
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