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Abstract  

This paper presents a pragmatic specification test for conditional 

continuous distributions with uncensored data.  We employ Monte 

Carlo (MC) experiments and the 2011 Medical Expenditure Panel 

Survey data to examine coverage and the power to discern 

deviations from the correct model specification in distribution and 

parameterization. We carry out MC experiments using 2000 runs 

for sample sizes 500 and 1000. The experiments show that the test 

has accurate coverage under correct specification, and that the test 

can discern deviations from the correct specification in both the 

distributional family and parameterization. The power increases as 

sample size increases. The empirical example shows the test’s 

ability to identify specific distributions from other candidates using 

real cost data. Although the test can be used as a goodness-of-fit 

test for marginal distributions, it is particularly useful as an easy-

to-use test for conditional continuous distributions, even those with 

one observation per pattern of explanatory variables. 

Keywords: Goodness-of-fit test; model specification test; 

conditional continuous distributions. 
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1  Introduction 

To determine whether a probability model is statistically adequate for 

representing a data generating process (DGP), it is common to test whether the 

model fits with a data set produced by that process. The investigation into the 

model specification of a conditional distribution is fundamental for methods 

such as Maximum Likelihood Estimation (MLE), which is consistent and 

asymptotically efficient only if the distribution is correctly specified 

(Amemiya, 1985). However, there are two key challenges for a general test of 

continuous conditional distribution models, if it is to be broadly adopted in 

applied sciences such as social and health sciences: First, is the sparse 

empirical information regarding the conditional distribution when patterns of 

the explanatory variables have few corresponding observations. Second, is the 

ease of use: many researchers do not have the background, time, or inclination 

to engage in complicated programming in order to implement a statistical 

test—to be useful to such researchers a test must be easily implemented.   

Regarding sparse information, consider the data shown in Figure 1: 

although some data points appear close to each other, for most of the data there 

is no more than one observation at each value of x. Consequently, the 

empirical distribution of random variable Y conditioned on such a value for 

variable X is based on a trivial point mass. How then can we test a model of 

the conditional distribution of Y for such sparse data?  

 Regarding ease of use, existing tests for conditional distributions require 

more mathematical and computational skill than many applied researchers may 

have to make their implementation generally accepted.  Some of these tests 

require the use of kernel or local polynomial functions with arbitrary 

smoothing parameters (Zheng, 2000, Fan et al., 2006). Others, such as the 

Conditional Kolmogorov Test, compare model and distribution functions 

additionally incorporating the empirical distribution functions of the 

conditioning set of variables (Andrews, 1997).  Transformations to the unit 

interval have been applied to construct tests for goodness of fit such as the 

Rincon-Gallardo et al. test for multivariate normality (Rincon-Gallardo et al., 

1979). However, their method is also technically difficult and computationally 

intense in general applications due to procedures involved in the 

transformation (O'Reilly and Quesenberry, 1973). Additionally, some are 

dependent on the order of the data being transformed (O'Reilly and Stephens, 

1982); therefore, researchers may obtain variant test results if the same data 

were ordered differently. What is needed for the applied researcher who does 

not have the mathematical or programming skills to meaningfully implement 

complex algorithms is a simple pragmatic test. This paper presents a pragmatic 
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general goodness-of-fit statistic for continuous conditional models using 

uncensored data.  

In the next section, we introduce the goodness-of-fit test and the rationale 

behind it. We then evaluate the performance of the goodness-of-fit statistic in 

Section 3 using two groups of Monte Carlo experiments. The first group of 

experiments focuses on discerning deviations from correct specification in the 

distributional family; the second group focuses on discerning deviations in 

parameterization. We choose these investigations because they represent the 

two misspecification issues in estimating conditional probability models. In 

Section 4, we apply the goodness-of-fit test to the 2011 Medical Expenditures 

Panel Survey (MEPS) dataset, modeling three health care expenditure 

outcomes as functions of patient characteristics. Finally, in Section 5, we 

conclude our paper with a summary of the findings and discussions about the 

applications of the goodness-of-fit test. The Appendix provides the expected 

value of the statistic and the procedure for the calculation of the degrees of 

freedom for the test statistics, the data generating process for each Monte 

Carlo experiment, and the analyses modelling cost data from MEPS. 

Figure 1. A typical conditional Gumbel distribution with sparse observations 

for each conditional value of observed X. 
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2  A proposed goodness-of-fit test  

The Pearson Chi-square goodness-of-fit statistic is based on comparing the 

number of actual observations within each set of a partition of the random 

variable’s range to the number of observations that would be expected to show 

up in those sets if the model correctly represents the DGP (Schervish, 1995). If 

the model is correct, then the expected number of observations is the expected 

number for the DGP; consequently, the observed and predicted number in each 

set should be different merely by random variation.   

The Chi-square goodness-of-fit statistic for continuous distributions is 

created by partitioning the range of a continuous random variable Y into K 

regions. Denote each region k{1, 2, …K} as 

 

the number of observations with values of y in region Rk as Nk, and the total 

sample size as N. The probability of an observation with y in region Rk is then 

 

in which fY(y) is the probability density for y associated with a cumulative 

distribution function (CDF) FY(y).   The Chi-square statistic is defined as 

 

The corresponding sample statistic is 

 

in which  is a consistent estimator of . If FY(y;) accurately represents 

the data generating process,  converges to C with increasing N and the 

corresponding asymptotic distribution of CN is a Chi-square with degrees of 

freedom equal to the number of groups in the partition minus the number of 

estimated parameters plus one (Schervish, 1995).   

If we are interested in a model of the conditional distribution F(y|x;), the 

preceding statistic is not generally applicable because Nk can contain 

insufficient observations to inform the conditional distribution. Indeed, with x 
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containing precisely measured continuous variables, there may be only one 

value y for some observed x values (see Figure 1 as an example).  However, 

we can take advantage of the probability integral transform and consequent 

fact that the CDF of a continuous random variable is itself a random variable 

with a uniform distribution on the unit interval.  Because the uniform 

distribution is the same regardless of underlying CDF, a set of random 

variables from independent observations with different conditional 

distributions can all be converted by their CDFs to the same uniform 

distribution.  We can use this fact to construct a test of the conditional 

distribution; even if each observation has a different conditioning value (i.e. 

the data in Figure 1 will pose no problem for this test).  

Because the CDF for each random variable has a uniform distribution, the 

CDF values of sample results from a correctly specified model for each 

random variable will produce a single realization from a uniform distribution.  

Therefore, the full sample results should together provide a histogram that 

deviates only by chance from a uniform distribution.  We can use a Pearson 

Chi-square type statistic applied to the uniform distribution to test of the 

specification for the conditional distributions.   

The process is quite simple.  For each observation i we have a model 

specification for the distribution F(yi|xi) and therefore can obtain from the 

estimated model the sample quantity ui = F(yi|xi) for which (xi, yi) are the 

observed values for observation i.   The random variable underlying ui has a 

uniform distribution on the unit interval if F is correctly specified.  We can 

construct a goodness-of-fit test by partitioning the unit interval into K 

subintervals defined by equally spaced boundary points, which for K = 10 is  

  s.t. k {1, 2, … 10}. 

The statistic is then 

 

for which N is the total sample size, and Nk is the observed number of u values 

in the Rk interval.  This statistic can alternatively be written as 
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in which  is the observed proportion in interval Rk.  Because the statistic is 

based on a partition of the uniform into K equal sized intervals, Pk = 1
K ; 

therefore,     
21ˆ( )k K

U K N P=   − . 

As shown in the Appendix, the expected value of U, which is the degrees of 

freedom for its approximating Chi-square distribution, is equal to the degrees 

of freedom for the usual Pearson Chi-square test (i.e. K − 1) minus a factor due 

to the estimation of model parameters. 

Since Pk is known, which in the case of K = 10 intervals is 0.1, we can 

simply state the statistic for K = 10 as 

 

 

The selection of K = 10 is arbitrary, as it is with the Hosmer-Lemeshow test 

for logistic regression (Hosmer and Lemeshow, 1980).  For other values of K, 

the degrees of freedom can be directly estimated as shown in the Appendix or 

determined by Monte Carlo simulation (see Box 2).   

The U statistic has a distribution proportional to the sum of gamma random 

variables with different parameters.  Specifically, denoting 1ˆ
k K

P −  as zk, as 

shown in the appendix zk is asymptotically normally distributed with mean 0 

and variance k
2.  Consequently, the ratio of zk squared to k

2 has an 

asymptotic Chi-square distribution with degrees of freedom 1, which is a 

Gamma distribution with parameters 0.5 and 2 (i.e. (0.5, 2)).  Therefore, zk
2 

has a distribution k
2(0.5, 2), which is (0.5, 2k

2). U is therefore 

proportional to the sum of K differently scaled gamma random variables.  

Moschopoulos shows that sum of such variates can be express as a gamma 

series in which the series coefficients can be recursively determined 

(Moschopoulos, 1985).  The use of this recursive coefficient determination and 

gamma series is overly complex for the practical application of this statistic 

among many applied researchers.  However, ease of use is the purpose of this 

goodness-of-fit statistic.  Fortunately, the Monte Carlo experiments presented 

below indicate that for a correct specification the statistic is approximately 

Chi-square in distribution with degrees of freedom 7.5 when K = 10 and 

calculated as shown in the Appendix or as shown in Box 2 if K is not 10. 
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3  Simulation experiments 

3.1 Methods 

We investigated finite sample performance of the proposed statistic using 

Monte Carlo experiments of conditional Normal, Gumbel, Gamma, and 

Weibull models, each applied to data generating processes based on the same 

set of distributions.  The first set of experiments comprised a total of sixteen 

model/DGP comparisons.  We evaluated each model/DGP pair for sample 

sizes 500 and 1000, each using 2000 Monte Carlo samples from the DGP (see 

Appendix Table A1 for parameter specifications).  We inspected rejection 

rates for significance levels spanning between 0 and 0.2 for each comparison.  

For each correct model/DGP pair (i.e. Normal/Normal, Gumbel/Gumbel, 

Gamma/Gamma, and Weibull/Weibull), the plot of the empirical cumulative 

distribution function (eCDF) of the calculated p values, across the 2000 MC 

samples, should approximately match the significance level (i.e. this plot 

should be approximately a straight line).  For example, the use of a 

significance level of 0.01 should reject the model for approximately 1 per cent 

of the 2000 samples; using a significant level of 0.05 should reject 

approximately 5 per cent of the samples; and a 0.1 significance level should 

result in approximately 10 per cent rejections.  For mismatched pairs (e.g. 

Weibull/Gumbel), if the fit test is useful it should produce rejection rates that 

are higher than the significance levels and increase with sample size; 

consequently, the eCDF of the test’s p-value should be above the significance 

level. 

The second set of experiments compared models in which parameters are 

specified as linear in conditioning variables to the DGP having the same 

distributional family but with parameters quadratic in the conditioning 

variables (see Appendix Table A2 for parameter specifications). For the 

normal distribution, we estimated models with homoscedasticity and 

heteroscedasticity. In the case of heteroscedasticity both the mean and variance 

were generated as quadratic in X in the DGP, but they were modeled as linear 

in the misspecified model. Similarly, we carried out experiments for sample 

sizes 500 and 1000.   These experiments provide evidence regarding whether 

the test can identify deviations in parameterization as well as distributional 

family. In the Monte Carlo experiments reported below, we applied the steps 

presented in Box 1 to obtain p-values for each of 2000 data sets generated for 

each model/DGP being considered.  We calculated both a p-value using 

degrees of freedom equal to 7.5 and also using the mean of the 2000 calculated 

U values for each DGP considered when using the correct model (remember 

that the degrees of freedom are associated with the distribution of U given the 

model is correct). 
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3.2 Results 

Because we tested continuous conditional distributions, it is difficult to see 

the differences between the model and DGP for all patterns of explanatory 

variables.  However, Table 1 shows the probability density functions for the 

true DGP (in the solid line) and the estimation model (the dotted line, using the 

average parameter values across the 2000 estimated models) evaluated at the 

mean of X.  This gives some sense of the differences between the distributions 

being tested in the first set of experiments; however, the deviation of the 

model from the underlying distribution that drives larger values of U may be 

from other regions of the conditioning set than at the mean of X. 

Tables 2 and 3 present the eCDFs of the statistic’s p-values for each 

indicated model applied to the indicated DGP plotted for significance levels up 

to 0.2.  Table 2 presents results for sample sizes of 500; Table 3 presents 

results for sample sizes of 1000.  The thin straight lines show the points where 

the eCDFs would be if it corresponded to the significance level.  The thick 

dark lines (or curves) are the eCDFs associated with p values based on degrees 

of freedom set to 7.5.  The thick light lines (or curves) are the eCDFs 

associated with the Monte Carlo based empirical degrees of freedom.  We 

determined the 7.5 degrees of freedom approximation by the average of the 

four empirical degrees of freedom across the DGPs using sample sizes of 

1000.   We also ran Monte Carlo experiments for correct model specifications 

using 10 correlated explanatory variables (results not presented); these 

BOX 1.  How to calculate U and its p-value  
using K = 10 

Step 1. For a candidate model F(yi | xi ; ), estimate the parameters, 

obtaining ̂ . 

Step 2. Calculate the CDF value of ui = F(yi | xi ; ̂  ) for each observation (yi , 

xi) in the data. 

Step 3. Calculate the proportion ( ˆ
kP  ) of ui in each of the ten intervals Rk for k 

 {1, 2, … 10}. 
Step 4.  Calculate the statistic U using the equation 

. 

Step 5. Calculate the p-value as the upper tail area of a Chi-square distribution 
with degrees of freedom set to 7.5 or set to the estimated value 
determined by the equations presented in the Appendix or the model-
specific Monte Carlo determined empirical degrees of freedom (see 
Box 2 for the algorithm).  
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experiments showed that the empirical degrees of freedom remained around 

7.5 in multivariable models.  Specifically, the means of the U statistics, and 

therefore the degrees of freedom, in these experiments for the Normal, 

Gamma, Weibull, and Gumbel were 7.52, 7.32, 7.54, and 7.27 respectively. 

The figures on the diagonals of Tables 2 and 3 show the coverage of the test 

when the model is correctly specified.  The results fell along the line 

representing accurate coverage: the eCDF corresponds to the significance 

level.  Not surprisingly, the empirical degrees of freedom (the thick lighter 

line) were more accurate than using the approximate degrees of freedom of 

7.5; however, the differences were slight, particularly up to the 0.1 

significance level. 

The off-diagonal figures in Tables 2 and 3 show the rejection rate for the 

test of misspecified models across significance levels.  The test was 

sufficiently powerful for some of the model/DGP combinations to reject the 

model for all 2000 samples at all significance levels greater than 0.001.  

Results for these combinations are simply indicated by the phrase ‘ALL 

DATA SETS REJECTED AT SIGNIFICANCE LEVEL 0.001’.   Not 

surprisingly, comparing Table 2 to Table 3, the curve has a greater departure 

from the straight line in Table 3; it is evident that the power of the test 

increases with sample size.  It is also clear that using the approximate 7.5 

Table 1. Probability density functions of the true data generating process (solid 

curve) and the estimated model (dashed curve) evaluated at X=0 for the Monte 

Carlo simulations. 
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Table 2. Monte Carlo Simulation: Empirical CDFs of Experiments on Distribution 

Specifications (N=500). 

degrees of freedom provide similar results to that of using the Monte Carlo 

determined empirical degrees of freedom. 

Table 4 presents results for the second set of experiments, which tested 

deviations from correct specification in the parameterization. The upper two 

rows show results for sample sizes of 500; the lower two rows show results for 

sample sizes of 1000.  Similar to the first set of experiments, results showed 

accurate coverage for the test when the model was correctly specified and the 

ability to discern deviations from correct specification in parameterization.  As 

the sample size went up, the power of the test to discern such deviations 

increased. The approximate 7.5 degrees of freedom yields results that were 

similar to the Monte Carlo calculated empirical degrees of freedom. 

4  Example 

To present an example with real data, we used a random sample of 2000 

individuals from the Household Component of the 2011 Medical Expenditure 

Panel Survey data file (MEPS). As one of the largest national health survey, 
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MEPS has been widely used to study the patterns of health care access, 

utilization and expenditures in the United States (Cohen et al., 2009). We 

modeled each of the three outcomes – annual total health care expenditure, 

total office-based visits expenditure, and total dental care expenditure – as a 

function of individual demographics, socioeconomic status, self-rated health 

status, common chronic conditions, presence of usual source of care provider, 

and health insurance coverage. These covariates were selected in accordance 

with prior studies focusing on modeling health care costs using MEPS survey 

data (Fenton et al., 2012, Fleishman and Cohen, 2010). 

For each model, we included all individuals who reported an expense on the 

outcome of interest and took the log of the expenditure as the dependent 

variable. There were 1527 and 1215 individuals reporting expenses on health 

care and office-based services, which represented 76.4% and 60.8% of the 

total sample, respectively. Much fewer individuals reported any expenses on 

dental care (N= 724, 36.2%).  Appendix Table A3 presents the descriptive 

statistics and distribution of the outcome variables and the covariates that we 

employed in the model.   

We used Pregibon’s link test (Pregibon, 1980) to identify a statistically 

Table 3. Monte Carlo Simulation: Empirical CDFs of Experiments on Distribution 

Specifications (N=1000). 
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adequate specification of the explanatory variables for each model. We then 

computed U to test the hypothesis that the specified distribution was correct. 

This allows us to use the test to focus on testing deviations in the distributional 

family. We calculated the p-value based on the approximate degrees of 

freedom of 7.5 and the empirical degrees of freedom calculated from the 

parameter estimates of the specified model, based on 500 Monte Carlo 

samples. The algorithm for computing the empirical degrees of freedom is 

shown in Box 2.   Table 5 presents the results from the empirical example for 

the three health care expenditure outcomes. The test clearly discerns the 

goodness-of-fit performance of different distributions. Results for the model of 

the logarithm of total health care expenditure strongly rejected the hypothesis 

that the conditional distribution follows a Gamma, Weibull or Gumbel 

distribution (U ranges from 21.985 to 116.578, p-value < 0.001 for all), and 

unequivocally failed to reject the hypothesis for normal (U = 5.304, p-value = 

0.676 with approximate degrees of freedom of 7.5). For the model of office-

based visits expenditure, we strongly rejected the hypotheses for the Gumbel 

and Weibull distribution (U equals to 59.626 and 33.776, respectively, p-value  

Table 4. Monte Carlo Simulation: Empirical CDFs of Experiments on Parameter 

Specifications. 
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< 0.001 for both) and fail to reject the Normal (U=12.467, p-value = 0.107) or 

Gamma (U = 8.897, p-value = 0.305). For the model of dental care 

expenditure, we rejected all distributions except for the Gumbel (U = 14.333, 

p-value = 0.058 with degrees of freedom of 7.5). Figures A1-A3, in the 

Appendix, show the histograms of the residuals obtained from these models, 

standardized by the estimated standard deviations.  Figure A1 shows the 

symmetry expected of a Normal distribution, which was not rejected by the 

test that unambiguously rejected the other distributions. Figure A2 shows a 

right-skewedness characteristic of a Gamma distribution (Model 1), but it is 

insufficiently skewed to reject the Normal at a significance level of 0.05. 

However, U is smaller in the Gamma indicating a better fit to the data.   Under 

certain circumstances (i.e. shape parameter sufficiently large, >15), the 

Gamma distribution is approximately a Normal distribution (Rothschild and 

Logothetis, 1986). In this real-data example, the estimated shape parameter 

equaled to 35 in the model assuming Gamma distribution. It is therefore not 

surprising the test did not reject either the Gamma or the Normal distributions. 

Figure A3 demonstrates the clear right-skewedness of the residual from the 

model of dental care expenditure, which is expected of a Gumbel distribution. 

The calculated Monte Carlo empirical degrees of freedoms were 

approximately 7.5 for all three outcomes and therefore yielded similar results.  

As there were 21 variables in the empirical model, these results again show 

that the degrees of freedom for the statistic distribution based on 10 categories 

is approximately 7.5 in multivariable models.  

 
Table 5. Empirical Example: Goodness-of-Fit Tests on Conditional Probability 

Models for Log-Transformed Health Expenditures from MEPS. 

5  Conclusion 

In this paper, we presented a simple specification test for conditional 

continuous distributions using uncensored data (see Box 1).  We showed, 

using simulation experiments, that the test has accurate coverage under correct 

specification, and that the test can discern deviations from correct specification 

in both the distributional family as well as parameterization. The empirical 

example shows its ability to distinguish specific distributions from other 

candidates using real data. 
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The results of our analysis indicate that U is approximately distributed Chi-

square with degrees of freedom 7.5.  We also provide a Monte Carlo method 

for an empirical determination of degrees of freedom in Box 2 and a direct 

estimator in the Appendix should the researcher not wish to use the 

approximating 7.5, for example when the p-value using the approximating 7.5 

degrees of freedom is close to the test’s designated significance level.  

However, comparing the empirical degrees of freedom to 7.5 across all Monte 

Carlo experiments and real-data analyses of our study, the differences were 

slight and not likely to impact inferences.  If a researcher does not wish to 

approximate the distribution using a Chi-square, a p-value based on the Monte 

Carlo distribution of statistic values generated in the process of Box 2 can be 

used as a parametric bootstrap test (Davison et al., 2003). 

Because the test discerns deviations in parameterization as well as the 

distributional family, an extra step is required to investigate the distributional 

family alone.  Specifically, the researcher should engage in standard tests to 

identify the best parameter specification within each proposed model (e.g. we 

used Pregibon’s link test in the preceding example).  Using the best within-

family model specification, the test will then primarily be identifying 

deviations in the distributional family.  

It is important to note that our results using multiple explanatory variables 

in the models indicate the degrees of freedom for the statistic’s distribution is 

not a function of the number of estimated parameters.  This is different from 

BOX 2.  How to calculate the empirical degrees of freedom 

Step 1. Obtain the parameter estimates predicted from the estimated model ( ). 

Step 2. Generate outcome values as random draws from the distribution 

defined by the estimated parameters for all xi in the 

data. 

Step 3. Re-estimate the model using the generated outcomes. 

Step 4. Obtain the predicted parameter estimates ( ) from using the ‘correctly’ 
specified model in Step 3. 

Step 5. Calculate the value of  for each observation. 

Step 6. Calculate U. 

Step 7. Repeat the steps 2 through 6 multiple times (e.g. we repeated 500 times 
in the empirical example), saving the statistic values. 

Step 8. Set the degrees of freedom to the mean of the calculated U values. 
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the direct application of the Pearson Chi-square test to distributions with 

multiple parameters in which the degrees of freedom depend on the number of 

parameters m.  This is an advantage since the degrees of freedom in the latter 

case is typically K−m−1, which implies m must be less than K −1 for those 

applications (Schervish, 1995): our test does not have this constraint. 

Although our test can be used as a goodness-of-fit test for marginal 

distributions, it is particularly useful as an easy-to-use model fit test of 

continuous conditional distributions for uncensored data, particularly in the 

case of few observations, indeed even one observation per pattern of 

explanatory variables, such as a time-series. 
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Appendix 

A1  The Expected Value of the U-Statistic 

The expected value of U is the expected value associated with the 

distribution of the standard Pearson Chi-square goodness-of-fit statistic minus 

a factor due to estimating the parameters of the model.  In this appendix we 

provide the determination of the expected value, and we provide an estimator 

for the adjustment factor and thereby an estimator of the expected value for the 

proposed statistic. 

The expected value of U is proportional to the sum of expected values 

across the K equal-length regions of the partition of the unit interval being 

considered: 

2
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The expected values under the summation sign on the right-hand side of this 

equation are variances. This is seen by denoting an indicator of whether 

observation i falls in region k as 
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To determine ˆ( ( ))kE P  , consider a first order Taylor series approximation 

around the true value  
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For an estimator, such as the maximum likelihood estimator, for which 

ˆ( )N   −  converges to a normal distribution N(0,) by a central limit 

theorem, the left-hand side converges in distribution to a normal as well: 
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Therefore, ˆ( )kP   has an asymptotic distribution with expected value of 
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.  Consequently, 
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The expected value of the U is then proportional to the sum of variances: 
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The expected value of U is the degrees of freedom for a common Pearson 

Chi-Square test statistic (i.e. K − 1) minus a factor due to estimation of the 

distribution parameters.  For K = 10, the expected value of U is then 
ˆ9 10 ( ( ))k

k

V P −  .  

A2  Estimation of the Shrinkage Factor 

The variance terms in the shrinkage factor can be estimated by using 

consistent estimators for the derivatives kP






 and the covariance matrix .  The 

derivative of kP is determined by noting that 
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Estimating the integrals on the right-hand side of the equation by sample 

means yields the estimator 
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The estimator for the variances in the shrinkage factor is therefore 
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For the maximum likelihood estimator, note that the scaled deviation of the 

estimator converges in distribution to a normal:  

11ˆ( ) (0,[ ( ( ))] )d

N
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for H denoting the matrix of second derivatives of the log-likelihood with 

respect to the parameters.  Therefore,   
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Using the sample mean for the expectation of the Hessian, evaluated at the 

estimated parameter values, yields the estimator 

2 1ˆˆ [ ( )]N H  − =  − . 

The estimated variance of ˆ( )kP   is then 
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For example, consider the Weibull distribution specified in Table A1.  The 

Weibull CDF is  
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Evaluating each of these derivatives and each observation in the sample i  

{1, … N} at the estimated parameter values, data values ix  , and the 

corresponding critical values 
*

0 ( )iy x , and 
* ( )k iy x  for each k  {1,…10} creates 

variables for which the sample means can be used to determine kP






.  These 

estimated derivatives combined with the estimated parameter covariance 

matrix ̂  provide the information to calculate the shrinkage factor as shown 

above.   

 Table A0 presents the means of the estimated expected value of U 

using the above equations and means of the calculated U values across 

100,000 data sets of sample sizes 100, 1000, and 10,000.   The mean estimated 

E(u) was very similar to the mean of U values, rounding to 7.37 for each.  An 

alternative for estimating the expected value of U (i.e. degrees of freedom for 

an approximating Chi square distribution) is the Monte Carlo method shown in 

Box 2 of the main text. 

 

 
Table A0.  Mean estimated E(u) and mean U across 100,000 samples. 

 

 

A3  Additional Tables and Figures 
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Table A1. Simulation process: conditional distribution of the data for the test of 

incorrect distributional family. 

 

 

 

True Data Generating Process 

Normal/Normal (homoscedasticity) 

 

 

 
 

Normal/Normal (heteroscedasticity) 

 

 

 
 

Gumbel/Gumbel 

 

Location   

Scale   

 

Gamma/Gamma 

 

 Shape   

Scale   

 

Weibull/Weibull 

 

Shape   

Scale   

Table A2. Simulation process: conditional distribution 

of the data for the test of incorrect parameterization 
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Table A3. Distribution of the cost-related outcome variables and patient 

characteristics. 
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Figure A1. Histogram of the Standardized Residual from the Model for Annual Total 

Health Care Expenditure. Model: MLE assuming Normal distribution with 

heteroskedasticity. 
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Figure A2. Histogram of the Standardized Residual from 

the Model for Annual Total Expenditures on Office-

Based Visits. 
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Figure A3. Histogram of the Standardized Residual from the Model for Annual Total 

Expenditures on Dental Care. 
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Abstract  

The 11-year sunspot number cycle has been a fascinating phenomenon 

for many scientists in the last three centuries. Various mathematical 

functions have been used for modelling the 11-year sunspot number 

cycles. In this paper, we present a new model, which is derived from 

the well known Maxwell-Boltzmann probability distribution function. 

A modification has been carried out by introducing a new parameter, 

called area parameter to model sunspot number cycle using Maxwell-

Boltzmann probability distribution function. This parameter removes 

the normality condition possessed by probability density function, and 

fits an arbitrary sunspot cycle of any magnitude. The new model has 

been fitted in the actual monthly averaged sunspot cycles and it is 

found that, the Hathaway, Wilson and Reichmann measure, the 

goodness of fit is high. The estimated parameters of the sunspot number 

cycles 1 to 24 have been presented in this paper. A Monte Carlo based 

simple random search is used for nonlinear parameter estimation. The 

Prediction has been carried out for the next sunspot number cycle 25 

through a model by averaging of recent cycle's model parameters. This 

prediction can be used for simulating a more realistic sunspot cycle 

profile. Through extensive Monte Carlo simulations, a large number of 

sunspot cycle profiles could be generated and these can be used in the 

studies of the orbital dynamics. 

Keywords: solar cycle; modelling; sunspot number 
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1 Introduction  

To know in advance the multitude of atmospheric processes that cause 

concern to   mankind, in particular phenomena occurring in the solar plasma 

receive great consideration from the scientific world. Since the 18th century, 

scientists are conducting systematic research on a multitude of processes 

caused by solar activity. Solar Activity forecasting is crucial in scientific and 

technological fields such as spacecraft orbital life time prediction, airline 

communications and geophysical applications, mainly it is the energy source 

behind all phenomena driving space weather. The low Earth orbiting satellites 

are also influenced by solar activity (Seeds,M.A,Backman,D,[2015]; 

Hathaway,D.H., [2010]). However, predicting the solar cycle is challenging on 

the basis of time series of various proposed indicators, due to the high 

frequency contents, noise contamination, high dispersion level and high 

variability both in phase and amplitude.  

The prediction of solar activity is complicated by the lack of a quantitative 

theoretical model of the sun's magnetic cycle. The effect of solar activity is 

greater on space activities especially on the operations of low Earth orbiting 

satellites which provide significant contribution in communication, national 

defence and Earth mapping. Such satellites also handle a large quantity of 

scientific data. During higher solar activity, the maximum ultraviolet rays are 

emitted from the sun that heat up Earth's upper atmosphere, and expands the 

atmosphere. This affects the life time of operational space crafts in the low 

earth orbits (Whitlock,D, [2006]). Therefore better predictions of solar activity 

are essential to help spacecraft mission planning and design. 

 

 

2 Satellite life time estimation and re-entry 

prediction 

In spacecraft mission design, orbital life time estimation is a critical activity 

(Whitlock, D, [2006]). Many uncertain parameters need to be considered while 

doing orbital life time estimation. The upper atmospheric density variation is 

the primary factor which is so difficult to predict. Many studies have been 

taken place to model the atmospheric density accurately. Orbital life time 

estimation community has always been looking up for better models of 

atmospheric density. Atmospheric models generally use parameters such as ap 

or Kp, and F10.7. Solar flux receives a lot of attention because it is an 

important parameter in determining atmospheric density. Most predictions rely 
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on the sunspot activity happening in the sun. This has been monitored since 

the 17th century regularly. An empirical relationship exists between the 

sunspot number, R, averaged over a month, and F10.7 (David A.Vallado et.al 

,[2014]). 

 

F10.7 =  63.7 +  0.728 R +  0.000 89 R2,                                                       (1)  
 

From the above equation, we can see that 10.7 cm radio flux has a base level 

of about 63.7 solar flux units. To understand and estimate the radio emissions 

effectively we can use the following equation (David A.Vallado et.al, [2014]) 

 

F10.7 =  145 +  75 COS (0.001696 t +  0.35 SIN (0.00001695)),        (2) 

 

where t is the number of days from January 1, 1981. 

We can summarise it as, atmospheric density is directly related to the solar 

flux, which in turn can be related to the solar activity. Studies done by 

different scientists and academicians shows that solar activity and solar flux 

have affirmed relation, a monthly estimate of F10.7 and sunspot number has 

been well established. Predicting the solar flux accurately can generate more 

accurate atmospheric density models that will help in fine tuning the fuel 

budget for longer satellite life. 

The discussion went so far reminds that the accurate prediction of the life 

time requires a very good predicted solar flux profile. In turn, it is sufficient to 

have a predicted sunspot number cycle. Since, via equation (1) one can 

transform sunspot numbers into solar flux. In this paper we try to predict 

sunspot number cycle in a simple and powerful technique. Initially, we model 

the sunspot cycle using a skew-symmetric probability distribution. The 

Maxwell-Boltzmann distribution is considered for this purpose. Then a 

preliminary level prediction is proposed as an average (mean) cycle of some 

recent cycles. Then a varying error band is derived from the past cycles. 

Within this error profiles, via Monte Carlo sampling, the predicted averaged 

cycle is transformed into many profiles. Sample profiles are taken and plotted. 

Before venturing into the details, a brief review of sunspot data and review 

some of the recent models are provided. 

 

3 Sunspot number cycles and sunspot number 

data 

In 1848 the Swiss astronomer Johann Rudolph Wolff introduced actual 

measurements of sunspot number. His method uses still today. Total number 
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of spots visible on the face of the sun is 'n' and the number of groups into 

which they cluster is 'g' then the sunspot number Rn is defined as  

 

Rn  =  10 g +  n.                                                          (3) 

 
To compensate the observational limitations like Earth's atmosphere 

variability above the observing site and sun's rotation, each daily sunspot 

number is computed as a weighted average of measurements made from a 

network of observatories. The 11-year cyclic variation in the sunspot numbers 

was first noted by Schwabe, M., [1844]. In 1848 Rudolf Wolf at Swiss Federal 

Observatory in Zurich, Switzerland devised his measure of sunspot numbers 

that continues to this day as the International sunspot number. Wolf recognised 

that it is far easier to identify sunspot groups than to identify each individual 

sunspot. This relative sunspot number,Rz with emphasis on sunspot groups is 

defined as,   

Rz  =  k (10 g +  n),                                                     (4) 

 
Where k the correction factor for the observer, g is the number of identified 

sunspot groups, and n is the number of individual sunspots. These sunspot 

numbers are called the Zurich or International sunspot numbers have been 

obtained daily since 1848.  

Sunspot cycle time series is one of the longest time series which was 

studied by many experts for various reasons. First of all, this time series is 

non-stationary, cyclic and highly nonlinear in the time domain. In the present 

study, the prediction of sunspot cycles is carried out with the monthly 

averaged sunspot number values. The monthly averaged sunspot data were 

available from, http://www.sidc.be/silso/versionarchive at the royal 

observatory, Belgium is being used for the present study. It may be noted that, 

the scientific community recently recalibrated the entire historical sunspot 

number record and that SILSO (Sunspot Index and Long-term Solar 

Observations) maintains this new definitive record as well as the original 

version of sunspot numbers. 

 

 
Figure 1: Sunspot cycle evolution-Monthly averaged sunspot numbers from 

the year 1749 to December 2016. 
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4 Existing models of sunspot number cycles 

Several mathematical functions were introduced to model the shape of the 

sunspot number cycle. Due to the exponential rise and decay, the exponential 

function was used by Nordemann, [1992], Nordemann, et.al.,[1992]. The bell 

shaped nature of the sunspot cycle was explored by Hathaway et.al.,[1994]. 

Few statistical probability distribution functions were also proposed for the 

shape modelling by various authors. De Mayer, F.,[1981], proposed a model 

using periodic functions. In prediction, averaged models are used as an initial 

estimate of the future cycle.  

We have an exhaustive list of details and voluminous data literature 

available at hand pertaining to the attempts to predict the future behaviour of 

solar activity (Hathaway, et.al., [1999]). It can be categorised under five heads, 

based on the nature of the prediction methods. They are: 1) Curve fitting, 2) 

Precursor, 3) Spectral, 4) Neural Networks and 5) Climatology (Sello, 

S.,[2001]).  McNish-Lincoln curve fitting was the first attempt on the 

methodology of curve fitting (de Meyer,[1981], McNish, A.G., Lincoln, 

J.V.,[1949]). Over the years, various techniques and models have been 

proposed by several authors working in the field for the prediction of the 

nonlinear behaviour of sunspot cycles. The first breakthrough in the field of 

modelling the shape of the sunspot cycles by fitting an exponential function 

over the sunspot number cycle time series was due to Nordemann,[1992]. In 

this method, fitting the rise to maximum and the fall to minimum were fitted 

with a function of exponential function demanding six free parameters. Later a 

modified version of F-distribution density function with five parameters was 

proposed by Elling and Schwentek[1992].  Nordemann's[1992] method 

suggests exponential fitting and explain the solar behaviour. Hathaway, 

Wilson, and Reichmann[1994] substantiated the superiority of a new model 

along with a measure for the goodness of fit. Number of free parameters in this 

model is reduced to four. All these models introduce high amount of error in 

the prediction, due to the incompetence to fit the peak locations of the sunspot 

cycle. The continuous nature of the model at the high solar activity period 

contributes a large amount of uncertainty and hence in the applications such as 

the orbital re-entry predictions these models are not suitable. The next 

subsection surveys the literature pertaining to some models, especially on the 

shape of sunspot cycles. 

 

4.1 Stewart and Panofsky model 

Stewart and Panofsky [1938] proposed a function for the shape of the cycle 

with the form 



Sabarinath.A, Beena.G.P, Anilkumar.A.K 

 

38 

 

R(t) = a(t − t0)be−c(t−t0),                                                     (5) 

 

where a, b, c, and t0 are parameters that vary from cycle to cycle. The 

important thing to be noticed is that, this model gives a power law for the 

rising phase of a cycle and an exponential for the declining phase of a cycle. 

The model parameters for cycle 1to 16 were computed and there by the 

maximum amplitude, the epoch of the peak sunspot number, etc. was 

predicted. 
 

4.2 Nordemann model 

Nordemann used the solution of the differential equation 
dN

dt
= KN, in 

analogy with the nuclear decay process. Thus the declining phase of a sunspot 

cycle is represented by: 

 

N = N0eKt               K < 0                                                                            (6) 

 

and the solution of  
dN

dt
= A + KN, is used to represent the ascent phase of a 

sunspot cycle. Thus the model for the ascent phase is: 

 

N =
A

K
(1 − eKt)               K < 0                                                                 (7 ) 

 

Where N represents sunspot numbers, K decay constant and A a production 

parameter. The estimated values of the parameters N0, K and A for all the 22 

sunspot cycles were given in Nordemann [1992]. 

 

4.3 Elling and Schwentek model 

 Instead of using yearly means, quarterly averages of sunspot numbers were 

utilised by Elling and Schwentek[1992] for optimal fitting of each cycle. They 

used a modified F-distribution density function that required five free 

parameters. This approach is much more worth than the previous models. In 

this model fitting concluded only for modern era of sunspot cycles (10 to 21). 

By considering the maxima and minima of mean sunspot number as a 

function of time, affinity can be observed in each cycles.  While considering 

different sunspot cycles the ascending phase take dwindle time than the 

descending phase, that means Starting from a minimum, time taken for 

reaching the maximum is always shorter as compared to the time from 

maximum down  to minimum  .     
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They explained very effectively, ascending and descending branches of the 

various cycle curves have curvatures which are rather similar to those of the F-

distribution curves. For this reason, each sunspot cycles from cycle 10 to cycle 

21 has been approximated by a modified F-distribution, f(t) which is defined 

by: 

 

f(t) = P4

Γ [
P2 + P3

2 ]

Γ (
P2

2 ) Γ (
P3

2 )
P2

P2
2 P3

P3
2

[P1(t + P5)]
P2
2

−1

[P3 + P2P1(t + P5)]
(P2+P3)

2

,                             (8) 

 

where t is the time and Γ(x) is the gamma function. P1 is the length or duration 

of the sunspot cycle, that is, the time interval from one minimum to the next, 

P2 to the curvature of the ascending branch of f(t), P3 to the curvature of the 

descending branch of f(t), P4 to the amplitude of the maximum of f(t), P5 to 

the time shift of the f(t) curve. Through least square fit all the five parameters 

are estimated. 
 

4.4 Hathaway, Wilson, and Reichmann model 

Hathaway et.al [1994] suggested a model with free parameters fewer than 

the models which we had come across. They utilised a four-parameter quasi-

Planck function to fit the monthly mean sunspot numbers of a solar cycle, 

similar to that of Stewart and Panofsky[1938]. But the only difference we can 

see that a fixed power law for the initial rise of the sunspot cycle and the phase 

starting from maximum down to minimum can be well represented by a 

function that decreases as e−t2
.  By combining these, the model as a function 

of time can be written as: 

 

f(t) =
a(t − t0)3

e
[
(t−t0)2

b2 ]
− c

,                                                         (9) 

 

This model has four parameters. a represents the amplitude and is directly 

related to the rate of rise from minimum; b is related to the time in months 

from minimum to maximum; c gives the asymmetry of the cycle; and a 

starting time t0 . Along with the early detection of parameters to predict the 

solar activity they examine the relationship between the parameters. It is 

similar to the Plank function but contains four free parameters and has a more 

rapid decrease after maximum, but causes lack of accuracy. The estimation of 

these parameters was obtained through Levenberg-Marquardt methods (Press, 

W, H., [1992]). 
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4.5 Volobuev’s one-parameter fit 

In 2009, Volobuev introduced a function of two-parameters and he refers to 

this as a one parameter fit. We can see that the parameters are correlated (r = 

0.88) for all the 23 solar cycles. The correlation between the parameters 

provides the possibility of a one-parameter fit by neglecting the need to 

determine the best starting time. He showed that a one-parameter fit can also 

be derived from truncated dynamo models.  Due to the unavoidable 

uncertainty of starting time goodness of fit value is not better as compared to 

the empirical fit. 

We can see that this model is also similar to that of Stewart and Panofsky 

[1938] proposed Pearson's type III curves by putting b =2 and modifying the 

growth multiplier and decay multiplier properly by introducing the new 

parameters Ts and Td.  

The empirical model used is written as: 
 

R = (
t − t0

Ts
)

2

e
−(

t−t0
Td

)
2

,                                                     (10) 

 

4.6 Sabarinath and Anilkumar model 

 Sabarinath and Anilkumar[2008] proposed a model consist of a mixture of 

Laplace distribution with six parameters (later reduced to two). This model fits 

the multiple sharp peaks in a solar cycle. The model for a generic cycle is: 

                                    

F =  
A1

33.2
 exp (

−|t − 41.7|

16.6
)  +  

A2

46
 exp (

−|t − 67.3|

23
),                     (11) 

 

where t is the time.  
 

5 Skew symmetrical distributions 

Sunspot cycles are asymmetric with respect to their maxima (Hathaway, 

D.H., [2010]). Starting from minimum the time taken to reach maximum is 48 

months and 84 months to fall back to minimum again. An average cycle can be 

constructed by stretching and contracting each cycle to the average length and 

normalising each to the average amplitude.   

In general, if we survey any model of the shape of the sunspot cycle, it is 

evident that, all functions are a product of a polynomial and a negative 

exponential function. Then the goodness of fit solely depends on how the 

model parameters are chosen in the model. In this context, we propose a skew 
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symmetrical function from the class of skew symmetrical probability 

functions. 

 

 

6 Maxwell-Boltzmann probability distribution 

function 

In statistical physics, Maxwell-Boltzmann distribution is a probability 

distribution named after the famous Scottish physicist James Clerk Maxwell 

and Ludwig Boltzmann. It is used in atomic physics for describing particle 

speeds in idealised gas. The Maxwell-Boltzmann distribution function is given 

as (Balakrishnan, N., Nevzorov, V.B., [2003])  

 

f(v) = √(
m

2πkT
)

3

4πv2e−
mv2

2kT  ,                                              (12) 

 

where m the particle mass and kT is the product of Boltzmann's constant and 

thermodynamic temperature.  From Equation (12), if we put α = √
kT

m
, then the 

Maxwell-Boltzmann probability distribution function can be simplified as  

f(x; α) =
1

α3
√

2

π
  x2e

−
x2

2α2 ,                                                   (13) 

where the variable  v  is replaced with a generic random variable x with x ≥  0 

and it can be noted that the parameter  α ≥ 0 is a real quantity.   

 

Typical shape of Maxwell-Boltzmann distribution is given in Figure-2, for 

a value of =30. One can clearly see from Figure-2 that the ascend phase is of 

47 units and the descent phase is 85 units. There by, a skew symmetrical 

process or phenomenal could be modelled by the Maxwell-Boltzmann 

distribution. Our interest is in modelling the sunspot cycle. By observing all 

the cycles individually one can easily see that the rise time (starting minimum 

to maximum sunspot number) and fall time (maximum sunspot number to 

cycle end) are not equal or not symmetrical about the peak sunspot number 

occurring epoch during the 11 year sunspot cycle period.    
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Figure-2. Maxwell-Boltzmann distribution for a value of =30.0 

 

 

7 Modified Maxwell-Boltzman probability 

distribution function (MMPDF) 

Since equation (13) being a probability density function, we know that, 

mathematically the area under the probability density function is 1, that is, 

∫ f(x)dx = 1,                                                           (14)
∞

−∞

 

So, if we want to fit this equation (13) into an arbitrary set S of N data points, 

S = {(xi, yi);  xi ∈ R, yi ∈ R,   i = 1,2, … , N}, where R is the set of real 

numbers, we need to de-normalise the property of f(x) given by equation (14). 

This is because; the area under the curve determined by the set of points in S 

need not be equal to one. That is, 

∑ [(xi − xi−1)
(yi + yi−1)

2
]

N

i=2

= A,                                      (15) 

where A need not be equal to 1. In this case we can modify equation (13) 

to fit into any arbitrary set as equation (16) by introducing a new parameter 

called area parameter A. 

f(x; α; A) =
A

α3
√

2

π
  x2e

−
x2

2α2 ,                                          (16) 
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Now, it may be noted that, 

 

∫ f(x)dx = A,                                                        (17)
∞

−∞
  

 

Modified model for the sunspot cycles is 

 

f(x; α; A) =
A

α3
√

2

π
  x2e

−
x2

2α2 ,                                            (18)          

                                         

where A is the area parameter. 

 

Modified Maxwell-Boltzmann distribution with a value of =30 and A=6000 

is given in Figure-3. 

 
Figure-3. Modified Maxwell-Boltzmann distribution for a value of =30 and 

A=6000. 
 

8 Estimation of model parameters 
The function in which parameters to be estimated is, 

f(x; α; A) =
A

α3
√

2

π
  x2e

−
x2

2α2 .                                                (19) 

The maximum likelihood estimate of the parameters α and A are considered to 

be the best unbiased, consistent and sufficient estimate of the parameters 
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(Sorenson, H.W., [1980]). Practically, the least square estimate is considered 

to be the maximum likelihood estimate. The simple mathematical procedure to 

estimate the parameters is to minimise the sum of squared error function J, 

J = ∑ er
2

r

 ,                                                                 (20) 

Where er is the error. 

The minimum of J can be found by differentiating J with respect to the 

parameters α and A.  

In the present study, if we consider without loss of generality, a sunspot 

cycle having a length of 132 months( 11 year), and if we assume {sn: n =
1,2, … ,132} as the realised sunspot number values, then the J function can be 

written as, 

J = ∑[sn − f(xn, α, A)]2

132

n=1

,                                               (21) 

where, xn = 1,2, … ,132, represents the months for each n = 1,2, … . ,132. 
Then our objective is to compute and solve α and A from  

∂J

∂α
= 0,                                                                 (22) 

∂J

∂A
= 0,                                                                 (23) 

 

Analytically solving the equations (22) and (23) for α and A is not possible 

due to the nonlinear terms involved in the equations. Hence we go with 

numerical procedures for estimating the parameters. Monte Carlo based simple 

random search based procedure is considered here to estimate the parameters. 

This procedure is described below as an algorithm. 

Step-1. Start with a search region α and A. Let Sα and SA are the bounded 

search regions of α and A. Our objective is to find an α0 ∈ Sα and A0 ∈ SA, 

such that, 

Jα0,A0
= ∑[sn − f(xn, α0, A0)]2

132

n=1

,                                     (24) 

is minimum or 

Jα0,A0
≤ Jα,A                                                            (25) 

for any α ∈ Sα and A ∈ SA. 

Step-2. Start with a random initial value of α in Sα and A in SA. Compute J and 

in each iteration keep the minimum value of J, α and A. After a very large 

number of iterations take the value of, α and A corresponds to the global 

minimum value of J. 
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9 Fitting of MMPDF on sunspot cycles 

Using the method described in section 8, the model parameters are 

estimated for all the past 24 cycles. It is noticed that the fit is very much close 

to the actual sunspot numbers. This is evident in the goodness of fit computed 

for each of the 24 cycles, which is discussed in the next section in detail. 

Figure 4 and 5 shows the model and actual data of sunspot cycles 20 and 22.  

 

 
Figure-4. Fitting of sunspot cycle 20 by the model 
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Figure-5. Fitting of sunspot cycle 22 by the model 

 
Figure-6. The parameters α and A for all the 24 cycles. 
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10 Models of sunspot cycles 1 to 24 

The estimated model for all the past 24 cycles is given in Table-1. In 

Figure-6, the variation trends of the parameters α and A for all the 24 cycles 

are plotted. It may be noted that, the average of the parameters are 36.25 units 

of α  and 7095.76 of A. 

 

Table-1. Estimated parameters of cycles 1 to 24 

Cycle No α A 

1 48.76 5883.33 

2 33.40 6251.65 

3 30.56 7309.46 

4 35.80 8619.41 

5 43.79 3525.58 

6 48.75 3067.09 

7 48.16 5322.72 

8 32.65 7552.73 

9 44.70 8234.25 

10 40.63 6410.82 

11 33.80 7381.50 

12 37.13 4433.49 

13 32.55 4933.80 

14 38.57 4356.00 

15 36.00 5390.27 

16 35.73 4882.42 

17 38.95 7341.83 

18 36.35 9228.41 

19 33.79 11420.62 

20 40.02 7959.33 

21 35.49 9907.72 

22 31.48 9075.22 

23 38.99 8006.39 

24 38.65 5023.60 

Mean 1 to 24 38.11 6729.90 

Mean 11 to 24 36.25 7095.76 

 

It may be noted that variation in α is less and variation in A is more. So A is a 

more sensitive parameter than α. Variation in A is not much significant as its 

sensitivity is less. 
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10.1 Goodness of fit 

Goodness of fit by Hathaway, Wilson, and Reichmann [1994] is measured by 

the following function 

χ =
√

(
∑ (Ri − fi)2N

i=1

si
2⁄ )

N
 ,                                                    (26) 

where, Ri and  si is the monthly averaged sunspot number and its standard 

deviation respectively , fi gives the functional fit value,  N is the number of 

months in the cycle. Using this equation, computed χ value for all the 23 

cycles. For Checking the Goodness of fit of the proposed model we have to 

consider other popular methods available in the literature.  The second column 

of Table 2 gives the goodness of fit of the proposed Modified Maxwell-

Boltzmann distribution function; the third and the fourth column gives the 

goodness of fit by three and two parameter fit of Hathaway, Wilson, and 

Reichmann [1994], respectively; the fifth column gives the goodness of fit by 

the five parameter function of Elling and Schwentek[1992] who considered 

cycles 10 to 21 for their study. Figure-7, shows the goodness of fit of 3 

different models along with the Modified Maxwell-Boltzmann distribution 

function model. 

It may be observed from the goodness of fit value, that the present model 

proposed in this study has a very good fitness compared with other models. 

Especially the modern cycles (cycles 11 to 24) shows very good fitness for the 

Modified Maxwell-Boltzmann distribution function model.  

 
Figure-7. The goodness of fit of 3 different models and MMPDF model 
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Table 2: Hathaway, Wilson and Reichmann χ -measure of the goodness of fit 

value computed for all the 22 sunspot cycles with different models. MMPDF 

shows good fit compared with other models.  

Cycle 

Number 

MMPDF 

model 

Three-

parameter fit 

by Hathaway 

et.al. 

Two-

parameter fit 

by Hathaway 

et.al. 

Elling-

Schwentek  

F-distribution 

fit 

1 0.69 0.71 0.75  

2 1.38 1.42 1.50  

3 1.64 1.70 1.56  

4 0.93 0.89 0.95  

5 2.87 2.34 2.50  

6 1.72 1.90 2.14  

7 1.80 0.94 1.01  

8 1.16 0.96 0.99  

9 0.86 0.99 0.97  

10 0.72 0.74 0.76 0.70 

11 0.75 0.88 0.83 1.35 

12 2.06 2.08 2.12 2.17 

13 0.70 0.90 0.91 0.90 

14 0.97 1.11 1.09 1.12 

15 0.80 0.88 0.89 1.16 

16 0.76 0.89 0.97 0.89 

17 0.98 0.86 0.87 1.10 

18 1.21 1.05 1.04 1.27 

19 0.90 0.91 0.89 1.61 

20 0.79 0.87 0.95 0.66 

21 0.94 0.89 0.89 1.11 

22 0.82 1.05 1.06  

23 0.79    

 

 

11 Prediction of sunspot cycle 25 

As an attempt to predict the sunspot cycle 25, we consider the average of 

the model parameters by considering cycles-11 to 24. This computed average 

is given in Table-1. Thus, the parameter values of cycle 25 are: α = 36.25, and 

A = 7095.76. Hence the model is,  
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f(x; α; A) =
A

α3
√

2

π
  x2e

−
x2

2α2 ,                                                 (27) 

 

where, α = 36.25, and A = 7095.76. That is,  

 

    f(x; 36.74; 6608.04) = 0.119 x2e−0.00038x2
,                                     (28)         

                     

is the model for cycle-25. Figure-8 shows the shape of cycle 25 in an average 

sense. It may be observed that cycle 25 may peak up to 105 units and it is also 

fairly a slow cycle as cycle 24. 

 
Figure-8. Preliminary level prediction of sunspot cycle 25 

 

. 

12 Prediction error and simulated sunspot cycles 

Any prediction or forecast is partial, if it is not supplemented with a 

prediction error. Here, for our study we propose a prediction error band based 

on the statistical variation of all the cycles. For this, consider all the monthly 

averaged cycles. We propose the error band each month data as ±s, where s is 

the standard deviation of the sunspot numbers for that month.  Figure-9 shows 

the mean along with the mean+s, the upper bound, and mean-s, the lower 

bound profile.  



Modelling the shape of sunspot cycle using a modified Maxwell-

Boltzmann probability distribution function 

51 

 

 
Figure-9. Mean cycle from the actual monthly sunspot cycle along with the 

mean+s, the upper bound and mean-s, the lower bound profile 

 

Once we are having a prediction error and a prediction model, we can generate 

any number of forecast profile based on simple Monte Carlo method. Here we 

consider the envelop derived above as the envelope with 99.7% confidence or 

3sigma confidence level, since all the realised cycles falls inside the proposed 

confidence interval band. Hence in the Monte Carlo simulation a typical 

profile will be generated using equation (29). 

 

sn
′ (i) = mn(i) + rand(i) × (

env(i)

3
),                                          (29) 

 

where sn
′ (i) , is the simulated n-th sunspot cycle, i =  1,2, … , Cycle length, 

mn(i) is the model value, rand(i) is the random number and env(i) is the 

envelop value given in Figure-10. 
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Figure-10. Simulated sunspot cycle 20 by the model 

 

The same methodology proposed in the study can be implemented to the 

F10.7 cm solar flux value and one can easiliy forecast an entire cycle and 

subsequently it can be applied in the life time computation of satellites. 
 

13 Conclusions 

The 11-year sunspot number cycles have been a fascinating phenomenon 

for many in the last three centuries. Different mathematical models have been 

derived for modelling the shape of the 11-year sunspot number cycles. In the 

present study, we introduced a new model which is derived from the well 

known Maxwell-Boltzmann probability distribution function. The 

modification has been carried out by introducing a new parameter, called area 

parameter. The new model has been fitted in the original monthly averaged 

sunspot cycles data and it is found that a very high goodness of fit through the 

Hathaway, Wilson and Reichmann measure. The models estimated for all the 

sunspot cycles from 1 to 24 have been presented. Detailed discussion on the 

nonlinear parameter estimation carried out for fitting the function in the 

original data is also summarised. An attempt has been carried out for 

predicting the next sunspot cycles 25. The sunspot cycle 25 may peak up to 

105 units and it is also fairly a slow cycle as the previous cycle 24.  
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New structure of norms on Rn and their
relations with the curvature of the plane

curves

Amir Veisi*
Ali Delbaznasab†

Abstract

Let f1, f2, . . . , fn be fixed nonzero real-valued functions on R, the
real numbers. Let ϕn(Xn) =

(
x21f

2
1 + x22f

2
2 + . . . + x2nf

2
n

) 1
2 , where

Xn = (x1, x2, . . . , xn) ∈ Rn. We show that ϕn has properties similar
to a norm function on the normed linear space. Although ϕn is not
a norm on Rn in general, it induces a norm on Rn. For the nonzero
function F : R2 → R, a curvature formula for the implicit curve
G(x, y) = F 2(x, y) = c 6= 0 at any regular point is given. A similar
result is presented when F is a nonzero function from R3 to R. In con-
tinued, we concentrate on F (x, y) =

∫ b
a
ϕ2(x, y)dt. It is shown that

the curvature of F (x, y) = c, where c > 0 is a positive multiple of c2.
Particularly, we observe that F (x, y) =

∫ π
2

0

√
x2 cos2 t+ y2 sin2 tdt

is an elliptic integral of the second kind.
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1 Introduction
A normed linear space is a real linear space X such that a number ‖x‖, the

norm of x, is associated with each x ∈ X , satisfying: ‖x‖ ≥ 0 and ‖x‖ = 0 if and
only if x = 0; ‖λx‖ = |λ|‖x‖ for all λ ∈ R and ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
For example, let X be a Tychonoff space, C∗(X) the ring of all bounded real-
valued continuous functions on X . Then C∗(X) is a normed linear space with
the norm ‖f‖ = sup{|f(x)| : x ∈ X} and pointwise addition and scalar multi-
plication. This is called the supremum-norm on C∗(X). The associated metric is
defined by d(f, g) = ‖f − g‖. A non-empty set C ⊆ Rn is called a convex set if
whenever P and Q belong to C, the segment joining P and Q belongs to C. An-
alytically the definition can be formulated in this way: if P is represented by the
vector x, and Q by the vector y, then C is a convex set if with P and Q it contains
also every point with a vector of form λx + (1− λ)y, where 0 ≤ λ ≤ 1. A point
P is an interior point of a set S contained in Rn, if there exists an n-dimensional
ball, with center at P , all of whose points lie in S. An open set is a set containing
only interior points. A subset C ⊆ Rn is centrally symmetric (or 0-symmetric) if
for every point Q ∈ Rn contained in C, −Q ∈ C, where −Q is the reflection of
Q through the origin, that is C = −C.

Definition 1.1. ([Siegel, 1989, page 5]) A convex body is a bounded, centrally
symmetric convex open set in Rn.

Example 1.1. The interior of an n-dimensional ball, defined by x21 + x22 + · · · +
x2n < a2 provides an example of a convex body.

One of the many important ideas introduced by Minkowski into the study of
convex bodies was that of gauge function. Roughly, the gauge function is the
equation of a convex body. Minkowski showed that the gauge function could be
defined in a purely geometric way and that it must have certain properties analo-
gous to those possessed by the distance of a point from the origin. He also showed
that conversely given any function possessing these properties, there exists a con-
vex body with the given function as its gauge function.

Definition 1.2. ([Siegel, 1989, page 6]) Given a convex body B ⊆ Rn containing
the origin O, we define a function f : Rn → [0,∞) as follows.

f(x) =


1 if x ∈ ∂B,
0 if x = 0,
λ if 0 6= x = λy,

where λ is the unique positive real number such that the ray through O and the
point (whose vector is) x intersects the surface ∂B ( the boundary of B) in a point
y. The function f so defined is the gauge function of the convex body B.
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Example 1.2. Let f : R→ [0,∞) defined by

f(x) = max{|x1|, |x2|, . . . , |xn|},

where x = (x1, x2, . . . , xn) ∈ Rn. Then intB, the interior of the cubic B =
{(x1, x2, . . . , xn) : |xi| ≤ 1} is a convex body and f is a gauge function of it.

It is shown in [Siegel, 1989, Theorems 4-7] that a function f : R → [0,∞)
is a gauge function if and only if the following conditions hold: f(x) ≥ 0 for
x 6= 0, f(0) = 0; f(λx) = λf(x), for 0 ≤ λ ∈ R; and f(x + y) ≤ f(x) + f(y).
Moreover, f is continuous and the convex body of f is B = {x : f(x) < 1}.

A brief outline of this paper is as follows. In section 2, we introduce a function
ϕn on Rn, by the formula

ϕn(Xn) =
√
x21f

2
1 + x22f

2
2 + · · ·+ x2nf

2
n,

when n fixed nonzero real-valued functions f1, f2, . . . , fn on R are given. We
show that the mappings ϕn have similar properties such as norm functions within
difference the ranges of these functions lie in RR while the range of a norm func-
tion is in the [0,∞). This definition allows us to define a norm and hence a gauge
function on Rn. So it turns Rn into a metric space. In Section 3, we focus on
n = 2, ϕ2 and the induced norm on R2. First, we show that if F : R2 → R is a
nonzero function, then k, the curvature of the implicit G(x, y) = F 2(x, y) = c 6=
0 at every regular point is calculated by this formula:

k =
|HG| − 4F 2|HF |
4F
(
F 2
x + F 2

y )
3
2

,

where HF and HG are the Hessian matrices of F and G respectively. It is also
shown if F (x, y) =

∫ b
a

√
x2f 2(t) + y2g2(t)dt, then |HF | = 0 and the eigenvalues

of HF and HG, where G = F 2 are nonnegative. Particularly, when f(t) = cos t

and g(t) = sin t, we prove that
∫ π

2

0

√
x2f 2(t) + y2g2(t)dt is an elliptical integral

of the second type.

2 A norm on Rn made by the real valued functions
on R

We begin with the following notation.

Notation 2.1. Suppose that f1, f2, . . . , fn are nonzero real-valued functions on R
and define ϕn : Rn → RR with

ϕn(Xn) =
√
x21f

2
1 + x22f

2
2 + · · ·+ x2nf

2
n, (∗)
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where Xn = (x1, x2, . . . , xn) and RR is the set (in fact, ring) of all real-valued
functions on R.

The following statement is a key lemma. However, its proof is straightforward
and elementary, it will be used in the proof of the triangle inequality in the next
results.

Lemma 2.1. Let a, b, c and d are nonnegative real numbers. Then
√
ac+

√
bd ≤

√
(a+ b)(c+ d).

Proposition 2.1. LetXn, Yn ∈ Rn, n = 1, 2 or 3. Then ϕn(Xn+Yn) ≤ ϕn(Xn)+
ϕn(Yn).

Proof. The inequality clearly holds when n = 1. Next, we do the proof for n = 2.
Take X2 = (x1, y1), Y2 = (x2, y2) ∈ R2 and suppose that f and g are nonzero
elements of RR. Then

ϕ2(X2 + Y2) =
√

(x1 + x2)2f 2 + (y1 + y2)2g2

≤
√
x21f

2 + y21g
2 +

√
x22f

2 + y22g
2

= ϕ2(X2) + ϕ2(Y2)

if and only if

x1x2f
2 + y1y2g

2 ≤
√[

x21f
2 + y21g

2
][
x22f

2 + y22g
2
]

= ϕ2(X2)ϕ2(Y2). (?)

Now, if we let B := x1x2f
2 + y1y2g

2 and suppose that B ≥ 0, then (?) holds if
and only if

f 2g2(x1y2 − x2y1)2 ≥ 0,

which is always true (note, (?) trivially holds if B ≤ 0). Hence, in this case, the
proof is complete.
Here, we prove the proposition for n = 3. Let X3 = (x1, y1, z1) = (X2, z1) and
Y3 = (x2, y2, z2) = (Y2, z2), where X2 = (x1, y1), Y2 = (x2, y2) and let f, g, h be
nonzero elements of RR. Then

ϕ3(X3 + Y3) =
√
(x1 + x2)2f 2 + (y1 + y2)2g2 + (z1 + z2)2h2

≤
√
x21f

2 + y21g
2 + z21h

2 +
√
x22f

2 + y22g
2 + z22h

2

= ϕ3(X3) + ϕ3(Y3)
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if and only if

x1x2f
2 + y1y2g

2 + z1z2h
2 ≤

√
[x21f

2 + y21g
2 + z21h

2][x22f
2 + y22g

2 + z22h
2]

=
√[

ϕ2
2(X2) + z21h

2
][
ϕ2
2(Y2) + z22h

2
]

Now, if we let a = ϕ2
2(X2), b = z21h

2, c = ϕ2
2(Y2) and d = z22h

2, then by (∗) in
Notation 2.1, we have

x1x2f
2 + y1y2g

2 ≤
√
ac.

Moreover, it is clear that z1z2h2 ≤
√
bd. Therefore,

x1x2f
2 + y1y2g

2 + z1z2h
2 ≤
√
ac+

√
bd.

In view of Lemma 2.1, the proof is now complete.

Next, we state the general case of Proposition 2.1.

Theorem 2.1. Let Xn = (x1, x2, . . . , xn), Yn = (y1, y2, . . . , yn) ∈ Rn, λ ∈ R and
ϕn be as defined in Notation 2.1. Then the following statements hold.

(i) ϕn(Xn) = 0 if and only if Xn = 0,

(ii) ϕn(λXn) = |λ|ϕn(Xn),

(iii) ϕn(Xn + Yn) ≤ ϕn(Xn) + ϕn(Yn) (triangle inequality).

Proof. (i) and (ii) are evident. (iii). The proof is done by induction on n, see
Proposition 2.1. If we setXn−1 = (x1, x2, . . . , xn−1) and Yn−1 = (y1, y2, . . . , yn−1)
then Xn and Yn can be substituted by (Xn−1, xn) and (Yn−1, yn) respectively.
Therefore,

ϕn(Xn + Yn) ≤ ϕn(Xn) + ϕn(Yn)

if and only if

x1y1f
2
1 + · · ·+ xnynf

2
n ≤ ϕn(Xn)ϕn(Yn)

=
√[

ϕ2
n−1(Xn−1) + x2nf

2
n

][
ϕ2
n−1(Yn−1) + y2nf

2
n

]
.

Now, let a = ϕ2
n−1(Xn−1), b = x2nf

2
n, c = ϕ2

n−1(Yn−1) and d = y2nf
2
n plus the

assumption of induction, we have

x1y1f
2
1 + · · ·+ xn−1yn−1f

2
n−1 ≤

√
ac.

Moreover, it is obvious that xnynf 2
n ≤

√
bd. Thus, x1y1f 2

1 + · · · + xnynf
2
n ≤√

ac+
√
bd. Lemma 2.1 now yields the result.
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Corollary 2.1. If f1, f2, . . . , fn are nonzero constant functions, then ϕn is a norm
(and hence a gauge function) on Rn.

By Theorem 2.1, we obtain the following result.

Proposition 2.2. Let a, b be real numbers, f1, f2, . . . , and fn the restrictions of
some non-zero elements of RR on [a, b] such that each of them is nonzero on this
set, and letϕn be as defined in the previous parts (Notation 2.1). Then the mapping
ψn : Rn → [0,∞) defined by

ψn(Xn) =

∫ b

a

ϕn(Xn)dt

is a norm on Rn, and hence d(Xn, Yn) = ψ(Xn − Yn) turns Rn into a metric
space.

Corollary 2.2. The mapping ψn is a gauge function on Rn with the convex body
Cn = {Xn ∈ Rn : ψn(Xn) < 1}.

3 F (x, y) =
∫ b
a ϕ2(x, y)dt as a norm on R2 and the

curvature in the plane

Proposition 3.1. ([Goldman, 2005, Proposition 3.1]) For a curve defined by the
implicit equation F (x, y) = 0, the curvature of F (denoted by κ) at a regular
point (x0, y0) (i.e., the first partial derivatives Fx and Fy at this point are not both
equal to 0) is given by the formula

κ =
|F 2
yFxx − 2FxFyFxy + F 2

xFyy|(
F 2
x + F 2

y

) 3
2

,

where Fx denotes the first partial derivative with respect to x, Fy, Fxx denotes the
second partial derivative with respect to x, Fyy, and Fxy denotes the mixed second
partial derivative (for readability of the above formulas, the argument (x0, y0) has
been omitted).

We recall that the Hessian matrix of z = F (x, y) and w = F (x, y, z) are

defined to be Hz =

[
Fxx Fxy
Fyx Fyy

]
and Hw =

Fxx Fxy Fxz
Fyx Fyy Fyz
Fzx Fzy Fzz

 at any point at

which all the second partial derivatives of F exist.
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Theorem 3.1. Let F : R2 → R be a nonzero function and (x0, y0) ∈ R2 a
regular point. Suppose that the second partial derivatives of F at (x0, y0) exist
and further Fxy = Fyx at this point. Let HF and HG be the Hessian matrices
of F and F 2 respectively (we assume that G = F 2) and let k be the curvature of
G(x, y) = F 2(x, y) = c 6= 0 at (x0, y0). Then we have

k =
|HG| − 4F 2|HF |
4F
(
F 2
x + F 2

y )
3
2

.

Proof. For simplicity, we do the proof without (x0, y0). The partial derivatives of
G = F 2 are as follows:

Gx = 2FFx, Gxx = 2(Fx
2 + FFxx),

Gy = 2FFy, Gyy = 2(F 2
y + FFyy), and G2

xy = 4(FxFy + FFxy)
2.

Therefore,

|HG| = GxxGyy −G2
xy = 4

(
Fx

2 + FFxx
)(
F 2
y + FFyy

)
− 4
(
FxFy + FFxy

)2
= 4
[
F 2
xF

2
y + FF 2

xFyy + FF 2
yFxx + F 2FxxFyy − F 2

xF
2
y − 2FFxFyFxy

− F 2F 2
xy

]
= 4
[
F 2
(
FxxFyy − F 2

xy

)
+ F

(
F 2
xFyy − 2FxFyFxy + F 2yFxx

)]
= 4
[
F 2|HF |+ F

(
F 2
xFyy − 2FxFyFxy + F 2yFxx

)]
.

In view of Proposition 3.1, we have

|HG| = 4
[
F 2|HF |+ F

(
F 2
xFyy − 2FxFyFxy + F 2yFxx

)]
= 4
[
F 2|HF |+ Fk

(
F 2
x + F 2

y )
3
2

]
Therefore,

k =
|HG| − 4F 2|HF |
4F
(
F 2
x + F 2

y )
3
2

,

and we are done.

The next result is a similar consequence for the implicit surface.

Theorem 3.2. Let F : R3 → R be a nonzero function and (x0, y0, z0) ∈ R3 a
regular point. Suppose that the second partial derivatives of F at (x0, y0, z0) exist
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and further the mixed partial derivatives at this point are equivalent. If k is the
curvature of G(x, y, z) = F 2(x, y, z) = c 6= 0 at (x0, y0, z0), then we have

k =
|HG| − 8F 3|HF |

8F 2
(
F 2
x + F 2

y + F 2
z )

3
2

,

where HF and HG are the Hessian matrices of F and F 2 respectively (we assume
that G = F 2).

Proof. As we did in the previous theorem, the proof is done without (x0, y0, z0).

Let K =


Fxx Fxy Fxz Fx
Fxy Fyy Fyz Fy
Fxz Fyz Fzz Fz
Fx Fy Fz 0

. It is known that the curvature k of the implicit

surface F (x, y, z) = 0 is k = |K| at every regular point in which the second
partial derivatives of F exist. We first calculate the partial derivatives of G and in
continued we obtain determinant of HG.

Gx = 2FFx, Gxx = 2(Fx
2 + FFxx), G2

xy = 4(FxFy + FFxy)
2

Gy = 2FFy, Gyy = 2(F 2
y + FFyy), G2

xz = 4(FxFz + FFxz)
2

Gz = 2FFz, Gzz = 2(F 2
z + FFzz), G2

yz = 4(FyFz + FFyz)
2.

Recall that the Hessian matrices of F and G are

HF =

Fxx Fxy Fxz
Fxy Fyy Fyz
Fxz Fyz Fzz

, and HG =

Gxx Gxy Gxz

Gxy Gyy Gyz

Gxz Gyz Gzz

.

Here, we compute the determinant of HG.

1/8|HG| = Fxx
(
FyyFzz − F 2

yz

)
− Fxy

(
FxyFzz − FxzFyz

)
+ Fxz

(
FxyFyz − FxzFyy

)
= FxxFyyFzz − FxxF 2

yz − FyyF 2
xz − FzzF 2

xy + 2FxyFyzFxz

=
(
F 2
x + FFxx

)(
F 2
y + FFyy

)(
F 2
z + FFzz

)
−
(
F 2
x + FFxx

)(
FyFz + FFyz

)2
−
(
F 2
y + FFyy

)(
FxFz + FFxz

)2 − (F 2
z + FFzz

)(
FxFy + FFxy

)2
+
(
FxFz + FFxz

)(
FyFz + FFyz

)(
FxFy + FFxy

)
= F 3

[
FxxFyyFzz − FxxF 2

yz − FyyF 2
xz − FxxF 2

xy + 2FxyFyzFxz

]
+ F 2

[
FxxFyyF

2
z + FxxFzzF

2
y + FyyFzzF

2
x − 2FxyFxzFyFz

− 2FxyFyzFxFz − 2FxzFyzFxFy + F 2
xyF

2
z + F 2

xzF
2
y + F 2

yzF
2
x

]
+ F

[
0
]
.
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Therefore, we have 1/8|HG| = F 3|HF | + F 2k(F 2
x + F 2

y + F 2
z )

3
2 . So the result

is obtained, i.e.,

k =
|HG| − 8F 3|HF |

8F 2
(
F 2
x + F 2

y + F 2
z )

3
2

.

Theorem 3.3. Let f, g be nonzero real-valued functions on R, a, b ∈ R and F :

R2 → R defined by F (x, y) =
∫ b
a

√
x2f 2(t) + y2g2(t)d(t). Then

(i) The curvature of F (x, y) = c, where c > 0 at any point of the curve is
positive multiple of c2.

(ii) tr(HF ) = Fxx + Fyy ≥ 0.

Proof. (i). First, we note that F ≥ 0. The surface F meets the plane z = 0 at the
origin only. But the intersection of F with the plane z = c (where c > 0) is the
curve F (x, y) = c. Here the partial derivatives of F are calculated (see [Rudin,
1976, Theorem 9.42]).

Fx =

∫ b

a

xf 2(t)√
x2f 2(t) + y2g2(t)

d(t), Fy =

∫ b

a

yg2(t)√
x2f 2(t) + y2g2(t)

d(t),

Fxx =

∫ b

a

y2f 2(t)g2(t)(
x2f 2(t) + y2g2(t)

) 3
2

d(t), Fyy =

∫ b

a

x2f 2(t)g2(t)(
x2f 2(t) + y2g2(t)

) 3
2

d(t),

and

Fxy = −
∫ b

a

xyf 2(t)g2(t)(
x2f 2(t) + y2g2(t)

) 3
2

d(t) = Fyx.

Let us put ϕ :=
√
x2f 2(t) + y2g2(t). For the simplicity, we set

Fx =

∫
xf 2

ϕ
, Fy =

∫
yg2

ϕ
, and so on . . .

63



Amir Veisi and Ali Delbaznasab

By formula of the curvature k in Proposition 3.1, we obtain

k =
1(

F 2
x + F 2

y

) 3
2

[(
y2
∫
f 2g2

ϕ3

)(
y

∫
g2

ϕ

)2
+ 2

∫
xyf 2g2

ϕ3

∫
xf 2

ϕ

∫
yg2

ϕ

+
(
x2
∫
f 2g2

ϕ3

)(
x

∫
f 2

ϕ

)2]
=

∫
f2g2

ϕ3(
F 2
x + F 2

y

) 3
2

[
y4
( ∫ g2

ϕ

)2
+ 2x2y2

∫
f 2

ϕ

∫
g2

ϕ
+ x4

( ∫ f 2

ϕ

)2]

=

∫
f2g2

ϕ3(
F 2
x + F 2

y

) 3
2

[ ∫ x2f 2

ϕ
+

∫
y2g2

ϕ

]2
=

∫
f2g2

ϕ3(
F 2
x + F 2

y

) 3
2

[ ∫ x2f 2 + y2g2

ϕ

]2
=

∫
f2g2

ϕ3(
F 2
x + F 2

y

) 3
2

[ ∫
ϕ
]2

=

∫
f2g2

ϕ3(
F 2
x + F 2

y

) 3
2

F 2(x, y).

Hence, we observe that the curvature of F (x, y) = c at (x0, y0) is a positive
multiple of F 2(x0, y0) = c2, and we are done.
(ii). Since

f 2g2(x2 + y2)

ϕ3
≥ 0,

it is clear that Fxx + Fyy ≥ 0. So the result holds.

Lemma 3.1. Let F : R2 → R be a homogeneous function of degree one. Suppose
that the second derivatives of F at (a, b) ∈ R2 exist. Moreover, Fxy = Fyx at this
point. Then

(i) |HF |(a,b) = 0.

(ii) The eigenvalues of HF are 0 and tr(HF ) at (a, b).

Proof. (i). First, we note that F (λx, λy) = λF (x, y), for all (x, y) ∈ R2 and
λ ∈ R. Also, we remind the reader of the following fact, which is known as
Euler’s property,

xFx + yFy = F (x, y).
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Therefore,

xFxx + Fx + yFxy = Fx, and xFxy + Fy + yFyy = Fy.

Consequently, xFxx = −yFxy and xFxy = −yFyy. Now, consider the Hes-

sian matrix HF =

[
Fxx Fxy
Fxy Fyy

]
of F . For the point (0, b), where b 6= 0, we

have Fyy(0, b) = 0 = Fxy(0, b). This implies that |HF | = 0. Also, con-
sidering the point (a, 0), where a 6= 0 gives Fxy(a, 0) = 0 = Fxx(a, 0), this
again yields |HF | = 0. Now, let (a, b) such that a 6= 0 and b 6= 0. Then
Fxx(a, b) = −b

a
Fxy(a, b) and Fyy(a, b) = −a

b
Fxy(a, b). Hence, |HF | = 0. So

we always have |HF | = 0. The proof of (i) is now complete. (ii). Recall that the
characteristic equation of HF is

λ2 − (tr(HF ) = Fxx + Fyy)λ+ (|HF | = FxxFyy − F 2
xy) = 0.

So λ2−(Fxx+Fyy)λ = 0. Therefore, λ = 0 or λ = tr(HF ), and we are done.

Proposition 3.2. Let f, g be nonzero real-valued functions on R and F : R2 → R
defined by F (x, y) =

∫ b
a

√
x2f 2(t) + y2g2(t)dt and let G(x, y) = F 2(x, y). Then

the eigenvalues of HF and HG at any point except the origin are nonnegative.
(In fact, the eigenvalues of HF are zero and tr(HF ) at that point).

Proof. We observe that F is a homogeneous function of degree one. So Lemma
3.1 and Theorem 3.3 (ii) yield the result. For the matrix HG, we look to the
Theorem 3.1. Since, F 2|HF | = 0, we have

|HG| = 4Fk
(
F 2
x + F 2

y

) 3
2 .

We notice that F, k ≥ 0 gives |HG| ≥ 0. On the other hand, tr(HG) = Gxx +
Gyy ≥ 0. Therefore, the roots of λ2 − tr(HG)λ + |HG| = 0, which are the
eigenvalues of HG, are nonnegative. The proof is finished.

In the following result, we present a norm on R2 which is an elliptic integral
of the second kind.

Corollary 3.1. Let f(t) = cos t, g(t) = sin t and let F : R2 → R is given by

F (x, y) =

∫ π
2

0

√
x2 cos2 t+ y2 sin2 tdt.

Then the following statements hold.

(i) The eigenvalues of HF and HG, where G = F 2 at every point except the
origin are nonnegative.
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(ii) F (x, y) is an elliptic integral of the second kind.

Proof. (i). It follows from Proposition 3.2. (ii). Notice that

F (x, y) =

∫ π
2

0

√
x2(1− sin2 θ) + y2 sin2 θdθ = |x|

∫ π
2

0

√
1− k2 sin2 θdθ,

where k =

√
x2−y2
|x| and |x| ≥ |y|. So this gives F (x, y) is an elliptic integral of

the second kind and we are done.

Corollary 3.2. There are ordered pairs (x, y) with rational coordinates (other
than the origin) which satisfy the inequality

∫ π
2

0

√
x2 cos2 θ + y2 sin2 θdθ ≤ r,

when 0 < r ∈ Q. Also, if r /∈ Q then (x, y) has irrational coordinates.

Proof. It is sufficient to take the pairs (r, 0), (0, r), (−r, 0) and (0,−r).

We end this article with the next results.

Proposition 3.3. Let 0 ≤ x, y ∈ R. Then∫ π
2

0

√
x2 cos2 t+ y2 sin2 tdt ≤ x+ y.

Proof. First, note that

x2 cos2 t+ y2 sin2 t = (x cos t+ y sin t)2 − 2xy sin t cos t,

and take 0 ≤ φ ≤ π
2

such that tanφ = y
x

(if x > 0). Now,

(x cos t+ y sin t)2 = x2(cos t+
y

x
sin t)2 = x2(cos t+

sinφ

cosφ
sin t)2

=
x2(cos t cosφ+ sin t sinφ)2

cos2 φ
=
x2 cos2(t− φ)

cos2 φ

= (x2 + y2) cos2(t− φ) (note, cos2 φ =
x2

x2 + y2
).

Hence, x2 cos2 t+ y2 sin2 t ≤ (x2 + y2) cos2(t− φ). Therefore,∫ π
2

0

√
x2 cos2 t+ y2 sin2 tdt ≤

∫ π
2

0

√
(x2 + y2) cos2(t− φ)dt

=
√
x2 + y2

∫ π
2

0

| cos(t− φ)|dt

=
√
x2 + y2

∫ π
2
−φ

−φ
cosTdt (T = t− φ)

= x+ y.
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curves

Remark 3.1. We find 4
∫ π

2

0

√
x2 cos2 t+ y2 sin2 tdt ≤ 2(2x+2y). The left phrase

is the length of the ellipse x′ = x cos t and y′ = y sin t, while 2x and 2y are the
major axis and minor axis of this ellipse.
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1 Introduction 

The probability density function (pdf) of p-dimensional Rayleigh 

distribution is given by 

( )
( )

( )22

1

2
0 0

2

p
x

p
f x; e    ; x , .

p x


 

−
−

−
=  


                             (1) 

(Cohen and Whitten [1]). 

The distribution with pdf (1), in which p=1, sometimes called the folded 

Gaussian, the folded normal, or the half normal distribution. With p=2, the pdf 

of (1) is reduced to two-dimensional Rayleigh distribution. With p=3, the pdf 

of (1) is reduced to Maxwell-Boltzmann distribution. Let 1 2 nx ,x ,..........,x  be a 

random sample of size n having probability density function (1), then the 

likelihood function of (1) is given by (Rao and Pandey [2]) 

( )
( )

2

1

1

2 1

1

2

2

n

i

i

n
n x

np p

i

i

f x; x e
p


  =

−
− −

=

   
=        

      

        (2) 

The log likelihood function is given by 

 

( ) ( ) 1 2

11

1
2 2

2

n n
p

i i

ii

np
log f x; nlog nlog p log log x x 



−

==

= −  − + −            (3) 

Differentiating (3) with respect to θ and equating to zero, we get 

2

1

2
n

i

i

x

np



==


                       (4) 

2 Bayesian Method of Estimation 

In Bayesian analysis the fundamental problem is that of the choice of prior 

distribution g (θ) and a loss function L , 
 

 
 

. The squared error loss function 

for the scale parameter θ are defined as 

2

L ,   
    

= −   
   

                                                      (5) 
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The Bayes estimator under the above loss function, say, s


 is the posterior 

mean, i.e, 

( )S E 


=                                                                        (6) 

This loss function is often used because it does not lead to extensive numerical 

computations but several authors ( Zellner [3], Basu and Ebrahimi [4]) have 

recognized that the inappropriateness of using symmetric loss function. 

J.G.Norstrom [5] introduced an alternative asymmetric precautionary loss 

function. and also presented a general class of precautionary loss functions 

with quadratic loss function as a special case. Weighted loss function (Ahamad 

et al. [6]) is given a              

2

L ,

 

 






 
− 

   = 
 

                                            (7)  

The Bayes estimator under weighted loss function is denoted by W


 and is 

obtained as 

1
1

W E


−
   

=   
  

                                (8) 

Let us consider two prior distributions of θ to obtain the Bayes estimators. 

(i) Quasi-prior: For the situation where the experimenter has no prior 

information about the parameter θ, one may use the quasi density as given by 

( )1

1
0 0

d
g  ; , d , 


=                          (9) 

where d = 0 leads to a diffuse prior and d = 1, a non-informative prior. 

(ii) Inverted gamma prior: The most widely used prior distribution of θ is the 

inverted gamma distribution with parameters   and ( )0   with probability 

density function given by 

( )
( )

( )1

2 0g e  ; .


  
  



− + −= 


                                                               (10) 
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3 Bayes Estimators under ( )1g 
 

The posterior density of θ under ( )1g  , on using (2), is given by 

( )
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n

npi xd
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x

  e
np

d
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 =

 
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 

  −− + =  

 
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 

 + − 
 
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                      (11) 

Theorem 1. Assuming the squared error loss function, the Bayes estimate of 

the scale parameter θ, is of the form 

2

1

2
2

n

i

i
S

x

np
d




==
 

+ − 
 


                                                                                      (12)  

Proof. From equation (6), on using (11), 

( ) ( )S E f x  d    
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= =    
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or, 
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x
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==
 
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 . 

Theorem 2. Assuming the weighted loss function, the Bayes estimate of the 

scale parameter θ, is of the form 
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                                                                                 (13) 

Proof. From equation (8), on using (11), 
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4 Bayes Estimators under ( )2g     

Under ( )2g  , the posterior density of θ, using equation (2), is obtained as 
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Theorem 3. Assuming the squared error loss function, the Bayes estimate of 

the scale parameter θ, is of the form 
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Proof. From equation (6), on using (14), 
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Theorem 4. Assuming the weighted loss function, the Bayes estimate of the 

scale parameter θ, is of the form 
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Proof. From equation (8), on using (14), 
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5 Conclusion 

In this paper, we have obtained a number of estimators of parameter. In 

equation (4) we have obtained the maximum likelihood estimator of the 

parameter. In equation (12) and (13) we have obtained the Bayes estimators 

under squared error and weighted loss function using quasi prior. In equation 

(15) and (16) we have obtained the Bayes estimators under squared error and 

weighted loss function using inverted gamma prior. In the above equation, it is 

clear that the Bayes estimators depend upon the parameters of the prior 

distribution. 
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Finite field is a wide topic in mathematics. Consequently, none can
talk about the whole contents of finite fields. That is why this re-
search focuses on small content of finite fields such as polynomials
computational, ring of integers modulo p where p is prime or a power
of prime. Most of the times, books which talk about finite fields are
rarely to be found, therefore one can know how arithmetic computa-
tional on small finite fields works and be able to extend to the higher
order. This means how integer and polynomial arithmetic operations
are done for Zp such as addition, subtraction, division and multipli-
cation in Zp followed by reduction of p (modulo p). Only addition
and multiplication arithmetic operations are considered for a small
range of finite fields (Z2 − Z17). With polynomials, one can learn
how arithmetic computational through polynomials over finite fields
are performed as their coefficients are drawn from finite fields. The
paper includes also construction of polynomials over finite fields as
an extension of finite fields with polynomials i.e Fq[x]/f(x), where
f(x) is irreducible over Fq. From the past decades, many researchers
complained about the applications of some topics in pure mathemat-
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theory, such as error-coding detection and error-correction as well as
cyclic codes. Hence, this paper shows these applications.
Keywords: Finite Fields; Error-detection; Error-correction; Coding;
Decoding; Codewords; Cosets; Syndromes.1

*University of Rwanda, College of Science and Technology, School of Science, Department of
Mathematics, Kigali, Rwanda; muhijeapi@gmail.com.

1Received on January 20th, 2020. Accepted on June 19th, 2020. Published on December
31st, 2020. doi: 10.23755/rm.v39i0.521. ISSN: 1592-7415. eISSN: 2282-8214. ©Jean Pierre
Muhirwa. This paper is published under the CC-BY licence agreement.

79



Jean Pierre Muhirwa

1 Introduction
The structure of this research paper includes the introductory part where some

preliminary properties of set theory, group theory, ring theory and fields theory
are discussed. In reality we can not know what is a field without defining a
group and a ring since the field is a special case of the ring. Apart from intro-
ductory, the second section consist of computational in the first seven finite fields.
The third, the fourth and the fifth parts of this paper discuss and compare the
usual polynomial arithmetic computational and the finite field polynomial com-
putational. The sixth part of this paper explains some of the applications of finite
fields with the typical examples in coding and decoding theories, the seventh sec-
tion gives the conclusion of the research paper while the last part acknowledges
the financial support received from the Eastern Africa Universities Mathemat-
ics Programme-International Science Programme, University of Rwanda Node
(EAUMP-ISP, UR-Node).

1.1 Preliminaries
Definition 1.1. A set is a collection of distinct objects, considered as an object in
it own rights. Sets are the one of the most fundamental concepts of mathematics.

Example 1.1. The set R, denote the set of all real numbers, and this set includes
rational numbers and irrational numbers (example π,

√
2, and e) Z, denote the

set of all integers for both sign (negative and positive).

Definition 1.2. Group Theory, a set R together with a binary operation is called
a group if it satisfies the conditions such that closure, associative, admits identity
element and inverse element under the operation within the elements of R.

Definition 1.3. Abelian Group, a set R is an abelian group if it is a group for
which commutative law within an operation together with R to the elements of R
is verified.

Definition 1.4. Ring Theory, a set R together with two binary operations (ad-
dition and multiplication) on the elements of R is called a ring if the following
conditions are satisfied:

1. (R, +) is an abelian group.

2. Associative law for multiplication and distributive law are also satisfied.

Definition 1.5. Commutative Ring, a commutative ring is a ring for which the
multiplication is commutative.
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Definition 1.6. Commutative Ring with Unity, a commutative ring with unity is
a ring for which there exists a non-zero multiplicative identity element.

Example 1.2. The set of integers Z is commutative ring with 1 as a multiplicative
identity element.

Definition 1.7. Field, a field is a commutative ring with unity and for which every
non-zero element of that commutative ring is invertible.

Example 1.3. In the set of rational numbers, Q, every non-zero element has its
inverse i.e (Every non-zero element is invertible).

Definition 1.8. Finite Field, a finite field is a field with a finite number of elements.

Example 1.4. Consider the set of integers modulo p (Zp), where p is prime inte-
gers). This set consists of p− 1 elements and all non-zero elements of this set are
invertible.

Definition 1.9. Galois Group, the Galois group of an extension of fields F/K, is
the set of all automorphisms obtained by fixing the elements of K.

Definition 1.10. Codewords, codewords are string of digits that can be inter-
preted by any machine as words or characters.

Example 1.5. The string 100110 is a codeword of the vector space V (6, 2) of the
length 6 over the finite field F2.

Definition 1.11. Prime Number, a prime number is a natural number that can be
divisible only by 1 and itself (i.e, a prime number has two divisors namely 1 and
the number itself).

Example 1.6. The first ten prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29.

Definition 1.12. Algorithm, an algorithm is a scientific term for solving an in-
stance or a set of instructions that can be followed for solving a problem.

Example 1.7. To find the greatest common divisor (GCD) of two numbers a and
b, we can apply division algorithm, and the GCD is the last non-zero remainder.
All steps that are followed to determine the GCD will make an algorithm.

1.2 Mathematical Definition of a Group
A set R together with a binary operation (∗) is said to be a group if it satisfies the
following properties:

For a, b and c ∈ R,
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1. a ∗ b ∈ R (closure)

2. (a ∗ b) ∗ c = a ∗ (b ∗ c) (associativity)

3. There exists additive identity element e of R such that a ∗ e = e ∗ a = a ,
for all a ∈ R ( for (*) operation, identity is always e ( identity element) )

4. There exists inverse element a−1 of R such that a ∗ a−1 = a−1 ∗ a = e (
inverse element)

5. Furthermore if a ∗ b = b ∗ a, then R is said to be a commutative group or an
abelian Group.

Note: this operation is not always (∗) it can be also addition, and it may be an-
other operation defined on a set R.
However, in this research paper we are restricted on the usual addition and multi-
plication operators.

1.3 Mathematical Definition of a Ring
A set R together with two binary operations namely addition (+) and multiplica-
tion (∗) is said to be a ring if the following 3 conditions are satisfied:
Fora, b and c ∈ R,

1. ( R, +) must be an abelian group

2. a ∗ (b ∗ c) = (a ∗ b) ∗ c: associativity law for multiplication

3. a ∗ (b+ c) = a ∗ b+ a ∗ c ( left distributive law) (a+ b) ∗ c = a ∗ c+ b ∗ c
(right distributive law)

Note: The above two operations (+) and (∗) are not necessarily the ordinary ad-
dition and multiplication operations, reason why the definition of these operations
may be needed in mathematical expressions. But this paper considers them as
ordinary addition and multiplication.

If there exists multiplicative identity element of R for each every non-zero ele-
ment of R, always denoted 1 such that a ∗ 1 = 1 ∗ a = a, then we can call the ring
R to be the ring with unity.

The inverse of an element a for the abelian group (R,+) is denoted (−a).

In addition if a ∗ b = b ∗ a, then R is called a commutative ring with unity. If
every non- zero element of a commutative ring R with unity is invertible, then R
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becomes a field.

1.4 Classification of fields
Fields can be classified by size or by the number of elements that a field possesses.
If a field contains a finite number of elements then that field is called finite field,
otherwise it is an infinite field. For the rest of the work we will proceed with the
finite field only.

For example consider the commutative ring, Zp, where p is a prime number, is a
commutative ring with unity which is the field hence finite field because it pos-
sesses finite number of element. This is the most popular example of finite field.

Then, definition of this topic as the name indicated above, a finite field is a field
with a finite order (i.e number of elements is finite). It is also called Galois field
(so named in honor of Evariste Galois). The order of a finite field is always a
prime number or a power of a prime number. A finite field of order pn is denoted
GF (pn), often written as F (pn) in current usage.

GF (pn) is called the prime field of order p, where the p elements are denoted
0, 1, 2, 3, ..., p − 1. In the finite field GF (p) if two elements are written as a = b
this is the same as a ≡ b(mod p). Finite fields are therefore denoted by GF (pn)
instead of GF (k) where k = pn, for clarity. The finite field GF (2) consists of
elements 0, 1 which satisfy the addition and multiplication modulo 2. Let us first
consider the addition and multiplication of elements in GF (2) as shown in fol-
lowing two tables below:

+ 0 1
0 0 1
1 1 0

Table 1: The table shows the addition in GF (2)

* 0 1
0 0 0
1 0 1

Table 2: The table describes the multiplication in GF (2)
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ClearlyGF (2) is finite field since it contains two elements 0 and 1 which is a finite
number of elements and also by the rule that every non-zero element is invertible,
in the table it is clear that 1 is the only non-zero element and it is invertible. The
finite fields are classified by size, as follows:

1. The order or number of elements of finite fields is of the form pn, where p
is a prime number called the characteristic of the field, and n is a positive
integer.

2. For every prime number p and a positive integer n, there exists a finite field
with pn elements.

3. Any two finite fields with the same number of elements are isomorphic. For
example Z/(3) is isomorphic to F3. That is under some renaming of the
elements of one of these two fields, its addition and multiplication tables
become identical to the corresponding tables of the other one. This classi-
fication is justified by using a naming scheme for finite fields that specifies
only the order of the field.

Note: Finite fields are important and very useful in number theory, algebraic ge-
ometry, Galois Theory, cryptography, coding theory and quantum error correction.
Its applications may also be appearing in the electrical circuits.

2 Computational Over Finite Fields with First seven
Rings (Zp, where p = 2, 3, 5, 7, 11, 13, 17)

Arithmetic in a finite field is different from standard integers arithmetic. There
are a limited number of elements in the finite field; all operations performed in the
finite field result in an element within that field.

While each finite field is itself not infinite, there are infinitely many different finite
fields; their number of elements (which is also called cardinality) is necessarily of
the form pn, where p is a prime number and n is a positive integer, and two finite
fields of the same size are isomorphic. Consider Z/(3) is isomorphic to Z3. The
prime p is called the characteristic of the finite field, and the positive integer n is
called the dimension of the field over its prime field.

The finite field with pn elements is denoted GF (pn) and is also called the Galois
Field, in honor of the founder of finite field theory, Evariste Galois [Cox, 2011].
GF (p), where p is a prime number, is simply the ring of integers modulo p. That
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is, one can perform operations (addition, subtraction, division and multiplication)
by using the usual operation on integers, followed by reduction modulo p. For
instance, in GF (5), 4+3 = 7 is reduced to 2 modulo 5. Division is multiplication
by the inverse modulo p, which may be computed using the extended Euclidean
algorithm.

A particular case isGF (2), as addition and multiplication have been shown above
in Table 1 and Table 2 respectively, and the only invertible element is 1. Now
arithmetic operations in this paper are done on the first seven rings of integers
modulo p (Zp), where p is a prime number, and those are Z2,Z3,Z5,Z7,Z11,Z13

and Z17.

2.1 Arthmetic Operation in the Ring of Integers (Z3)

The class of residues in Z3 are 0, 1, 2

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

Table 3: This is a table that shows the addition in Z3

* 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

Table 4: This table describes the multiplication in Z3

2.2 Arthmetic Operation in the Ring of Integers (Z5)

The class residues in Z5 are 0, 1, 2, 3, 4
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* 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Table 6: This a multiplication table in Z5

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Table 5: This is a table that illustrates how an addition is done in Z5

2.3 Arthmetic Operation in the Ring of Integers (Z7)

The class residues of Z7 are 0, 1, 2, 3, 4, 5, 6

+ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

Table 7: An addition table in Z7
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* 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

Table 8: Multiplication table in Z7

2.4 Arthmetic Operation in the Ring of Integers (Z11)

The class residues of Z11 are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

+ 0 1 2 3 4 5 6 7 8 9 10
0 0 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10 0
2 2 3 4 5 6 7 8 9 10 0 1
3 3 4 5 6 7 8 9 10 0 1 2
4 4 5 6 7 8 9 10 0 1 2 3
5 5 6 7 8 9 10 0 1 2 3 4
6 6 7 8 9 10 0 1 2 3 4 5
7 7 8 9 10 0 1 2 3 4 5 6
8 8 9 10 0 1 2 3 4 5 6 7
9 9 10 0 1 2 3 4 5 6 7 8
10 10 0 1 2 3 4 5 6 7 8 9

Table 9: This table demonstrates the addition in Z11
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* 0 1 2 3 4 5 6 7 8 9 10
0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10
2 0 2 4 6 8 10 1 3 5 7 9
3 0 3 6 9 1 4 7 10 2 5 8
4 0 4 8 1 5 9 2 6 10 3 7
5 0 5 10 4 9 3 8 2 7 1 6
6 0 6 1 7 2 8 3 9 4 10 5
7 0 7 3 10 6 2 9 5 1 8 4
8 0 8 5 2 10 7 4 1 9 6 3
9 0 9 7 5 3 1 10 8 6 4 2
10 0 10 9 8 7 6 5 4 3 2 1

Table 10: Multiplication table in Z11

2.5 Arthmetic Operation in the Ring of Integers (Z13)
The class residues of Z13 are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

+ 0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 1 2 3 4 5 6 7 8 9 10 11 12
1 1 2 3 4 5 6 7 8 9 10 11 12 0
2 2 3 4 5 6 7 8 9 10 11 12 0 1
3 3 4 5 6 7 8 9 10 11 12 0 1 2
4 4 5 6 7 8 9 10 11 12 0 1 2 3
5 5 6 7 8 9 10 11 12 0 1 2 3 4
6 6 7 8 9 10 11 12 0 1 2 3 4 5
7 7 8 9 10 11 12 0 1 2 3 4 5 6
8 8 9 10 11 12 0 1 2 3 4 5 6 7
9 9 10 11 12 0 1 2 3 4 5 6 7 8

10 10 11 12 0 1 2 3 4 5 6 7 8 9
11 11 12 0 1 2 3 4 5 6 7 8 9 10
12 12 0 1 2 3 4 5 6 7 8 9 10 11

Table 11: This is an addition table in Z13

88



On some computational and applications of finite fields

* 0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10 11 12
2 0 2 4 6 8 10 12 1 3 5 7 9 11
3 0 3 6 9 12 2 5 8 11 1 4 7 10
4 0 4 8 12 3 7 11 2 6 10 1 5 9
5 0 5 10 2 7 12 4 9 1 6 11 3 8
6 0 6 12 5 11 4 10 3 9 2 8 1 7
7 0 7 1 8 2 12 3 10 4 11 5 12 6
8 0 8 3 11 6 1 8 4 12 7 2 10 5
9 0 9 5 1 10 6 2 11 7 3 12 8 4
10 0 10 7 4 1 11 8 5 2 12 9 6 3
11 0 11 9 7 5 3 1 12 10 8 6 4 2
12 0 12 11 10 9 8 7 6 5 4 3 2 1

Table 12: Multiplication Table in Z13

From this table, each non-zero element has its multiplicative inverse, the multi-
plicative inverse of 8 for example is 5, the multiplicative inverse of 11 is 6, and so
on.

2.6 Arithmetic Operation in the Ring of Integers (Z17)

The class residues of Z17 are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
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+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0
2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1
3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2
4 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3
5 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4
6 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5
7 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6
8 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7
9 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8

10 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9
11 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10
12 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11
13 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12
14 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13
15 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
16 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 13: This table points out how to perform an addition in Z17
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* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 0 2 4 6 8 10 12 14 16 1 3 5 7 9 11 13 15
3 0 3 6 9 12 15 1 4 7 10 13 16 2 5 8 11 14
4 0 4 8 12 16 3 7 11 15 2 6 10 14 1 5 9 13
5 0 5 10 15 3 8 13 1 6 11 16 4 9 14 2 7 12
6 0 6 12 1 7 13 2 8 14 3 9 15 4 10 16 5 11
7 0 7 14 4 11 1 8 15 5 12 2 9 16 6 13 3 10
8 0 8 16 7 15 6 14 5 13 4 12 3 11 2 10 1 9
9 0 9 1 10 2 11 3 12 4 13 5 14 6 15 7 16 8
10 0 10 3 13 6 16 9 2 12 5 15 8 1 11 4 14 7
11 0 11 5 16 10 4 15 9 3 14 8 2 13 7 1 12 6
12 0 12 7 2 14 9 4 16 11 6 1 13 8 3 15 10 5
13 0 13 9 5 1 14 10 6 2 15 11 7 3 16 12 8 4
14 0 14 11 8 5 2 16 13 10 7 4 1 15 12 9 6 3
15 0 15 13 11 9 7 5 3 1 16 14 12 10 8 6 4 2
16 0 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Table 14: This a multiplication table in Z17

Apart from the 14 tables represented above, one may proceed in the same way
up to the finite fields of p − 1 class residues with p being a prime number or a
power of a prime number.

3 Arithmetic Computational of Polynomials over
Finite Fields

The theory of polynomials over finite fields is important for investigating the al-
gebraic structure of finite fields as well as for many applications. Above all, ir-
reducible polynomials, the prime elements of polynomial rings over finite fields
are indispensable for constructing finite fields and computing with the elements
of finite fields [Rónyai, 1992].
A polynomial is an expression of the form anx

n + an−1x
n−1 + ... + a1x + a0,

for some non-negative integer n and where the coefficients a0, a1..., an are drawn
from some designated set S, which is in particular finite field and called the coef-
ficient set.

Polynomial arithmetic deals with the addition, subtraction, multiplication, and
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division of polynomials.

3.1 What Problems Does Polynomial Arithmetic Adress?
Given two polynomials whose coefficients are derived from a set S, what can
we say about the coefficients of the polynomial that results from an arithmetic
operation on the two polynomials? If we insist that the polynomial coefficient
all come from a particular S, then which arithmetic operations are permitted and
which prohibited? Let us say that the coefficient set is a finite field F with its own
rules for addition, subtraction, multiplication and division, and let us further say
that when we carry out an arithmetic operation on two polynomials, we subject
the operations on the coefficients to those that apply to the finite field F . Now
what can be said about the set of such polynomials? All these questions will have
their answers as we move on in this paper.

3.2 Ordinary Addition and Subtraction of Polynomials

Let f(x) = a2x
2 + a1x + a0 and g(x) = b1x + b0 Then f(x) + g(x) = a2x

2 +
(b1 + a1)x+ (a0 + b0)
Let f(x) = a2x

2 + a1x+ a0 and g(x) = b3x
3 + b0, Then f(x)− g(x) = −b3x3 +

a2x
2 + a1x+ (a0 − b0)

3.3 Ordinary Multiplication of Polynomials
Let f(x) = a2x

2 + a1x+ a0 and g(x) = b1x+ b0, Then f(x) ∗ g(x) = a2b1x
3 +

(a2b0 + a1b1)x
2 + (a1b0 + a0b1)x+ a0b0.

3.4 Ordinary Division of Polynomials

3.4.1 When is Division of Polynomials Permited?

Polynomial division is obviously not allowed for polynomials that are not defined
over certain fields. For example, for polynomials defined over the set of all inte-
gers, you cannot divide 4x2 + 5 by the polynomial 5x. If you tried, the first term
of the quotient would be (4

5
)x where the coefficient of x is not an integer. You

can always divide polynomials defined over a certain field. What that means is
that the operation of division is legal when the coefficients are drawn from a finite
field. Note that, in general, when you divide such polynomial by another, you will
end up with a remainder, and when, in general you divide one integer by another
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integer it is possible in purely integer arithmetic.

Therefore, in general, for polynomials defined over a field, the division of a poly-
nomial f(x) of a degree m by another polynomial g(x) of a degree n − m can
be expressed by f(x)/g(x) = q(x)g(x) + r(x), where q(x) is the quotient and,
r(x) the remainder, so we can write for any two polynomials defined over a field,
f(x) = q(x) ∗ g(x) + r(x) assuming that the degree of f(x) is not less than that
of g(x). When r(x) is zero, we say that g(x) divides f(x). This fact can also be
expressed by saying that g(x) is a divisor of f(x) and by notation, g(x)|f(x).

3.4.2 Division of a Polynomial by Another Upon Using Long Division

Let us divide the polynomial 8x2 + 3x+ 2 by the polynomial 2x+ 1:

In this example, our dividend is 8x2 + 3x + 2 and the divisor is 2x + 1. We now
need to find the quotient.
Long division for polynomials consists of the following steps:

Step 1: Arrange both the dividend and the divisor in the descending powers of the
variable.
Step 2: Divide the first term of the dividend by the first term of the divisor and
write the result as the first term of the quotient.
In our example, the first term of the dividend is 8x2 and the first term of the divisor
is 2x , so the first term of the quotient is 4x.
Step 3: Multiply the divisor with the quotient term just obtained and arranges the
result under the dividend so that the same powers of x match up. Subtract the
expression just laid out from the dividend. In our example, 4x times 2x + 1 is
equal to 8x2 + 4x. Subtracting this from the dividend yields −x + 2. consider
the result of the above subtraction as the new dividend and go back to the first
step. (The new dividend in our case is (−x + 2). In our example, dividing the
polynomial 8x2+3x+2 by the polynomial 2x+1, yield quotient of 4x− 0.5 and
a remainder of 2.5.

3.5 Arithmetic Operations on Polynomials whose Coefficients
Belong to a Defined Finite Fields

The arithmetic operations on polynomials whose coefficients are drawn from fi-
nite fields is not the same as the usual operations of polynomials. To see this, Let
us consider the set of all polynomials whose coefficients belong to the finite field
Z7 (which is the same as GF(7)). Here is an example of adding two such polyno-
mials: f(x) = 5x2+4x+6, g(x) = 5x+6 we get f(x)+g(x) = 5x2+9x+12 =
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5x2 + 2x+ 5

If we perform the difference of both polynomials, f(x) = 5x2 + 4x + 6 and
g(x) = 5x+6 then f(x)− g(x) = 5x2− x = 5x2 +6x since the additive inverse
of 5 in Z7 is 2 and that of 6 is 1. So 4x − 5x is the same as 4x + 2x and 6 − 6 is
the same as 6 + 1, with both additions modulo 7.
The multiplication of polynomials f(x) = 5x2 + 4x + 6, and g(x) = 5x + 6 is
given by f(x) ∗ g(x) = 4x3 + x2 + 5x+ 1
Lastly the divison of polynomials f(x) = 5x2+4x+6, g(x) = 2x+1 is given by
f(x)/g(x) = 6x+ 6. If you multiply the divisor 2x+ 1 with the quotient 6x+ 6
, you get the dividend 5x2 + 4x+ 6.

Let consider also the polynomials defined over GF (2). Recall that the notation
GF (2) means the same thing as Z2. We are obviously talking about arithmetic
modulo 2. First of all, GF (2) is a sweet basic finite field. Recall that the num-
ber 2 is the first prime. (A prime has exactly two distinct divisors, 1 and itself).
GF (2) consists of the set 0, 1. The two elements of this set obey the following
addition and multiplication rules:

0 + 0 = 0
0 x 0 = 0
0 + 1 = 1
0 x 1 = 0
1 + 0 = 1
1 x 0 = 0
1 + 1 = 0
1 x 1 = 1

So the addition over GF (2) is equivalent to the logical XOR operation, and mul-
tiplication to the logical AND operation. Some examples of polynomials defined
over GF (2): are x3 + x2 − 1;−x5 + x4 − x2 + 1;x+ 1, etc.

3.5.1 Arithmetic Computational of Polynomials Defined Over GF (2)

Here is an example of adding two such polynomials: f(x) = x2 + x + 1, g(x) =
x+ 1, therefore f(x) + g(x) = x2 + 2x+ 2 = x2

• Here is an example of subtracting two such polynomials, f(x) = x2 + x +
1, g(x) = x+ 1, then f(x)− g(x) = x2

• Here is an example of multiplying two such polynomials, f(x) = x2+x+1,
and g(x) = x+ 1, then f(x)× g(x) = x3 + 1
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• Here is an example of dividing two such polynomials,f(x) = x2 + x +
1, g(x) = x+ 1, then f(x)/g(x) = x.

If you multiply the divisor, x+ 1 with the quotient x, you get x2 + x. That
when added to the remainder 1 gives us back the dividend x2 + x+ 1

3.6 Division of Polynomials Defined Over Finite Fileds

First, note that a polynomial is defined over a field if all its coefficients are drawn
from that field. Dividing polynomials defined over a finite field is a little bit more
frustrating than performing other arithmetic operations on such polynomials. Now
your mental gymnastics must include both additive inverses and multiplicative in-
verses.Consider again the polynomials defined over GF (7). Let’s say we want to
divide 5x2 + 4x + 6 by 2x + 1. In a long division, we must start by dividing 5x2

by 2x. This requires that we divide 5 by 2 in GF (7). Dividing 5 by 2 is the same
as multiplying 5 by the multiplicative inverse of 2. Multiplicative inverse of 2 is
4 since 2 ≡ 4 mod 7 is 1. So we have 5 ≡ 2−1 = 5 ≡ 4 = 20 mod 7 = 6.
Therefore, the first term of the quotient is 6x. Since the product of 6x and 2x+ 1
is 5x2 + 6x, we need to subtract 5x2 + 6x from the dividend 5x2 + 4x + 6. The
result is (4 − 6)x + 6, which (since the additive inverse of 6 is 1) is the same as
(4 + 1)x+ 6, and that is the same as 5x+ 6.

Our new dividend for the next round of long division is therefore 5x + 6. To find
the next quotient term, we need to divide 5x by the first term of the divisor, that is
by 2x. Reasoning as before, we see that the next quotient term is again 6. The final
result is that when the coefficients are drawn from the set GF (7)), 5x2 + 4x + 6
divided by 2x+ 1 yields a quotient of 6x+ 6 with the remainder zero.
So we can say that as a polynomial defined over the field, GF (7), 5x2 +4x+6 is
a product of two factors, 2x+1 and 6x+6. We can therefore write 5x2+4x+6 =
(2x+ 1) ≡ (6x+ 6)

4 Irreducible Polynomials or Prime Polynomials

Definition 4.1. According to [Rónyai, 1992], a polynomial f ∈ F [x] is said to
be irreducible over F (or irreducible in F [x], or prime in F [x]) if f has positive
degree and f = g ∗ h, with g, h ∈ F [x] implies that either g or f is a constant
polynomial, otherwise it is reducible over F . The reducibility or irreducibility of a
given polynomial depends heavily on the field under considerations. For instance,
the polynomial x2− 2 ∈ Q(x) is irreducible over the field Q of rational numbers,
but x2 − 2 = (x +

√
2)(x −

√
2) but reducible over the field of real numbers
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(R). For polynomials over finite fields, the same argument hold except that the
coefficients are reduced in mod p.

Example 4.1. f(x) = x2 + x + 1 is irreducible over F2 but g(x) = x2 + 1 is
reducible over F2 to see this g(x) = x2 + 1 = (x + 1)(x + 1) = x2 + 2x + 1,
since 2 ≡ 0 mod(2), and then 2x ≡ 0 mod(2). In few words we can say, when
g(x) divides f(x) without leaving a remainder, we say g(x) is a factor of f(x). A
polynomial f(x) over a field F is called irreducible, if f(x) cannot be expressed
as a product of two polynomials, both over F and both of degree lower than that
of f(x). An irreducible polynomial is also referred to as a prime polynomial.

5 Some Computational Tables of Quotient Polyno-
mials Over Finite Fields

To represent the elements of an extension fields over finite fields in a computa-
tional table, we must have the quotient? Fq[x]/f(x), where f(x) is irreducible
over Fq[x]. This form of polynomials are looked like powers of prime [Lidl and
Niederreiter, 1994].

Example 5.1. Let f(x) = x2 + 1 ∈ F3[x]. Thus to find the computational tables
of F3[x]/(f(x)), we need to find the residue class ring as pn where n is the degree
of polynomial f(x), and then we have a set of residue class ring of 32 = 9 ele-
ments, as it looks like a representation of F (9), such as 0, 1, 2, x, 1+x, 2+x, 1+
2x, 2x, 2 + 2x, these are precisely the polynomials of degree less than 2 over F3

by equating x2 + 1 = 0 and this implies that x2 = −1 = 2, but remember that
computational in finite fields are followed by mod p [Gong et al., 2013]
.

+ 0 1 2 x 1+x 2+x 1+2x 2x 2+2x
0 0 1 2 x 1+x 2+x 1+2x 2x 2+2x
1 1 2 0 1+x 2+x x 2+2x 1+2x 2x
2 2 0 1 2+x x 1+x 2x 2+2x 1+2x
x x 1+x 2+x 2x 1+2x 2+2x 1 0 2

1+x 1+x 2+x x 1+2x 2+2x 2x 2 1 0
2+x 2+x x 1+x 2+2x 2x 1+2x 0 2 1

1+2x 1+2x 2+2x 2x 1 2 0 2+x 1+x x
2x 2x 2x+1 2+2x 0 1 2 1+x x 2+x

2+2x 2+2x 2x 1+2x 2 0 1 x 2+x 1+x

Table 15: Addition table for F3[x]/(f(x))
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* 0 1 2 x 1+x 2+x 1+2x 2x 2+2x
0 0 0 0 0 0 0 0 0 0
1 0 1 2 x 1+x 2+x 1+2x 2x 2+2x
2 0 2 1 2x 2+2x 1+2x 2+x x 1+x
x 0 x 2x 2 x+2 2x+2 x+1 1 2x+1

1+x 0 1+x 2+2x x+2 2x 1 2 2x+1 x
2+x 0 2+x 1+2x 2x+2 1 x 2x x+1 2
1+2x 0 1+2x 2+x x+1 2 2x x 2x+2 1

2x 0 2x x -2 2x+1 x+1 2x+2 x x+2
2+2x 0 2+2x 1+x 2x+1 x 2 1 x+2 2x

Table 16: Multiplication Table for F3[x]/(f(x))

6 Applications of Finite Fields

6.1 Algebraic Coding Theory

It is one of the major applications of finite field. This theory has its origin in
famous theorem of Shannon that guarantees the existence of codes that can trans-
mit information at rates close to the capacity of a communication channel with
an arbitrary small probability of error. One of the purposes of algebraic coding
theory, the theory of error-correcting and error-detecting codes is to devise meth-
ods for construction of such codes [von zur Gathen et al.]. During the last two
decades more and more abstract algebraic tools such as the theory of finite fields
and the theory of polynomials over finite fields have influenced coding. In partic-
ular, the description of redundant codes by polynomials over Fq is a milestone in
this development. The fact that one can use shift registers for coding and decod-
ing establishes a connection with linear recurring sequences. In our discussion of
algebraic coding theory we do not consider any of the problems of the implemen-
tation or technical realization of the codes. We restrict ourselves to the study of
basic properties of block codes and the description of some interesting classes of
block codes.

6.1.1 Linear coding

The problem of communicating the information, in particular the coding and de-
coding of information for the reliable transmission over a ”noisy” channel is of
great importance today. Typically, one has to transmit a message which consists
of finite string of symbols that are elements of some finite alphabet. For instance,
if this alphabet consists of simply 0 and 1, the message can be described as binary
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number.

Generally the alphabet is assumed to be finite fields. Now the transmission of
finite string of elements of the alphabet over a communication channel need not
to be perfect in the sense that each bit of information is transmitted unaltered
over this channel. As there is no ideal channel without ”noise” the receiver of
the transmitted message may obtain distorted information and may make errors in
interpreting the transmitted signal.

One of the main problems of coding theory is to make the errors, which occur for
instance because of noisy channel, extremely improbable.

The methods of improve the reliability of transmission depend on properties of
finite fields. A basic idea in algebraic coding theory is to transmit redundant infor-
mation together with the message one wants to communicate; that is, one extends
the string of message symbols to a longer string in a systematic way.

A simple model of communication system is shown in the figure bellow:

We assume that the symbols of the message and the coded message are elements
of the same finite field Fq. Coding means to encode a block of k message symbols
a1, a2, ..., ak where ai ∈ Fq into a code word c1, c2, ..., cn of n symbols, where
cj ∈ Fq, with n > k. We regard the code word as an n-dimensional row vector
c ∈ F n

q . Thus f in the Figure below is a function from F k
q into F n

q , called a coding
scheme, and g : F n

q → F k
q is a decoding scheme.

Figure 1: Communication figure that shows how a message is coded, transmitted
and decoded

A simple type of coding scheme arises when each block a1a2...ak of message sym-
bols is encoded into a code word of the form a1a2...akck+1...cn, where the first k
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symbols are the original message symbols and the additional n− k symbols in Fq
are control symbols. Such coding schemes are often presented in the following
way. Let H be a given (n− k)× n matrix with entries in Fq that is of the special
formH = (A, In−k), whereA is (n−k)×k matrix and In−k is the identity matrix
of order n − k. The control symbols ck+1, ..., cn can then be calculated from the
system of the equations HCT = 0, for code word c. The equations of this system
are called parity-check equations. The examples of this theory will be given later.

6.2 Error-Correcting Codes (Practice of Linear Code)
Since the theory of codes was developed in order to ensure reliability of transmit-
ted information, as an example, consider the ISBN (International Standard Book
Number) of published book. This number usually appears on the back of the book
in the bottom right-hand corner. The ISBN consists of a nine-digits 0, 1, ..., 9 or
the symbol X (standing for 10). This final symbol may be calculated from the
other nine as follows:
From an integer N by adding together the first digit, twice the second digit,
three times the third and so on. The check digit is the remainder when N is
divided by 11. For example, a book with first 9 digits 019853453 will have
N = 0 + 2 + 27 + 32 + 25 + 18 + 28 + 40 + 27 = 199, and so the check
digit should be 1, giving ISBN 01953453 1. The point about such a number is
that if it is inaccurately copied, and an error is made in any of the digits in the
first nine locations (such as the last ”5” being copied as a ”3”), then the result-
ing number will not have ”1” as its check digit. This is an example of error-
detecting code: the ISBN detects when a single error is made after transcribing
the number. Another example of finding check digit is that of 102463798, then
N = 1× 1+0× 2+2× 3+4× 4+6× 5+3× 6+7× 7+9× 8+8× 9 = 264,
and divide this number by 11 to get the check digit which is 0, and hence giving
ISBN 102463798 0 In this part we shall explain methods which not only detect
errors, but also enables us to correct it.

Definition 6.1. Let p be prime integer. Denote by V (n, p) the set of all sequences
of length n of the elements from the set Zp of congruence classes modulo p, so that
V (n, p) has pn elements. We will usually omit the commas and brackets commonly
used to denote elements of the vector spaces, so that (1, 0, 1), will be written as
101. Thus V (3, 2) consists of the eight sequences 000, 001, 010, 011, 100, 101, 110, 111
while V (2, 3) consists of the nine sequences 00, 01, 02, 10, 11, 12, 20, 21, 22. We
add sequences by adding the corresponding terms, by just remembering that we
are adding congruence classes. Thus, for example in V (3, 2), 110 + 011 = 101
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while in V (2, 3), 12 + 11 = 20. We can also multiply an element in V (n, p) by
a congruence class by multiplying each term in the sequence by the representa-
tive for the congruence class and reducing modulo p. For example, in the space
V (3, 3) we see that 2(102) =201. In fact V (n, p) is a vector space of dimension n
over the field Zp

Definition 6.2. A linear (n, k)-code is any k-dimensional subspace C of the vec-
tor space V (n, p). Thus C satisfies the following two conditions:
The difference of any two elements of C is an element of C, and the product of
any element of C with an element of Zp is also an element of C. The elements of
C are called codewords.

Note: A subspace of a vector space is necessary non-empty, so condition (1) en-
sures that the zero element of the vector space is in the subspace C. It then follows
by the additive version that C is a group under addition.

Example 6.1. Consider the four elements 000, 001, 010, 011 of V (3, 2). These are
precisely the four sequences which start with 0. This subspace of V (3, 2) satisfies
condition one, that subtracting any two of these gives a sequence starting with
0. Also condition (2) holds, since 0 and 1 are the only elements of Z2 and then
multiply each sequence by any of these two elements we get an element starting
with 0. Therefore the four elements form a linear (3, 2)-code.

Definition 6.3. Let v be any element of V (n, p). The weight of v is the number
of non-zero terms in the sequence v. If v and w are two elements of V (n, p), the
distance d(v, w) is the number of places at which v and w differ.

Example 6.2. In V (4, 3) the weight of 1201 is three, since there are three non-
zero entries. The distance from 1201 to 2211 is two, since these two vectors differ
in two places. In V (5, 5) the weight of 13402 is four and so on.

Proposition 6.1. Let u, v and w be any elements of V (n, p). Then

1. d(u, v) ≥ 0 with equality if and only if u = v;

2. d(u, v) = d(v, u); and

3. d(u, v) + d(v, w) ≥ d(u,w).
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Proof.

1. It follows directly from the definition that d(u, v) is positive except u and v
do not differ anywhere.

2. This is always true for u and v.

3. In each location at which u and w differ, v cannot agree with both u and w.
Thus every contribution to the value of d(u,w) provides a contribution to
either d(u, v) or to d(v, w). 2

Definition 6.4. Let C be subspace of V (n, p). The minimum distance d of C is the
least distance between different codewords: d = minu,v{d(u, v)}. The next result
shows that for a linear code, the minimum distance d can be calculated from the
code words.

Proposition 6.2. Let C be a linear (n − k)-code. Then the minimum distance of
C is equal to the smallest possible weight of any non-zero codeword.

Proof.

Let f be the smallest possible weight of any non-zero codeword, and let 0 denote
the sequence consisting entirely of zeros. Suppose that w is a codeword of weight
f . Then d(w, 0) if and only if so f ≥ d. Now let u and v be pair of codewords
with d(u, v) = d. Since C is a linear code, the word u−v is a codeword of weight
d, so d ≥ f . It follows that d = f .

The importance of the minimum distance lies in the detecting the errors and cor-
rection of those errors. To see this, consider the following proposition. 2

Proposition 6.3. Let C be linear code with minimum distance d. Then C detects
d− 1 or fewer errors, and corrects e errors for any e with 2e+ 1 ≤ d.

Proof.

Let v be a vector which has distance f from a codeword c, where f ≤ d− 1. We
think of c as the transmitted word and v as the received word, so that there are f er-
rors in transmission. Since d is the minimum distance for C, the received v cannot
be a codeword. We express this by saying that the codeC detects d or fewer errors.
Suppose now that v has distance e from a codeword c and also that 2e + 1 ≤ d.
Then there can be no other codeword near to v: If c1 was in C and d(v, c1) ≤ e,
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then by property of triangle inequality d(c, c1) ≤ d(c, v) + d(v, c1) ≤ e + e < d,
which contradicts the definition. Thus there is a unique nearest codeword to v,
and we say that C corrects e errors in this case. 2

Definition 6.5. Let n and k be any positive integers with n > k. Let p be a prime
number. A (standard) generator matrix G over Zp is a k × n matrix with entries
in Zp, in which the first k columns form an identity k × k matrix. Given such a
matrix, we obtain a linear code by regarding the rows as sequences and taking all
possible linear combinations of these. Alternatively, we can consider the code as
consisting of all sequences obtained from matrix multiplications of the form u.G
as u varies over all sequences of length k over Zp.

Example 6.3. Consider the generator matrix over Z2

G =

(
1 0 1
0 1 1

)
The corresponding code consists of the combinations of the rows and so has four
elements: 000; 101; 011 and 110. The codewords can also be described as the
vectors of the form uG, as u varies over the four vectors 00; 01; 10; 11. Every
non-zero codeword has weight 2, so the codeword detects one error, but does not
correct errors. For example, 111 is not among codewords (so it is detected) but
it is of equal distance from the two codewords 101 and 011 in G, so it cannot be
corrected.

Example 6.4. Another example of a binary code (code over Z2) is provided by
the matrix

G =

1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1


There are 8 code words obtained from the rows of this matrix:
000000; 100110; 010101; 110011; 001011; 101101; 011110; 111000.

There are four code words of weight 3, three code words of weight 4 and one of
weight 0. The minimum distance (d) of this code is therefore 3, so the code detects
d − 1 errors means two errors and corrects one error. For example, 100111 lies
at distance one from a unique codeword, 100110 and so there is unique way to
correct one error. The vector 100001, however has distance two from 000000 and
110011, so cannot be corrected.
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Example 6.5. Consider the following generator matrix over Z3 :

G =

(
1 0 2 1
0 1 1 2

)
In this case, the codeword consists of the linear combinations of the rows of the
matrix, including multiplication by 1 and 2 since p = 3. There are 9 code words:
0000; 1021; 2012; 0112; 1100; 2121; 0221; 1212 and 2200.

Since there is a codeword of weight 2, this code detects one error. Note that the
minimum distance is 2 despite the fact that each row of the generator matrix has
weight 3.

Example 6.6. Consider also the following important code over Z3
1 0 0 0 0 0 0 1 2 2 1
0 1 0 0 0 0 1 0 1 2 2
0 0 1 0 0 0 2 1 0 1 2
0 0 0 1 0 0 2 2 1 0 1
0 0 0 0 1 0 1 2 2 1 0
0 0 0 0 0 1 1 1 1 1 1


By considering this matrix, the minimum distance of this code is at most 5 since
there is a row of the generator matrix of weight 5. It can be shown that the min-
imum distance is exactly 5, so that code corrects two errors. This is the Ternary
Golay code and is one of the most important code. More details and its descrip-
tions are found in [Cohen et al., 2013].

We now consider the problem of decoding a linear (n, k)-code C. This is done by
listing the left cosets of the subgroup C of V (n, p) in a table known as the cosets
decoding table. The table is organized by writing the codewords as its first row
with the zero codeword first. Each subsequent row is a left coset of C. The entries
in the first column are the coset representatives, now called cosets leaders. The
algorithm for choosing the rth-coset leader is to choose any word of minimum
weight not already included in the first (r − 1) rows. Then to decode a given
vector, locate it in the table, and correct it to the codeword standing in the same
column of the coset decoding table.

Example 6.7. Consider Example 6.6, above there are eight code words which
form a subgroup C of the vector space V (6, 2). Since V has 26 = 64 elements,
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this subgroup has index 64/8=8. To form a complete coset decoding table, we list
the elements of C in a row. We then choose any element v2 which is of smallest
weight among those not in the first row and write this at the left hand end of the
second row. The second row is obtained by adding each element of C in turn to
this. Thus the second row is just the coset of C with respect to v2. Continue this
process by choosing v3 to be of the smallest weight among the elements not in the
first two rows, and so on. This process is not unique, but depends upon the choice
of coset representatives [Pless, 1998]. One example of these choices is given in
the following table

000000, 100110, 010101, 110011, 001011, 101101, 011110, 111000
100000, 000110, 110101, 010011, 101011, 001101, 111110, 011000
010000, 110110, 000101, 100011, 011011, 111101, 001110, 101000
001000, 101110, 011101, 111011, 000011, 100101, 010110, 110000
000100, 100010, 010001, 110111, 001111, 101001, 011010, 111100
000010, 100100, 010111, 110001, 001001, 101111, 011100, 111010
000001, 100111, 010100, 110010, 001010, 101100, 011111, 111001
100001, 000111, 110100, 010010, 101010, 001100, 111111, 011001

To decode any element v of V (6, 2), we locate v in the table and then correct it to
the element in the first row of the column containing v. Thus to use the table to
decode 011010, we need to locate it (it is in the fifth row and seventh column) and
correct it to the element in the first row and the same column, giving 011110. Note
that the cosets representative for the last row is not easy to find. According to the
algorithm, we need a word of weight 2 not in the first seven rows. The represen-
tative we choose, 100001, is not unique. This is actually a somewhat cumbersome
way to arrange the decoding, since an exhaustive search is required. The cal-
culation can be made more systematic for codes given by (standard) generator
matrices using (standard) parity check matrices [Sayed, 2011].

Definition 6.6. Let C be an (n, k)-linear code over Zp defined using k × n gen-
erator matrix G of the form

G =


1 0 0 ... 0
0 1 0 ... 0 A
...
0 0 0 ... 1


where, A is k × (n− k) matrix. The parity check matrix associated with G is the
(n− k)× n matrix
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P =


1 0 0 ... 0

−AT 0 1 0 ... 0
...
0 0 0 ... 1


Note: The generator matrix G above is often written, in a block matrix form as
G = (Ik|A). similarly, the parity check matrix is written as P = (−AT |I(n−k))
[kar, 2012].

Example 6.8. The parity check matrix of the generator matrix over Z2. The parity
check of the matrix of

G =

1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 ,

is the matrix

P =

1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1


[kar, 2012]. This matrix is obtained by considering the matrix

A =

1 1 0
1 0 1
0 1 1

 ,

and then after computing −AT get the above matrix P given by −AT |I(n−k) [kar,
2012].

Definition 6.7. Let C be a linear (n, k)-code with generator matrix G and asso-
ciated parity matrix P . For any v in V (n, p), let vT denote the transpose of v, the
column vector obtained by writing the members of the sequence v vertically. Then
the syndrome of v is the element of V (n− k, p) given by PvT . Thus in the above
example, the syndrome of v = 100000 is 110 and the syndrome of v = 110011 is
000.

Note: If C is a code with standard parity check matrix P , then an element v
in V (n, p) is a codeword if and only if the syndrome of v is the zero sequence.
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Example 6.9. We need not store or the complete coset decoding table, but merely
a table of two columns, the coset representatives and their syndromes. In our
previous example in which P was1 1 0 1 0 0

1 0 1 0 1 0
0 1 1 0 0 1


This table would be as the following,

Coset representatives Syndromes
000000 000
100000 110
010000 101
001000 011
000100 100
000010 010
000001 001
100001 111

Table 17: This a table of syndromes and cosets representatives

Thus to decode a given vector such as 100111, calculate its syndrome to obtain
001. This is the syndrome for the seventh row, so this vector is not a codeword, but
the word 100110 obtained by subtracting 000001 is a codeword. The advantage
of listing coset representatives together with syndromes is that, it is much easier to
find any missing coset representatives, since each sequence in V (n− k, p) occurs
as syndrome. Thus in this above example, the syndrome for the last row must
be 111 because the other seven sequences of length 3 have already been used as
syndromes. This enables us to find a representative relatively easily (compared
with searching through the first seven rows), by seeing how to combine known
coset leaders and their syndromes to obtain 111.

6.3 Cyclic Codes
Definition 6.8. In the paper of [Peterson and Brown, 1961], a linear code C is
called a cyclic code if it has the following property:

If (c0, c1, c2, ..., cn−1) ∈ C, then it is also reality that (c1, c2, ..., cn−1, c0) ∈ C.
From this definition the automorphism group Aut(C) of a code C is the set of per-
mutations δ ∈ Sn such that δ(c) ∈ C for all c ∈ C, where δ(c0, c1, c2, ..., cn−1) =
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(cδ(0), ..., cδ(n−1)). In other words, the code, C is cyclic if and only if the permuta-
tion δ = (0, 1, 2, ..., n− 1) is in Aut (C)[Roberts and Vivaldi, 2005].

Example 6.10. Let C be a subspace of a vector space V (6, 7) and consider the
code words v = (345601) ofC, thenC is cyclic code if (4, 5, 6, 0, 1, 3); (5, 6, 0, 1, 3, 4);
(6, 0, 1, 3, 4, 5); (0, 1, 3, 4, 5, 6); (1, 3, 4, 5, 6, 0), all are elements of C. We can de-
fine an algebraic structure by looking at cyclic code if we let C to be a cyclic code
over the field Fq and we set Rn + Fq[x]/(x

n − 1). We can take the elements of
Rn as polynomials of degree at most n − 1 over Fq, where multiplication can be
happen except that xn = 1, xn+1 = x , and so on. From this, we can deduce one
to one correspondence between polynomials and the code words of cyclic code as
can be seen in [Sziklai, 2013].

Example 6.11. Let C be a subspace of a vector space V (5, 7) over F7 = Z/7Z
and let consider the code word (1, 2, 3, 5, 6). Then we can find the polynomial
of degree less than 5 correspond to this code word which is given by 1 + 2x +
3x2 + 5x3 + 6x4. To find the elements of Rn + Fq[x]/(x

n − 1), we do it as
found for the previous case of quotient finite fields, and these are precisely the
polynomials of degree at most n − 1, hence the total number of the elements of
Rn + Fq[x]/(x

n − 1), are qn elements.

Example 6.12. Let find the elements of R3 + F2[x]/(x
3 − 1), here our q = 2

and n = 3, therefore the total number of the elements of this polynomial field are
qn = 23 = 8 polynomials of degree less than 3 whose coefficients are in F2. So
the elements R3 + F2[x]/(x

3− 1) are 0, 1, x, 1+x, x2, x2+1, 1+x+x2, x+x2.

Theorem 6.1. From this kind of cyclic codes we define also an ideal of Rn given
by IC + (c(x) + c0 + c1x+ ...+ cn−1x

n−1) ∈ Rnc + (c0, c1, ..., cn−1) ∈ C

Proof.

Let c, d ∈ IC , a ∈ Rn, then we want to show that c − d ∈ IC and ac ∈ IC ,
therefore c(x) = c0 + c1x+ ...+ cn−1x

(n−1), d(x) = d0 + d1x+ ...+ d(n−1)x
(n−1)

and a(x) = a0+a1x+ ...+an−1x
(n−1). So, c(x)−d(x) = c0−d0+(c1−d1)x+

...+ (cn−1 − dn−1)x
(n−1) ∈ IC ⇒ (c0 − d0, c1 − d1, ..., cn−1 − dn−1) ∈ C.

C ∈ IC ⇔ (c0, c1, ..., cn−1) ∈ C
d ∈ IC ⇔ (d0, d1, ..., dn−1) ∈ C.
(c0−d0, c1−d1, ..., cn−1−dn−1) ∈ C, is a code word of cyclic code C (since C is
a vector space of V (n, q) over Fq. It remains to show that a(x)c(x) is an element
of IC . Then a(x)c(x) = (a0+a1x+...+an−1x

(n−1))(c0+c1x+...+cn−1x
(n−1)) =

a0c0+a0c1+a0c2+...a1c0+a1c1+...+a2c0+..., is also a code word of length n−1.
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Let illustrate by using example, let a(x) ∈ R3 + F2[x]/(x
3 − 1), and c(x) ∈ IC ,

we have a(x) = a0 + a1x+ a2x
2 and c(x) = c0 + c1x+ c2x

2, where ai ∈ Fq for
i = 0, 1, 2 and ci ∈ C for i = 1, 2, 3. Then a(x)c(x) = (a0+a1x+a2x

2)(c0+c1x+
c2x

2) = a0c0+(a0c1+a1c0)x+(a0c2+a1c1+a2c0)x
2+(a1c2+a2c1)x

3+(a2c2)x
4.

But x3 = 1 and x4 = x, then we have a0c0+a1c2+a2c1+(a0c1+a1c0+a2c2)x+
(a0c2 + a1c1 + a2c0)x

2 ∈ IC .

⇒ (a0c0 + a1c2 + a2c1; a0c1 + a1c0 + a2c2; a0c2 + a1c1 + a2c0) ∈ C.
⇒ (a0c0, a0c1, a0c2) + (a1c2, a1c0, a1c1) + (a2c1, a2c2, a2c0).
⇒ a0(c0, c1, c2) + a1(c2, c0, c1) + a2(c1, c2, c0).
But (c0, c1, c2), (c2, c0, c1), (c1, c2, c0) ∈ C since C is cyclic code. Therefore IC is
an ideal of Rn. 2

Theorem 6.2. Let IC be an ideal of R(n) and let g(x) ∈ C be monic polynomial
of minimal degree l = deg(g(x)). Then

a. g(x) is the only monic polynomial of degree l in IC .

b. g(x) generates IC as an ideal of Rn.

Proof.

Let f be any other non- zero monic polynomial of minimal of I with de-
gree less than l then f − g ∈ I , but f 6= g ⇒ f − g 6= 0, f(x) − g(x) =
ckx

k+ ...+ c1x+ c0 and this polynomial is not monic, it becomes monic if we di-
vide it by c−1

k with ck 6= 0 , and then we get 1/ck(f(x)−g(x)) = xk+...+d1x+d0,
where d = ci/ck for i = 0, 1, ..., k. Hence k < l which contradicts that l is the
minimal degree. Therefore, g(x) is unique monic polynomial of the minimal de-
gree. g(x) generates I means that I =< g >= gh, h ∈ Rn, this also means if
f ∈ I , then f = gh for some h ∈ Rn . Let f ∈ I ⊂ Rn = Fq[x]/(x

n − 1), write
f(x) = g(x)q(x) + r(x) ∈ I with deg(r(x)) < deg(g(x)) = l.
⇔ f(x)− g(x)q(x) = r(x) ∈ I (since q(x), g(x) ∈ I ).
⇒ r(x) = 0
⇒ f(x) = g(x)q(x)
⇒ f ∈< g > and I ∈< g > But g ∈ I , so < g >∈ I . Hence I =< g >. 2

7 Conclusion
This paper has discussed about finite fields whereby some important defini-

tions, propositions, theorems and their proofs have been given in order to capture
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what finite fields are and how finite fields deal with operations in different ways
from usual known operations that may be performed for a set of integers. The op-
erations procedure required any arithmetic followed by reduction of p, and this is
the reason why several tables from finite fields Z2 to Z17 are computed to highlight
how one may compute in finite fields. It includes polynomials arithmetic opera-
tions over finite fields such as addition, subtraction, multiplication, and division.
The arithmetic polynomials over finite fields are computed by using the reduction
of p to its coefficients, because their coefficients are drawn from finite fields that
are taken into consideration. Besides polynomials computational over finite fields,
this paper also explains what are cyclic codes and their applications. This research
paper has further shown the applications of finite fields in the most important do-
main of communication regarding algebraic coding theory, code error-detection
and error-correction, whereby coding and decoding schemes using cosets repre-
sentative and syndromes table are discussed by using tangible examples. From
this paper one may learn about finite fields and its applications and be able to ex-
tend up to p− 1 class residues with p being any prime number or any power of a
prime number.
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Abstract 

The need in the current social context to adopt teaching methods that 

can stimulate students and lead them towards autonomy, awareness 

and independence in studying could conflict with the needs of 

students with specific learning disorders, especially in higher 

education, where self-learning and self-orientation are required. In 

this sense, the choice of effective teaching strategies becomes a 

decision-making problem and must, therefore, be addressed as such. 

This article discusses some mathematical models for choosing 

effective methods in mathematics education for students with 

specific learning disorders. It moves from the case study of a student 

with specific reading and writing disorders enrolled in the 

mathematical analysis course 1 of the degree course in architecture 

and describes the personalised teaching strategy created for him. 
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1  Introduction 
In recent years the institutions have increased their interest in a very 

worrying phenomenon that concerns Italy and generally speaking the countries 

in the Western world: the growth of 'disaffection' towards mathematics due to a 

traditional didactic approach to the subject (Piochi, 2008). Young people 

coming out of secondary schools often have the idea that mathematics consists 

of mechanical processes, seeing it as an arid and pre-packaged discipline whose 

understanding and description seem impersonal. The mathematics one learns at 

school is very often a set of basic notions, axioms and definitions given by the 

teacher and practically impossible to discuss, causing the view of a subject that 

is “already done” and immutable (Castelnuovo, 1963). The experience of 

mathematicians, on the other hand, is very different: mathematics is something 

extremely changeable whose results are the result of hard work, debate and 

controversy. So, axioms and definitions first presented in textbooks come into 

reality only at the end, when the whole structure of the problem is understood. 

Then, the following question arises: what is mathematics? Definitions such as 

“mathematics is the science of numbers and forms” accepted 200 years ago is 

now reductive and ineffective because mathematics has developed so rapidly 

and intensely that no definition can take into account all the multiple aspects 

(Baccaglini-Frank, Di Martino, Natalini, Rosolini, 2018 (A)). The list of 

applications of this discipline in daily life could be endless, and so could the list 

of motivations that could be given to pupils to convince them to study.  

About this matter it is really important the following statement: "No doubt, 

mathematical knowledge is crucial to produce and maintain the most important 

aspects of our present life. This does not imply that the majority of people should 

know mathematics." (Vinner, 2000). Mathematics can also cause terror in 

students (the phenomenon of “fear for mathematics” (Bartilomo and Favilli, 

2005)) or a state of dissatisfaction with the common conception that “you have 

to be made for it” so much that even great professionals boast that they have 

never understood anything about mathematics. So, is it necessary to teach 

mathematics to everyone? The answer is simple: apart from the fact that having 

a basis in mathematics is a cultural question regardless of the future job, 

mathematics teaches to evaluate multiple aspects of a question, and provides 

knowledge and skills in order to consciously face a discussion defending one's 

own positions with responsibility and respect for the arguments of others 

(National Indications, 2007). 

The key role of mathematics education in the development of rational 

thinking and with it the responsibilities of mathematics teachers at all levels is 

therefore underlined. Already in 1958, the theme of the congress of the Belgian 
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Mathematical Society was entitled “The human responsibility of the 

mathematics teacher” (Castelnuovo, 1963). 

The most effective way to bring students closer to mathematics is, therefore, 

the image of a “method for dealing with problems, a language, a box of tools 

that allows us to strengthen our intuition” (Baccaglini-Frank, Di Martino, 

Natalini, Rosolini, 2018 (A)).  

 

2 Mathematical education: theories and models 

2.1 The concept of error and the inquiry model: mathematics 

as a humanistic discipline  
Mathematics is one of the disciplines in which many 'students' manifest 

difficulties that compromise the relationship with the subject. A student who 

comes out of secondary school has a long series of 'failures' accompanied by the 

conviction that she can never do mathematics because she is not good at it. The 

problem lies in identifying errors and difficulties in mathematical learning with 

the conviction that the absence of errors certifies the absence of difficulties and 

on the other hand the absence of difficulties guarantees the absence of errors 

(Zan, 2007 (A)).  

This identification leads to the didactic objective of obtaining the greatest 

number of correct answers by nourishing the "compromise of correct answers" 

(Gardner, 2002): on the one hand the teacher chooses activities that are not "too" 

difficult and on the other hand the students elaborate the answers expected by 

the teacher in a reproductive way. Of course, this method does not guarantee 

any learning, revealing itself dangerous and counterproductive (Di Martino, 

2017). Moreover, with it the fear of making mistakes arise and also the 

conviction that mathematics is not for everyone (for instance: you can't study 

mathematics if you do not have a good memory!) (Zan, Di Martino, 2004).  In 

order to face the identification of difficulty-error, there is, therefore, a need to 

revolutionise the conception of error and to convey to students that ''making a 

mistake at school may not be perceived as something negative to avoid at all, 

because it could be an opportunity for new learning (and teaching) 

opportunities to be exploited'' (Borasi,1996).  

The Inquiry model is a teaching-learning model that proposes a positive and 

fundamental role of errors in mathematics teaching. This model sees knowledge 

as a dynamic process of investigation where cognitive conflict and doubt 

represent the motivations to continuously search for a more and more refined 

understanding. Therefore, instead of eliminating ambiguities and contradictions 

to avoid confusion or errors, these elements must be highlighted to stimulate 

and give shape to ideas and discussions. Questions such as "what would happen 

if this result were true?" or "under what circumstances could this error be 

corrected?" lead to a reformulation of the problem where the error is only the 
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starting point for a deeper understanding. Communication in the classroom 

plays a fundamental role, and so does the conception of mathematics as a 

humanistic discipline: the teacher provides the necessary support for the 

student's autonomous search for understanding, who in turn is an active member 

of a research community (Tematico, Pasucci, 2014).  Learning turns out to be a 

process of constructing meanings, and in this way, the students also understand 

that what is written in textbooks is the result of debates and arguments and not 

simply something for its own sake ("falling from the sky"). 

 

2.2 Cooperative learning: development of disciplinary and social 

skills 
Some studies highlight the need to build learning teaching models that take 

into account students' emotions, perceptions and culture based on the idea that 

human learning has a specific social character (Radford, 2006). The 

collaborative group and peer tutoring are two models that take on both the 

disciplinary dimension and the affective and social dimension and facilitate 

discussion in the classroom. In fact, in most cases, the teacher cannot give 

everyone the opportunity to express themselves, nor is he able to solicit the 

interventions of those who are not used to intervene.  

Collaborative learning, instead, sees the involvement of all the students in 

two successive moments: first within the individual group and then in the final 

discussion in class. The necessary conditions for such learning are positive 

interdependence and the assignment of roles: the first is reached when the 

members of the group understand that there can be no individual success without 

collective success; the second condition allows the distribution of social and 

disciplinary competences among the various members of the group favouring 

collaboration and interdependence. The recognition of roles also helps to 

overcome problems such as low self-esteem or a sense of ineffectiveness, 

allowing social skills to grow: knowing how to make decisions, how to express 

one's own opinions and listen to those of others, how to mediate and share, how 

to encourage, help and resolve conflicts are skills that the school must teach with 

the same care with which disciplinary skills are taught.  

Dialogue among peers guarantees greater freedom and spontaneity: the 

majority of students identify that among peers there is no fear of expressing 

doubts and perplexities, the main motivation that justifies the effectiveness of 

such models (Baldrighi, Pesci, Torresani, 2003; Pesci, 2011). 

 

2.3 Recovery and enhancement interventions: breaking the 

educational contract 
The variety of possible processes, the fact that behind correct answers there 

can be difficulties and that some mistakes can come out of significant thought 

processes, brings important elements to support the criticism of the 
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identification between mistakes and difficulties.  For example, the incorrect 

resolution of a problem is not necessarily due to the inability to manage the 

mathematical structure of the proposed situation but is probably due to a lack of 

understanding of the problem itself. The understanding of a text is not always 

immediate because it involves the student's personal knowledge of common 

words and scripts. Understanding is, therefore reduced to a selective reading that 

aims to identify the numerical data and the right operations suggested by 

keywords (Zan, 2012).  

Recovery interventions must therefore be based on the analysis of the 

processes that led the student to make mistakes, shifting the attention from the 

observation of errors to the observation of failed behaviour with the sole 

objective of change. The student, in turn, must take responsibility for her own 

recovery and therefore there is a need for teaching that makes her feel that she 

is the protagonist of new situations and not simply the executor of procedures to 

be applied to repetitive exercises (Zan, 2007 (B)).  

The teacher must propose exercises and problems that do not favour a 

mechanical approach but question the rules that pupils are used to use and that 

form part of the so-called teaching contract (D'Amore, 2007; D'Amore, 

Gagatsis,1997). The idea of a didactic contract was born to explain the causes 

of elective failure in mathematics, that is, the kind of failure reserved only for 

mathematics by students who instead do well in other subjects. The didactic 

contract holds the interactions between student and teacher and is made up of 

"the set of teacher's behaviours expected by the student and the set of student's 

behaviours expected by the teacher" (Brousseau, 1986).  

This explains the students' belief that a problem or exercise always has a 

solution because it is the teacher's job to make sure that there is only one answer 

to the proposed question and that all the data is necessary (Baruk, 1985). 

In Bagni (1997) the following goniometry test is proposed to fourth-year 

students in three classes of scientific high school (students aged 17 to 18). 

Determine the values of x belonging to ℝ for which it results: 

 

a) sinx = 1 2Τ  b) cosx = 1 2Τ  

c) sinx = 1 3Τ  d) tgx = 2 

e) sinx = 𝜋 3Τ  f) cosx = 𝜋 2Τ  

g) sinx = ξ3 h) cosx = ξ3 3Τ  

Table 2.1 Experiment in Bagni, 1997. 

Remember that the goniometric functions are often introduced by making 

initial reference to the values they assume in correspondence to relatively 

common angles of use, so we have the well-known table shown in the next page 

(Table 2.2.) 
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x 0 𝜋 6Τ  𝜋 4Τ  𝜋 3Τ  𝜋 2Τ  2 𝜋 3Τ  3 𝜋 4Τ  5 𝜋 6Τ  𝜋 … 

sinx 0 1 2Τ  ξ2 2Τ  ξ3 2Τ  1 ξ3 2Τ  ξ2 2Τ  1 2Τ  0 … 

cosx 1 ξ3 2Τ  ξ2 2Τ  1 2Τ  0 − 1 2Τ  − ξ2 2Τ  − ξ3 2Τ  -1 … 

tgx 0 ξ3 3Τ  1 ξ3 n.d. −ξ3 -1 − ξ3 3Τ  0 … 

… … … … … … … … … … … 

Table 2.2 Values assumed by common angles where “n.d.” is “not define”. 

Let us now examine the test: agreed time 30 minutes and pupils were not 

allowed to use protractor tables nor scientific calculator. It has been conceived 

with: 

• two "traditional" questions (a), (b); 

• two possible questions, but with the results not included between the values 

of x "of common use" (c), (d);  

• two impossible questions (e), (f) but with values (of sinx and cosx) that 

recall the measurements in radians of "common use" angles (𝜋/3, 𝜋 /2); 

• two questions (g), (h) where the first impossible and the second possible. 

They propose instead values (of sinx, cosx) that are included in the table 

referred to the angles "of common use" but in relation to other goniometric 

functions (tgx, cotgx). 

Well, as far as the answers to the questions (e), (f) are concerned, the 

didactic contract has led some pupils to look for solutions anyway; and the 

"solutions" that most spontaneously presented themselves to their mind are the 

ones that they see associated, in the case of the sinus function, the two values 

𝜋/3 and ξ3 2 Τ and, in the case of the cosine function, the two values 𝜋 /2 and 0. 

So we have, for instance, the following errors: 

   sinx = 𝜋 /3      so      x = ξ3 2 Τ  

          cosx = 𝜋 /2     so      x = 0 

As far as the answers to questions (g), (h) are concerned, the reference to 

the tangent function was clearly expressed in the answers of some students: also 

in this case, some students, not finding the proposed values among those 

corresponding to the most frequently used x values (for the sine and cosine 

functions, in the table above), were induced to look for another correspondence 

in which the proposed values are involved. We then find errors such as: 

          if sinx = ξ3 , then x = 𝜋 /3 

          if sinx = ξ3 , then x = 𝜋 /3+k 𝜋 

What has now been pointed out obliges us to conclude that the need that 

leads the student to always and in any case look for a result for each proposed 

exercise is unstoppable: breaking the teaching contract can be used as a 
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teaching strategy to overcome the mechanical approach used by the students 

and enhance knowledge (Bagni, 1997).  

 

3  Concept image ad concept definition 
These notions were developed to analyse the learning processes of 

mathematical definitions (Tall and Vinner, 1981). Concept image is the whole 

cognitive structure related to the concept and includes all mental images, the 

properties and processes of recall and manipulation associated with a concept, 

bringing into play its meaning and use. It is built through years of experience of 

all kinds, changing with the encounter of new stimuli and the growth of the 

individual. The concept definition is the set of words used to specify a concept 

and turns out to be personal and can often differ from the formal definition 

because it represents the reconstruction made by the student and the form of the 

words he uses to explain his concept image. It can change from time to time and 

for each individual the concept definition can generate its own concept image 

which can be called in this case concept definition image. The acquisition of a 

concept occurs when a good relationship is developed between the concept 

name, the concept image and the concept definition. Students tend to learn 

definitions in a mechanical way and this can lead to conflict factors when 

concept image or concept definition are invoked at the same time which conflict 

with another part of the concept image or concept definition acquired on the 

same concept. To explore this topic a questionnaire was administered to 41 

students with an A or B grade in mathematics. They were asked: "Which of the 

following functions are continuous? If possible, give your reason for your 

answer."  

 

 
Figure 3.1 Images from Tall and Vinner, 1981. 

We see that the concept image of this topic comes from a variety of 

resources such as the colloquial use of the term “continuous” in phrases such as 

“It rained all day long”. So, often the use of the term “continuous function” 

implies the idea that the graph of the function can be drawn continuously. The 

answers are summarised in the table shown in Figure 3.2.  
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Figure 3.2 Tables from Tall and Vinner, 1981. It Summarises the results of the 

experiment.  

The reasons given to justify the discontinuity of f2(x) and f4(x) are of the 

type: “The graph is not in a single piece”, “There is no single formula”. In these 

answers, we see that many students invoked a concept image including a graph 

without any interruption or a function defined by a “single formula”. Instead, 

there are many continuous functions that conflict with the concept images just 

mentioned as the following:  

𝑓ሺ𝑥ሻ = ൜
0 ሺ𝑥 < 0 𝑜𝑟 𝑥2 < 2ሻ

1ሺ𝑥 > 0 𝑜𝑟 𝑥2 > 2ሻ
 

whose graph is: 

 

 
Figure 3.3 Image from Tall and Vinner, 1981. It represents the function defined 

above. 

The idea that emerges from similar issues is that mathematical concepts 

should be learned in the everyday, not technical, way of thinking, starting with 

many examples and non-examples through which the concept image is formed 

and then arriving at a formal definition. Students should use the formal 

definition, but in order to internalise the concept it is necessary to aim at 

cognitive conflicts between concept image and concept definition. To do this it 

is necessary to give tasks that do not refer only to the concept image for a correct 

resolution, inducing the students to use the definition (Baccaglini-Frank, Di 

Martino, Natalini and Rosolini , 2018 (B)).  

 

4  Teaching as a decision problem  
Today more than ever, the world of education has to work on the 

construction of personalities that can favour to all the students with freedom of 

choice and reactivity. The social context in which we live is complex because it 

comprehends factors of unpredictability and uncertainty: the educational 

systems have the job to provide a path that aims to thought and action autonomy. 
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The school, therefore, has an orientation character, where the term 

“orientation” indicates a continuous and personal process that involves 

awareness, learning and education in choice (Biagioli, 2003). In particular, 

placing orientation as the main purpose of teaching "means developing 

strategies, methodologies and contents aimed from the acquisition of awareness 

to understanding the complex society and the mechanisms that govern the world 

of studies and work" (Guerrini, 2017). To give the proper and necessary 

instruments to the student, in order to activate the auto-orientation processes, the 

teacher has to chose what the best didactic strategy is. Therefore, on an 

operational point of view, the teaching is a decisional problem and has to be 

faced as it is. Indeed, we can speak of decision when in a situation there are: 

alternatives (being able to act in several different ways), probability (the 

possibility that the results relating to each alternative will be achieved) and the 

consequences associated with the results. Such factors are characteristic of the 

school world. So, to realise the best didactic strategy it is necessary to start with 

a representation of the problem: only through the calculation of the expectations 

and the evaluation of the results, it is possible to choose the right option. 

Decisions can be studied in terms of absolute rationality or limited 

rationality. The first model ideally combines rationality and information by 

preferring the best alternative; the second recognises the objective narrowness 

of the human mind by proposing the selection of the most satisfactory alternative 

(Lanciano, 2019-20).  

It is important to emphasise that the consequences of a decision are 

determined also by the context in which the decision-making process is 

developed. On the basis of the decision maker's knowledge of the state of nature. 

we distinguish various types of decisions: 

• decisions in a situation of certainty: when the decision-maker knows the 

state of nature; 

• decisions in risk situations: when the decision-maker does not directly know 

each state of nature, but has a probability measure for them; 

• decisions in situations of uncertainty: when the decision maker has neither 

information on the state of nature nor the probability associated with it. 

The decision maker can adopt two kinds of approaches: 

• Normative approach. which bases the choice with reference to rational 

decision-making ideals; 

• Descriptive approach which analyses how to make a decision based on the 

context. 

So, the teacher has to consider on the basis of the objectives and the 

context the various alternatives, and for each one of them, the possible 

consequences. For each pair (alternative, circumstance) the teacher obtains a 

result according to a utility function. 
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However, the decision is subjective: it is based on the criterion of obtaining 

a maximum value for the utility function. Moreover, even if the choice is 

rational, it is made in terms of limited rationality because, in general, there are 

few alternatives, but it increases as the teacher expands his/her culture and 

experience (Delli Rocili, Maturo, 2013; Maturo, Zappacosta, 2017). 

 

4.1 A model for evaluating educational alternatives 
Multi-criteria decision analysis (MCDA) provides support to the decision 

maker, or a group of decision makers, when many conflicting assessments have 

to be considered, especially in data synthesis phase while working with complex 

and heterogeneous pieces of information. 

Let A = {A1, A2, ..., Am} be the set of the alternatives, i. e.  the possible 

educational strategies. Let O = {O1, O2, ..., On} be the set of the objectives that 

we want to achieve. Let D = {D1, D2, ..., Dk} be the set of the decision making 

processes. The first phase consists of the establishment of a procedure that is 

able to assign to each couple (alternative Ai, objective Oj) a pij score. In this way, 

the responsible for the decision measure the grade in which the alternative Ai 

satisfies the objective Oj. Assume that pij is in [0, 1], where: 

• pij = 0 if the objective Oj is not at all satisfied by Ai; 

• pij = 1 if the objective Oj is completely satisfied by Ai. 

At the end of the procedure we obtain a matrix P = [pij] of the scores which 

is the starting point of the elaborations that lead to the choice of the alternative, 

or at least to their ordering, possibly even partial (Maturo, Ventre, 2009a, 

2009b). There may be constraints: it could be necessary to establish for each 

objective Oj a threshold j > 0, with the constraint pij ≥ j, for each i. 

Furthermore, through a convex linear combinations of alternatives Ai it is 

possible to take into consideration mixed strategies that will have the following 

form: 

A(h1, h2, ..., hm) = h1 A1 + h2 A2 + ... + hm Am 

with: 

• h1, h2, ..., hm non-negative real numbers; 

• the hi’s are such that h1 + h2 + ... + hm = 1; 

The number hi can represent the fraction of time in which the teaching 

strategy Ai is adopted. If we consider also the mixed strategies, then the single 

alternatives Ai are called pure strategies. The mixed strategies are particularly 

considered in presence of “at risk” alternatives: these situations have high scores 

for certain objectives and low for others (possibly below the threshold).  

It is appropriate to construct a ranking of the alternative educational plans, 

i. e., a linear ordering of the alternatives that takes into account the objectives 

which contribute to the most suitable formation of the student. Such a ranking 

can be usefully obtained by means of the application of the Analytic hierarchy 

process, a procedure due to T. L. Saaty (1980, 2008). 



Teaching as a decision-making model: strategies in mathematics from a 

practical requirement 

121 

 

 

4.2  The Analytic Hierarchy Process: attributions of weights and 

scores 
The Analytic Hierarchy Process (AHP) is both a method and a technique 

that allows to compare alternatives of different qualitative and quantitative 

nature, not easily comparable in a direct way, through the assignment of 

numerical values that specify their priority. The first thing to do is represent the 

elements of the decision problem through the construction a hierarchical 

structure. Indeed, the Analytic Hierarchy Process is based on the representation 

of the problem in terms of a directed graph G = (V, A). Let us recall that (Knuth, 

1973): 

• a directed graph, or digraph, is a pair G = (V, A), where V is a non-empty 

set whose elements are called vertices and A is a set of ordered pairs of 

vertices, called arcs; 

• a vertex is indicated with a Latin letter; for every arc (u, v) u is called the 

initial vertex and v the final vertex or end vertex;  

• an ordered n-tuple of vertices (v1, v2, ..., vn), n > 1, is called a path with 

length n -1, if, and only if, every pair (vi, vi + 1), i = 1, 2, …, n-1, is an arc of 

G. 

Furthermore, in our context, we assume the following conditions be 

satisfied from a directed graph: 

• the vertices are distributed in a fixed integer number n ≥ 2 of levels; each 

level is indexed from 1 to n; 

• there is only one vertex of level 1, called the root of the directed graph; 

• for every vertex v different from the root there is at least one path having 

the root as the initial vertex and v as the final vertex; 

• every vertex u of level i < n is the initial vertex of at least one arc and there 

are no arcs with the initial vertex of level n; 

• if an arc has the initial vertex of level i<n, then it has the end vertex in the 

level i+1. 

Let us describe, considering for example n=3, functional aspects of each 

level:  

• the level 1 vertex is called the general objective and denoted GO. It indicates 

the objective of the entire decision making process; 

• the vertices of level 2 are called criteria. With this level we indicate the 

parameters used to evaluate the alternatives; 

• vertices of level 3 are called alternatives that represent the various ways of 

reaching the GO. 

So we have the structure shown in the next page (Figure 4.1). 
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Figure 4.1 The Digraph of the Functional Aspects.  

For instance, to build up a decisional model for the mathematical didactic 

the elements of the hierarchy might be the following: 

• General objective: to guarantee a route that, through education, ensures to 

all students  the formation of knowledge and the development of action and 

communication skills; 

• Criterion 1: acquisition of the objectives set out in the educational plan; 

• Criterion 2: ability to measure oneself against peers in a safe and rational 

way while respecting the ideas of others; 

• Criterion 3: internalisation of the objectives set by the didactic plan. With 

the term “internalisation” we indicate the ability to re-elaborate knowledge 

from a critical and personal point of view; 

• Criterion 4: ability to cope with trials, planned or not, without negative 

moods, anxiety and terror of judgement; 

• Alternative 1: new didactics, inspired by the inquiry model that puts the 

pupil and her emotions at the center of the context with cooperative learning 

experiences;  

• Alternative 2: traditional didactic, that is a model of theaching-learning that 

prefers frontal lessons. In terms of learning this alternative hypothesises that 

the acquisition and internalisation take place at the same time and that the 

error is the manifestation of the failure to complete one of the two processes. 

• Alternative 3: distance learning, inspired by the inquiry model mediated 

through the use of technological tools characterised by a total absence of 

sharing the same physical space between student and teacher. 

A decision-maker assigns a score to each arc following the AHP procedure 

(Saaty, 1980, 2008; see also: Maturo, Ventre, 2009a, 2009b). So, the second step 

consists in determining the ratios of preference of the elements of a level over 
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any of the higher, i.e. previous, level: we, therefore, compare alternatives A1, 

A2 and A3 with respect to each criterion and the individual criteria with respect 

to the general objective. In order to determine the value of each comparison, the 

following scale of evaluations is used: 

 

Value aij Interpretation 

1 i and j are equally important  

3 i is a little more important than j 

5 i is quite more important than j 

7 i is definitely more important than j 

9 i is absolutely more important than j 

1/3 i is a little less important than j 

1/5 i is quite less important than j 

1/7 i is definitely less important than j 

1/9 i is absolutely less important than j 

Table 4.1 Scale of evaluations. 

Matrices are called pairwise comparison matrices and they represent 

quantitative preferences between criteria or between alternatives and satisfy the 

followings: 

• if alternative i assumes the value x in comparison with alternative j with 

respect to a criterion, then the comparison of alternative j with alternative i 

with respect to the same criterion assumes the value 1/x. Analogous is the 

procedure to assign values when comparing couples of criteria; 

• since equally important alternatives correspond to value 1, the diagonal of 

the matrices are composed entirely of unit values.  

In our case, we obtain the matrices shown in the next page (from Table 4.2 

to Table 4.6) whose values have been assigned due to the following 

considerations: 

• acquisition and internalisation are two different processes and only through 

a mutual combination of them the full formation of the student can be 

guaranteed; 

• traditional didactic is far from the social character of human learning; 

• the relationship with others is a fundamental space for personal and social 

development, necessary for the student to learn to respect rules and roles; 

• distance learning offers insufficient physical interaction between student-

teacher and student-student: expressions and gestures make the difference 

in the learning process; 

• exercising young people to face tests in a lucid way is a fundamental aspect 

for the construction of a personality that faces in a competitive way the 

working challenges of a competitive society.  
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O C1 C2 C3 C4 

C1 1 5 1 1 

C2 1/5 1 1/5 1/7 

C3 1 5 1 1 

C4 1 7 1 1 

Table 4.2 Matrix M1: comparison of criteria by the ratio of preference with 

respect to the general objective   

 
C1 A1 A2 A3 

A1 1 5 1 

A2 1/5 1 1/3 

A3 1 3 1 

Table 4.3 Matrix M2: comparison of alternatives by the ratio of preference with 

respect to the criterion 1 

 

C2 A1 A2 A3 

A1 1 5 7 

A2 1/5 1 3 

A3 1/7 1/3 1 

Table 4.4 Matrix M3: comparison of alternatives by the ratio of preference with 

respect to the criterion 2 

 

C3 A1 A2 A3 

A1 1 7 5 

A2 1/5 1 3 

A3 1/7 1/3 1 

Table 4.5 Matrix M4: comparison of alternatives by the ratio of preference with 

respect to the criterion 3 
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C4 A1 A2 A3 

A1 1 3 7 

A2 1/3 1 3 

A3 1/7 1/3 1 

Table 4.6 Matrix M5: comparison of alternatives by the ratio of preference with 

respect to the criterion 4 

 

After constructing the pairwise comparison matrices, we have to fix the 

weights of the elements in each level. This step is fundamental to determine 

whether the matrices are relevant through a scale of values ranging from 0 to 1. 

These weights must meet the normality condition: 

w1+w2+…+wn =1 

This procedure supposes that, if the decision maker knew all the actual 

weights of the elements of the pairwise comparison matrix, then it would be: 

𝐴 = ቀ
𝑤𝑖

𝑤𝑗
ൗ ቁ = ቌ

𝑤1
𝑤1

ൗ ⋯
𝑤1

𝑤𝑛
ൗ

⋮ ⋱ ⋮
𝑤𝑛

𝑤1
ൗ ⋯

𝑤𝑛
𝑤𝑛

ൗ

ቍ 

In this case the weights would be obtained from any of the rows which are 

all multiple of the same row ൫1
𝑤1

ൗ , 1
𝑤2

ൗ , … , 1
𝑤𝑛

ൗ ൯. It follows that the matrix 

A has rank 1. Being w= (w1, w2, …, wn)
T we get: 

Aw = nw. 

Thus, from the equation above, n is an eigenvalue of A and w is one of the 

eigenvectors associated with n. Since the elements on the diagonal are all 1, 

denoted with λ1, λ2, …, λn = n the eigenvalues of A, the value of the trace of A 

is: 

tr(A)= λ1 + λ2 + … + λn  = n 

As n is an eigenvalue of A the other n-1 eigenvalues of A must be zero. The 

matrix A satisfies the condition:  

aijajk = aik  

for every i, j, k, called consistency condition, that implies transitivity of the 

preferences, and A is said to be consistent is said to be A.  

In practice the decision maker does not know the vector w: the aij values that 

he assigns according to his judgement may deviate from the unknown wi/wj. So 

the decision maker may produce inconsistent pairwise comparison matrices.  

However the closer the aij values are to wi/wj, the closer the maximum 

eigenvalue is to n and the closer the other eigenvalues are to zero. 

Therefore the vector of the weights w'T = (w'1, w'2, …, w'n) associated to the 

maximum eigenvalue (among the infinite w'T we choose the one for which w'1 

+ w'2 + … + w'n =1) will be an estimate of the vector wT = (w1, w2, …, wn) the 
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more precise the more the maximum eigenvalue 𝜆max of A is close to n, what is 

due to the continuity of the involved operations (Ventre, 2019). Where:  

𝐶𝐼 =
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1
 

is defined as the consistency index of A, and n is the order of the matrix itself. 

The consistency index reveals how far from consistency the matrix is. In our 

case with the help of MATLAB we obtain: 

 M1 M2 M3 M4 M5 

𝜆max 4,0142 3,0291 3,0649 3,0649 3,0070 

CI 0,0047 0,0145 0,0324 0,0342 0,0035 

Table 4.7 CI Values for each matrix.  

We can therefore write the local priorities obtained by proceeding with the 

last step of the AHP method which, through the aggregation of the relative 

weights of each level, provides a weighted ranking of the alternatives. 

The third step implements the estimation of local assessments, i.e. the 

weightings that express the relative importance of the elements of a hierarchical 

level over any element of the next higher level. 

 

 
Figure 4.2 The Digraph of the Functional Aspects, with weights. 

We observe that scores are nonnegative real numbers and such that the sum 

of the scores of the arcs coming out of the same vertex u is equal to 1. The score 

assigned to an arc (u, v) indicates the extent to which the final vertex v meets 

the initial vertex u: the score of a path is the product of the scores of the arcs 

that form the path. 

• For every vertex v different from GO the score p(v) of v is the sum of the 

scores of all the paths that start from GO and arrive in v.  
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• For every level, the sum of the points of the vertices of level i is equal to 1.  

The global properties determined will then be: 

• A1=0,42*0,29+0,43*0,06+0,44*0,29+0,65*0,36=0,51; 

• A2=0,28*0,29+0,42*0,06+0,15*0,29+0,26*0,36=0,24; 

• A3=0,3*0,29+0,15*0,06+0,41*0,29+0,09*0,36=0,25. 

We can conclude that, in order to achieve the objective, a new teaching 

strategy is preferred to a traditional one and direct communication and human 

contact are factors not to be overlooked. Therefore, teaching cannot be reduced 

to an online practice because the presence of the student is not attributable to a 

"virtual presence". 

 

5 Mathematics and specific learning disorders  
5.1 Background 

Students with specific learning disorders (SLD) need a personalised 

learning plan that appropriately accommodates their difficulties. At the 

university a student with SLD attending the course of mathematical analysis has 

succeeded, thanks to the semester tutoring activity dedicated to the subject, to 

face his difficulties by passing the exam at the first useful date. The course has 

evolved through a personalised didactic strategy mostly based on the use of 

mind maps and peer comparison activities. Specific learning disorders SLD 

usually involve reading, writing and calculation skills. In Italy, two students 

with dyslexia out of three do not receive an adequate diagnosis of the disorder 

and therefore SLD are one of the main causes of school difficulties with 

important negative repercussions also in the personal sphere of the individual.  

It is therefore clear the importance of a conscious environment able to 

respect the “different” way of learning of a student with SLD whose cognitive 

abilities and physical characteristics are in the norm.  In fact, although they have 

an intelligence appropriate to their age, unlike their peers, these subjects learn 

at a slower pace because during the study they dissipate most of their energy to 

compensate for their disorders. Initiatives promoted by the MIUR, accompanied 

by individual schooling, support the right to study of students with SLD, which 

since the beginning of the year two thousand is also protected at the legislative 

level (MIUR law no.170/2010).  To this end, the Regional School Offices are 

committed to promote the issue of detailed certifications that allow as much as 

possible, together with parents and the figures who follow the student in school 

activities, a Personalised Educational Plan that aims to achieve the same 

objectives of peers through compensatory tools and dispensative measures 

(MIUR, 2011). 
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5.2 SLDs in mathematics 

 
Specific reading disorder 

On the whole, this disorder leads to difficulties in reading, which is slow 

and incorrect, making it difficult to understand the text and to distinguish useful 

parts from those containing additional information (ICD F81.0, 2007). In 

mathematics, these deficits make even the simplest problems complex as the 

student may not be able to distinguish between hypotheses and data. In addition, 

to maximise learning, rather than studying theory from the book, we suggest the 

constant use of mind maps that allow you to correct and rework ideas slowly 

until the subject is mastered. This type of maps is the one that best suits the way 

of learning of students with specific reading disorders because, through images 

and colors, it aims to stimulate visual memory through the insertion of mental 

associations. 

 

Specific writing disorder 

The specific writing disorder is called dysgraphia if it affects writing and 

dysorthography if it affects spelling. The former involves a deficit of a motor 

nature and refers to the graphic aspects of handwriting, the latter is a text 

encoding disorder that therefore involves the linguistic component. Disgraphers 

therefore produce poorly readable texts (even by themselves) with words that 

are often misaligned and characterised by letters of different sizes, while 

disorthographers manifest errors such as inversion of syllables, arbitrary cuts of 

words and omissions of letters in words making the content unclear. In both 

cases the elaboration of a written text is a difficult and long process with serious 

repercussions also in the mathematical field. In fact, mathematics has its own 

language, characterised by symbols, signs and letters of the greek and latin 

alphabets: just think of the use of lowercase greek letters in the geometric field 

to indicate angles and uppercase latin letters to indicate vertices.  In the set of 

symbols, the symbol of belonging “∈” may not be decoded, leading to confusion 

with “E” even though it does not denote, from a didactic point of view, a lack of 

understanding of the set meaning itself.  

Inaccurate writing also causes errors in the resolution of algebraic 

expressions, for example by confusing the letter “s” and the number “5”, or in 

the resolution of a linear system which requires many transcription steps.  

Another difficulty due to alignment is found in the case of powers where base 

and exponent are confused with a multi-digit number (34 instead of 34). Along 

this line, the teacher should take into account the content rather than the form, 

in the process of evaluating the written texts. Errors should not be penalised 

when the concept expressed is clear, whereas oral verifications should acquire 

more weight in the final evaluations.  In order to deal with these problems, the 

teacher, in the process of evaluating the written tests, could take into account the 
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content rather than the form, not penalising errors when the concept expressed 

is clear and giving more weight to oral verifications.  

 

Specific disturbance of arithmetic activities 

The specific disturbance of arithmetic activities disorder implies a deficit 

that concerns the mastery of fundamental calculation skills which generally can 

be divided into two different profiles according to the type of error. The first 

profile is defined as "Weakness in the cognitive structuring of numerical 

cognition components" and summarises both the difficulty in 

comparing/quantifying the elements of one or more sets and the reduced 

counting capacity. This type of disorder is inspired by Butterworth's studies 

(1999; 2005): he hypothesised the existence of a "mathematical brain" 

specialised in classifying the world in terms of numbers. The second profile is 

renamed with "Difficulty in acquiring calculation procedures and algorithms" 

and includes the following three cases (Temple, 1991): dyslexia for digits 

indicating an incorrect reading/writing of the numbers (the student sees the 

number 3 and pronounces 6); procedural dyscalculia indicating the difficulty in 

the choice, application and maintenance of procedures leading to errors in 

borrowing, carry-over or sticking; dyscalculia for arithmetic facts which leads 

to confusion between the rules of rapid access with the consequent compromise 

of the acquisition of numerical facts within the calculation system. For both 

profiles examined the tools to compensate could be tables, diagrams, calculators 

and an extensive collection of procedural examples. 
Objective 

Learning disorders are, therefore varied and create different deficits that 

require different compensatory instruments and dispensation measures. For this 

reason, it is important to experiment the different strategies for teaching in order 

to identify a scheme which, although it can never be universal, can be taken as 

a canvas and then refined according to the personal limits and objectives of the 

student. The aim is, therefore to encourage learning with the aim of making the 

student as autonomous as possible, also increasing the level of self-esteem and 

personal gratification.  Below is the strategy used for a student with specific 

reading and writing disorders during the tutoring activity of the mathematical 

analysis course 1.  

The case study 

The student, after presenting his certificate at the beginning of the course, 

immediately showed interest in possible remedial activities. Although the 

student was initially autonomous, after almost a month, the first difficulties 

began to emerge. This situation prompted the student to make constant use of 

the tutoring hours in which a personalised teaching strategy was constructed. 

The construction of such a strategy was obtained through the procedure 

previously shown: alternatives, objectives and criteria were modified 
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considering the specific difficulties. The method proved to be successful: 

indeed, the student was able to acquire his study methodology, which proved to 

be effective. 

 

Stuff and methods 

From a didactical point of view, it is particularly interesting that problems 

related to short-term memory are a common feature of the different SLDs. 

Baddeley and Hitch (1974) extended this concept, in the field of cognitive 

psychology, to the "working memory" which specifically indicates that set of 

notions necessary for written and oral productions that remain short in the 

student's mind. If this capacity is reduced, then temporary archiving and the first 

management/manipulation of data will be compromised with the following 

consequences: difficulty in taking notes, difficulty in maintaining attention, 

need for longer periods. To cope with this situation, it is necessary to reduce the 

information load by giving priority to fundamental concepts and using support 

tools that favour direct observation and experimentation. 

Some indications for the didactic strategy are: 

• Use of schemes and concept maps; 

• Dispense with reading aloud and mnemonic study; 

• Privileging learning from experience and laboratory teaching; 

• Encourage students to self-assess their learning processes; 

• Encourage peer tutoring and promote collaborative learning; 

• Guarantee longer times for written tests and study; 

• Take an encouraging attitude to improve self-esteem; 

• Evaluate according to progress and difficulties; 

• Use of calculator and digital devices. 

In our case, the implementation of the didactic strategy took place through 

afternoon meetings, lasting two hours, usually held after the lesson held by the 

teacher in the same morning. At first, the meeting was based on the study of the 

last topics explained by the teacher and already at this stage it was evident to 

what extent the characteristic features of dysgraphia hindered learning: the bare 

and confused notes, characterised by large empty spaces, were practically 

impossible to read and to study. In order to try to provide constructivist learning 

and to avoid the use of the book, since reading was slow and incorrect due to 

dyslexia, the theory was flanked by practice or questions to answer. Once the 

new subject was finished, work was done on the previous ones. 

In order to prevent the pupil from distracting himself, while following me 

with interest, I often drew his attention by naming him and repeating the concept 

in different ways. Difficulties began to come up from the first topics when, in 

the numerical set exercises, there was a lot of confusion between the parentheses 

used to describe the intervals. For example: 

• interval from 'a' to 'b' not including the extremes, ]a, b[; 
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• interval from 'a' to 'b' including the extremes, [a, b]; 

To cope with this difficulty, with a bit of imagination, I made him imagine 

drawing two arms 'embracing' the number if the number had to be present in the 

interval or, otherwise, they refused to do so. In this way, together with the use 

of graphic representations, the pupil acquired the competence to distinguish 

between the two types of parentheses and rarely found confusion until the end 

of the course. The mind maps, which we built together, were of great help 

especially in solving equations and inequalities with absolute values.  Initially, 

the student's difficulty consisted in not being able to “visualize” the writing of 

the systems that came out of the procedure. With the use of a map, similar to the 

one below, he was able, after several lessons, to carry out the simplest exercises 

correctly but still presenting difficulties for the more complex ones. The result 

was satisfactory, however, because I believe that these difficulties were linked 

not so much to a lack of understanding of the absolute value function, but rather 

to a lack of ability to concentrate for so long on the same procedure. Example 

of a map for the absolute value function:  

 

 
Figure 5.1 Example of a map built during the activity. 

 

Towards the end of the course, as the exam date was approaching, other 

students also started to attend tutoring lessons on a regular basis. For this motive, 

the last topics of the course, derived and function study, were addressed through 

a collective study during which the student with specific learning disorders 

discussed with his classmates to the point of realising, under my guidance, his 

mistakes. During the lessons we made extensive use of the calculator, reducing 

the material to be memorised as much as possible. For example, to study the 

domain of a function, initially the student made extensive use of the tables 

summarising the domains of elementary functions but, subsequently, using the 

calculator (we get "ERR" if the function is not applied to an elementary of the 
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domain) he learned what this procedure really represented by obtaining, on his 

own, the conditions for simple functions such as roots and logarithms. 

Results 

The boy achieved the minimum objectives, and at the end of the course, he 

passed the exam. The fundamental concepts were acquired and therefore, the 

test was approached independently. The improvements were gradual: as the 

tutoring lessons increased, the student was able to follow more and more. The 

shared study experience with peers was certainly helpful as, through peer 

comparison, he gained such confidence that he could guide his peers in difficulty 

during the exercises. In this regard, it is important to stress that the objectives 

achieved are not only didactic in nature but also personal: the ability to compare 

oneself with peers while respecting the ideas of others has increased the level of 

self-esteem and gratification.  

 

6 Conclusion  
The purpose of this document is, therefore, to underline that by using Saaty's 

hierarchical structure it is possible to choose the didactic strategies that best suit 

the various situations. In fact, all students and in particular students with SLD 

can maximise their learning if followed correctly. In our case, the didactic plan 

allowed for peer learning. This strategy, having been applied to only one student, 

cannot be generalised because each case requires different objectives and tools 

depending on the disturbance and the problems that this entails. To conclude, 

we stress that the affective dimension has played a fundamental role: a serene 

and stimulating environment has been a necessary condition to motivate 

students to improve themselves. However, the suggested indications are a good 

start to deal with different cases. 
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1 Introduction

Hamel [1905] introduced the concept of basis for real numbers and proved its
existence in 1905 by exploring functions which satisfy Cauchy’s functional equa-
tion f(x + y) = f(x) + f(y) for all x, y ∈ R. Using the existence of such a
basis, he described all solutions of Cauchy’s functional equation and established
the existence of discontinuous solutions. Cauchy demonstrated that any additive
function is rationally homogeneous. He also proved that the only continuous addi-
tive functions are real homogeneous and thus linear, and that an additive function
with a discontinuity is discontinuous throughout. Further restrictions were placed
on a non-linear additive function by Darboux [1875] who showed in 1875 that an
additive function bounded above or below on some interval is continuous, hence
linear. A survey of the research concerning additive functions can be found in
Green and Gustin [1950]

The continuous ring homomorphisms from C to C are trivial map, identity
map and complex conjugation. Since C is a field, all non-trivial ring homomor-
phisms are automorphisms on C. Thus identity map and complex conjugation are
the only continuous automorphisms on C. Any automorphisms on C other than
identity and complex conjugation is called a ”wild” automorphism on C. Kestel-
man [1951] proved the existence of so-called wild automorphism on C and the
showed that the set of such automorphisms on C has cardinality 2c. Many prop-
erties of wild automorphism on C are still open.

Calculating the number of homomorphisms between two groups or two rings
is a fundamental problem in abstract algebra. It is not easy to determine the num-
ber of distinct homomorphism between any two given groups or rings. Most of
the current results in this area are limited to groups or specific types of rings. For
example, Chigira et al. [2000] studied the number of homomorphisms from a fi-
nite group to a general linear group over a finite field. In a later study Bate [2007]
furnished the upper and lower limits for the number of completely reducible ho-
momorphisms from a finite group Γ to general linear and unitary groups over
arbitrary finite fields and to orthogonal and symplectic groups over finite fields of
odd characteristics. Matei and Suciu [2005] discusses a method for calculating
the number of epimorphisms from a finitely presented group G to a finite solvable
group Γ. Further discussion on homomorphisms on certain finite groups can be
found in Mal’cev [1983], Riley [1971], Hyers and Rassias [1992], but the solu-
tion to the general problem is still elusive. Hence the purpose of the paper is to
characterize and compute all continuous group homomorphisms from Cn to Cm.
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2 Notations and Basic Results
Most of the notations, functions and terms we mentioned in this paper can be

find in Jacobson [2013], Gallian [1994] and Kestelman [1951].
We can interpret Hamel’s concept as follows. The set R of real numbers is a

linear space over the field Q of rational numbers. This linear space has a basis.
Namely, there exists a subsetH ⊂ R such that every non-zero x ∈ R can uniquely
be written as a linear combination of the elements of H with rational coefficients.
That is, there exist distinct elements h1, h2, . . . , hk of H and non-zero rational
numbers wh1(x), wh2(x), . . . , whk

(x) such that

x =
k∑

i=1

whi
(x)hi (1)

Thus for x ∈ R, by adding the terms of the form 0 · hj in the representation (1),
we can write

x =
∑
h∈H

wh(x)h (2)

where wh(x) ∈ Q and wh(x) = 0 for all h except for a finite number of values of
h. Hamel based his argument on Zermelo’s fundamental result which states that
every set can be well ordered. Hamel’s argument is valid for an arbitrary linear
space L 6= {0} over a field. For this reason, recently such a basis is called a
Hamel basis(see also Cohn and Cohn [1981], Halpern [1966], Jacobson [2013],
Kharazishvili [2017]).

If f : R→ R is additive, then it is easy to derive

f(rx) = rf(x)

for every r ∈ Q and x ∈ R. Thus, if H ⊂ R is a Hamel basis and x is a real
number, we obtain

f(x) = f

(∑
h∈H

wh(x)h

)
=
∑
h∈H

f

(
wh(x)h

)
=
∑
h∈H

wh(x)f(h). (3)

Observing that the Hamel bases of a linear space L coincide with the maximal
linearly independent subsets of L the existence of a Hamel basis is established
with the aid of Zorn’s maximum principle.

Theorem 2.1. Let L be a vector space over the field F . Then L has a Hamel
basis.
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Theorem 2.2. Any continuous function f : Cn → C which assume only rational
values is constant.

Halbeisen and Hungerbühler [2000] showed that in an infinite dimensional
Banach space, every Hamel base has the cardinality of the Banach space, which
is at least the cardinality of the continuum.

Theorem 2.3. If K ⊂ C is a field and E is a Banach space over K such that
dim(E) =∞, then every Hamel base of E has cardinality |E|.

3 Homomorphisms from Cn to Cm

First we will characterize all continuous group homomorphisms from Cn to
Cm .

Theorem 3.1. The cardinality of the set of continuous group homomorphisms
from Cn to Cm is equal to the cardinality of the continuum.

Proof. Let φ : Cn → Cm be a continuous group homomorphism. For
1 ≤ j ≤ n; denote ej for the n-tuple whose jth component is 1 and 0’s elsewhere,
and denote êj for the n-tuple whose jth component is i and 0’s elsewhere.

We will complete the proof by the following steps.

Step 1: φ(nej) = nφ(ej) and φ(nêj) = nφ(êj) for all n ∈ Z and for all
j (1 ≤ j ≤ n).

For n ∈ N, the argument is clear since φ is a group homomorphism.

Since φ is a group homomorphis,

φ(−nej) = −φ(nej) = −nφ(ej) and φ(0ej) = 0φ(ej)

Therefore φ(nej) = nφ(ej) for all n ∈ Z and for all j (1 ≤ j ≤ n). Similarly
we can prove φ(nêj) = nφ(êj) for all n ∈ Z and for all j (1 ≤ j ≤ n).

Step 2: φ(rej) = rφ(ej) and φ(rêj) = rφ(êj) for all r ∈ Q and for all
j (1 ≤ j ≤ n).
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Let r =
p

q
, where p ∈ Z, q ∈ N. Then rq = p and hence rqej = pej . So

φ(rqej) = φ(pej)

=⇒ qφ(rej) = pφ(ej)

=⇒ φ(rej) =
p

q
φ(ej)

=⇒ φ(rej) = rφ(ej), for all r ∈ Q and for all j (1 ≤ j ≤ n).

Similarly, φ(rêj) = rφ(êj) for all r ∈ Q and for all j (1 ≤ j ≤ n).

Step 3: φ(xej) = xφ(ej) and φ(xêj) = xφ(êj) for all x ∈ R and for all
j (1 ≤ j ≤ n).

Let x ∈ R and 1 ≤ j ≤ n. Then there is a sequence (rm) of rational numbers
such that rm → x in R. Then rmej → xej as m → ∞. Since φ is continuous at
xej , we have

φ(xej) = lim
m→∞

φ(rmej)

= ( lim
m→∞

rm)φ(ej) ; by step 2

= xφ(ej)

Similarly, φ(xêj) = xφ(êj) for all x ∈ R and for all j (1 ≤ j ≤ n).

Step 4: Characterization of continuous homomorphisms from Cn to Cm.

Let z = (z1, z2, . . . , zn) ∈ Cn. For 1 ≤ j ≤ n, let xj = Re(zj) and yj =
Im(zj). Then

z = (x1, x2, . . . , xn) + (iy1, iy2, . . . , iyn)

=
n∑

j=1

xjej +
n∑

j=1

yj êj
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So

φ(z) = φ

( n∑
j=1

xjej +
n∑

j=1

yj êj

)

=
n∑

j=1

φ(xjej) +
n∑

j=1

φ(yj êj)

=
n∑

j=1

xjφ(ej) +
n∑

j=1

yjφ(êj)

=
n∑

j=1

Re(zj)φ(ej) +
n∑

j=1

Im(zj)φ(êj).

Conversly, if aj(1 ≤ j ≤ n) and bj(1 ≤ j ≤ n) be 2n complex numbers , then
the map φ given by

φ(z1, z2, . . . , zn) =
n∑

j=1

Re(zj)aj +
n∑

j=1

Im(zj)bj

is a continuous group homomorphism from Cn to Cm. Hence the cardinality of the
set of continuous group homomorphisms from Cn to Cm is same as the cardinality
of C2nm, which is the cardinality of the continuum. 2

Now, we provide a proof to the existence of non-continuous group homomor-
phism from Cn to Cm.

Theorem 3.2. The cardinality of the set of all non-continous group homomor-
phism from Cn to Cm is at least the cardinality of the continuum.

Proof. Consider Cn as a vector space over the field Q of rational numbers
and H be a Hamel basis of Cn over Q. Then every vector z ∈ Cn can be uniquely
expressed

z =
∑
h∈H

wh(z)h (4)

where wh(z) ∈ Q and wh(x) = 0 for all h except for a finite number of values of
h. Let e0 and ê0 are the zero elements in Cn and Cm respectively. Let e1 and ê1 are
the n−tuple and m−tuple respectively such that first component is 1 and all other
components are 0. Let h′ be a fixed element in H . Define a map ψh′ : Cn → Cm

by

ψh′(z) = ψh′

(∑
h∈H

wh(z)h

)
= wh′(z)ê1.
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Let z =
∑
h∈H

wh(z)h and z′ =
∑
h∈H

wh(z′)h be two elements in Cn. Then

ψh′(z + z′) = ψh′

(∑
h∈H

wh(z)h+
∑
h∈H

wh(z′)h

)
= ψh′

(∑
h∈H

[wh(z) + wh(z′)]h

)
= [wh′(z) + wh′(z′)]ê1

= wh′(z)ê1 + wh′(z′)ê1

= ψh′(z) + ψh′(z′).

Hence ψh′ : Cn → Cm is a group homomorphism.
For z = (z1, z2, . . . , zm) ∈ Cm, define φ : Cm → C by φ(z) = z1. Then φ is

a continuous function. Define g : Cn → C by g(z) = φ ◦ ψh′(z) for all z ∈ Cn.
Then for z =

∑
h∈H

wh(z)h ∈ Cn,

g(z) = φ ◦ ψh′

(∑
h∈H

wh(z)h

)
= φ(wh′(z)ê1) = wh′(z) ∈ Q,

g(h′) = g

(
1 · h′ +

∑
h∈H,h 6=h′

0h

)
= φ ◦ ψh′

(
1 · h′ +

∑
h∈H,h 6=h′

0h

)
= φ(1 · ê1) = 1

and

g(e0) = φ ◦ ψh′(e0) = φ ◦ ψh′

(
0 · h′ +

∑
h∈H,h 6=h′

0h

)
= φ(0 · ê1) = 0.

Hence g is a non-constant function from Cn to C which assumes only rational
values. Therefore g is not continuous and which gives the function ψh′ is discon-
tinuous.

Let h′ and h′′ be two distinct elements in H . Then

ψh′(h′) = ψh′(1 · h′) = 1 · ê1 = ê1

and

ψh′′(h′) = ψh′′(0 · h′′ + 1 · h′) = 0 · ê1 = ê0.

Thereforeψh′ andψh′′ are distinct. Then the cardinality of set of all non-continuous
group homomorphism from Cn to Cm is at least |H| = |Cn| = the cardinality of
the continuum. 2
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4 Conclusions
In this paper, we characterized all continuous group homomorphisms from

Cn to Cm . Also we proved that the cardinality of the set of all non-continous
group homomorphism from Cn to Cm is at least the cardinality of the continuum.
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present some of its algebraic properties. Frattini submultigroups as 
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1  Introduction  
The term multigroup was first mentioned in [7] as an algebraic structure 

that satisfied all the axioms of group except that the binary operation is 

multivalued. This concept was later redefined in [19] via count function of 

multisets and some of its properties were vividly discussed. The idea of 

submultigroup and its classes were established in [14]. Concept of maximal 

subgroups is established in [3], [5] and [17] and some of its properties were 

investigated. Also, normal and characteristic submultigroup were introduced in 

[8] and [13] respectively, and some of its properties were presented. Frattini in 

[11], introduced a special subgroup named Frattini subgroup and some results 

were obtained. Other related work on Frattini subgroup can be found in [1], 

[2], [6], [12], [15], [16], [18], [20] and [21]. Furthermore, in [10] Frattini 

subgroup was represented but in fuzzy environment called Frattini fuzzy 

subgroup.  In this paper, we focus on multiset setting to obtain Frattini 

submultigroups and finally establish some related results. 

In general, the union of submultigroups of a multigroup may not be a 

multigroup, we therefore establish some conditions under which the union of 

all maximal submultigroups is a multigroup. When this occur, the Frattini 

submultigroup obtained from such maximal submultigroups is called “fully 

Frattini” otherwise it is called “non-fully Frattini”. Furthermore, other relevant 

concepts such as; cyclic multigroup, minimal generating set of a multigroup, 

generator and non-generator of a multigroup are introduced with reference to 

Frattini submultigroups. Finally, we study some properties of center of a 

multigroup, normal, commutator, minimal and characteristic submultigroups. 

 

2  Preliminaries 

Definition 2.1 (|23|). Let  be a set. A multiset  over  is just a pair , 

where  is a set and  is a function. Any ordinary set  is actually a 

multiset , where  is its characteristic function. 

The set  is called the ground or generic set of the class of all multisets 

containing objects from .  

Definition 2.2 (|22|). Let  and be two multisets over ,  is called a 

submultiset of  written as  if  for all . Also, if  

 and , then  is called a proper submultiset of  and denoted as 

. 
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Definition 2.3   (|22|). Let  and  be two multisets over , then  and  are 

equal if and only if  for all . Two multisets  and  are 

comparable to each other if  or . 

Definition 2.4  (|23|). Suppose that ,  such that  

and .  

i. Their intersection denoted by  is the multiset , 

where ,   . 

ii. Their union denoted by  is the multiset , 

where ,     . 

iii. Their sum denoted by  is the multiset , 

where ,    .  

Definition 2.5 (|19|). Let  be a group and .  is said to be a 

multigroup of 𝑋 if the count function of  or  satisfies the following two 

conditions:  

i. (𝑥𝑦) ≥  (𝑥)  (𝑦)], ∀𝑥, 𝑦 ∈𝑋. 

ii.  ( ) ≥  (𝑥), ∀ 𝑥 ∈𝑋, 

Where  is a function that takes  to a natural number, and   denotes 

minimum operation. 

The set of all multigroups defined over 𝑋 is denoted by (𝑋). 

Definition 2.6 (|19|). Let . Then  is defined by 

. 

Thus, . 

Definition 2.7  (|19|). Let . Then  is said to be abelian or 

commutative if   . 

Definition 2.8 (|19|). Let . Then the sets  and  are defined as  

  and , 

where  is the identity element of . 

Definition 2.9 (|19|). Let ,  be an arbitrary family of 

multigroups of a group  Then 
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Definition 2.10 (|14|). Let . Then the center of  is defined 

as . 

Definition 2.11 (|9|) Commutator of two Submultigroup: Let  and  be 

submultigroups of . Then the commutator of  and   is the 

multiset  of  defined as follows:  

 
That is, . Since the supremum of 

an empty set is zero. 

 if  is not a commutator. 

Definition 2.11 (|4|). Let . Then the order of  denoted by  is 

defined as . i.e., the total numbers of all multiplicities of 

its element.   

 

Definition 2.12 (|14|). Let . A submultiset  of  is called a 

submultigroup of  denoted by  if is a multigroup. A submultigroup  

of  is a proper submultigroup denoted by , if  and  

Definition 2.13   (|14|). Let . Then a submultigroup  of  is said 

to be complete if , incomplete if , regular complete if  is 

complete and  and regular incomplete if  is 

incomplete and . 

Definition 2.14 (|8|). Let  such that . Then  is called a 

normal submultigroup of  if .  

Definition 2.15 (|10|). Let  and  be two groups and let  be a 

homomorphism. Suppose  and  are multigroups of  and  respectively, 

then  induces a homomorphism from  to  which satisfies 

i. . 
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ii. where 

i. the image of  under  denoted by , is a multiset of  defined by 

    

 
for each  

ii. the inverse image of  under  denoted by , is a multiset of  

defined by 

  . 

Definition 2.16 (|10|). Let  and  be groups and 

let and   respectively. Then a homomorphism  from 

 to  is called an automorphism of  onto  if  is both injective and 

surjective, that is, bijective. 

 

Definition 2.17 (|13|). Let  such that . Then  is called a 

characteristic (fully invariant) submultigroup of  if  

                                         for every 

automorphism,  of . 

That is,  for every . 

 

3 Frattini Submultigroups and their Properties 

In this section we propose the concept of minimal, maximal, Frattini, 

commutator submultigroups, cyclic, fully and non-fully Frattini multigroup 

and generating set of a multigroup with some illustrative examples. 

 

Definition 3.1  

a. Minimal Submultigroup: Let  be a group and . Then a non 

trivial proper submultigroup denoted by  of  is said to be minimal if 

there exists no other non-trivial submultigroup  of  such that . 

Remark 3.1. Every minimal complete submultigroup of a multigroup is 

unique. 

b. Maximal Submultigroup: Let  be a group and . Then a 

proper normal submultigroup denoted by  of  is said to be maximal if 

there exists no other proper submultigroup  of  such that . 
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c. Frattini Submultigroup: Let  be a group. Suppose is a multigroup of 

 and, , , ,  (or simply  for ) are maximal 

submultigroups of . Then the Frattini submultigroup of denoted by 

 is the intersection of  defined by 

 

or simply by 

. 

Remark 3.2.  

i. Let  be a non abelian group and . If  is a normal 

submultigroup of  with an incomplete maximal submultigroups and  for 

each  are the maximal subgroups of , then the maximal submultigroups of  

are submultigroups of . 

ii. Let . If  is a submultigroup of  and  is the Frattini 

submultigroup of  then,  . 

d. Commutator Submultigroup of a Multigroup: Let  such 

that the commutator subgroup of  is given as . 

Then the commutator submultigroup of  denoted by  is defined as 

 
e. Let . Then the sets  and  are defined as  

  and 

, where  is the identity element 

of . 

Remark 3.3.  

i. The commutator submultigroup of every abelian multigroup is  

ii. Let  and  be the commutator submultigroup of . 

Then . 

Remark 3.4. Let  such that  and  be the 

commutator submultigroup of  and . Then . 

f.  Cyclic Multigroup: Let  be a group generated by . Then a 

multigroup  over  is said to be a cyclic multigroup if  such that 

. The element  is then called the generator of  

otherwise, a non generator of .  
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g. Generating Set of a Multigroup: Let  be a cyclic group and . 

A subset  of  is said to be a generating set for  if all elements of  and 

its inverses can be expressed as a finite product of elements in  with  

 and for some . 

h. Minimal Generating Set of a Multigroup: Let  be a cyclic group and 

. A subset  of  is termed minimal generating set of  

if  such that    and there is no proper 

subset  of  with , . 

i.  Fully Frattini Multigroup: Let . Then   is called fully 

Frattini if the union of the maximal submultigroups equals . Otherwise, it 

is called non-fully Frattini. In addition, every multigroup without 

incomplete maximal submultigroup is called trivial fully Frattini. 

 

 

4.  Some Results on Frattini Submultigroups 
In this section, we present some results on Frattini submultigroup of 

multigroups. 

 

Theorem 4.1. Let  with complete maximal submultigroups. Then 

every minimal submultigroup of  is a submultigroup of . 

Proof. Suppose  is the Frattini submultigroup of  then  has maximal 

submultigroup say  such that . Since  is multigroup 

over ,  has a minimal submultigroup say . If   is not a submultigroup of 

 then there exist at least an element  such that 

  which contradicts the fact that    is a minimal 

submultigroup of . Hence  is a submultigroup of  

 

Theorem  4.2  If   for all , then  is  

characteristic in . 

Proof. Since  is an automorphism, the inverse  is also an automorphism 

of . Hence we have . 

Applying , we have . Then we obtain 

    . By this 
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fact, equality holds and so   . Hence the Frattini 

submultigroup is characteristic in . 

 

Theorem 4.3 Every Frattini submultigroup of a multigroup is characteristic. 

 

Proof. By Theorem  4.2, it suffices to proof that  for every 

automorphism   . 

Let   . Then there exists  such that .  

To show that , we consider an arbitrary element . Then 

since  is an automorphism, we have . Thus there exists  in  such 

that .  

We have  

      (Since  is a homomorphism) 

      (Since ) 

      (Since  is a homomorphism) 

      

Since this is true for all  it follows that , and thus 

. Hence the result. 

 

Theorem  4.4 Every Frattini submultigroup of a multigroup is abelian. 

 

Proof. Let  and  be the Frattini submultigroup of . It 

follows that  is a normal submultigroup of  by definition 2.14 

Consequently, 

                                      . 

Thus,  . 

Hence, the result follows by Definition 2.7  

 

 

Theorem 4.5   Every  is a normal submultigroup of . 

Proof. Let  and  be the Frattini submultigroup of . Then 
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, since  . 

Now, let , then since  is a multigroup over  by definition 

2.14, we get 

 
Now we proof that  is a normal submultigroup of . Let  , 

then it follows that 

   

   

 .  

Hence, the result by Definition 2.14 

 

 

Theorem 4.6 Let  be a multigroup over a non-Abelian group , then 

. 

Proof. , since at least . Let  then for all 

,  and . Consequently,  

 where  

  

  since  

 . 

Thus . 

Now, let  Then .  

Hence,  

            

           .  

Thus,  therefore,  is a subgroup of . To show that 

 is a normal subgroup of . Let  and   

Then .  
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Thus,  and   . Hence, 

 

Remark 4.1 If  is a multigroup over an abelian group ,  is the root 

set of Frattini submultigroup of  and  is the center of  then  is a 

normal subgroup of . 

 

Theorem 4.7. If  is a multigroup over a non-Abelian group  and  is a 

normal submultigroup of , then  . 

Proof. Clearly,  and  are submultigroups of . 

Let be the maximal submultigroups of  and  be the maximal 

submultigroups of  for each  and . Then by Remark 3.2 ( ) we have 

           for each  and . 

| 

 
Therefore,  . 

To show that , suppose   then the result holds 

trivially. But if then for any element ,  

 for each  and . Therefore, . 

 

Theorem 4.8 If  is a regular multigroup over a group . Then  . 

Proof. Since  is a multigroup over , then  

. 

Let  and  then . Thus 

. 

 Therefore  is a submultigroup of .  

Now by Theorem 4.5,  and clearly . So let  and 

, then  implies . Hence 

 . 
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Theorem 4.9  If ,  is the commutator submultigroup of  and 

 is the Frattini submultigroup of . Then . 

Proof. Since  is a multigroup over , then 

 . 

Let  and , then . 

Thus . Therefore  is a submultigroup of . 

Now, by Theorem 4.5, . Let  and , then 

 implies  . Hence,  

. 

 

Theorem 4.10. Every Frattini submultigroup of a cyclic multigroup is abelian. 

Proof. Let  be the Frattini submultigroup of a cyclic multigroup  over a 

cyclic group , then there exists  such that  we have  

  and     for . It now 

follows that    

                      . 

 

Theorem 4.11. If  is a regular multigroup with an incomplete maximal 

submultigroups over a cyclic group . Then is contained in the set of all 

non-generators of . In particular,  coincide with the set of all non-

generators if  has only one maximal submultigroup. 

Proof. Let  be a cyclic group and  and  denotes the Frattini 

submultigroup of . Let  be the set of all generators of  and  

be the incomplete maximal submultigroups of , then for all ,    

 In fact,  all  is a non-generator. 

Further,  and 

. Since , we have that 
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for all , . This implies that . But  is the 

largest set containing all non generators. Hence  is contained in the set of 

all non-generators. Suppose  has only one nontrivial maximal submultigroup 

say  then,  and  . Since 

, therefore  for all non-generators . Hence,  

is indeed the set of all non-generators. 

 

Theorem 4.12. If a regular multigroup  over a cyclic group  has two 

incomplete maximal submultigroups, then the union of its generators coincide 

with the non-generating set of . 

Proof. Let  and  be the maximal submultigroups of  and  be the 

collection of all generators of . Clearly,   and  (since  and 

 does not contain any generator). Now,  can be expressed as 

 if is odd and   if  is even 

with  for any maximal submultigroup of . 

Also, . That is,   for odd 

values of  and for any  but since   for even  we 

have      for any . 

Hence the result. 

 
 

Theorem 4.13. If a regular multigroup  over a cyclic group  has two 

maximal submultigroups, then the union of the non-generators coincide with 

the generating set of . 

Proof. Let  and  be the maximal submultigroups of  and  be 

the collection of all non- generators of . Clearly,  and 

so  generates . 

 , where . 
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Taking every ,  (for some ) if  

(i.e., generates distinct elements in ). 

Since  we have that 

 for some . More 

explicitly,  

 
 where . 

This yields  for some . 

 

Theorem 4.14. If a regular multigroup  over a cyclic group  has two 

incomplete maximal submultigroups and is the set of generators of , 

then  form one of the root set of the maximal submultigroup of 

 for some . 

Proof. Let  be a multigroup over a cyclic group,  be the maximal 

submultigroups of and  be the generators of .  

Then, . 

Since , for all , , 

 and  

But, . Therefore, .  

In particular,  and  for any 

. 

Remark 4.2 

a. A generator of any multigroup over a cyclic group is not 

contained in any of its maximal submultigroups.  

b. The set of non-generators of any multigroup may not be a 

submultigroup. 

 

Theorem  If  is a minimal generating set of a multigroup  over a 

cyclic group , then .  
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Proof. Suppose , then ,  where  is a maximal 

submultigroup of . Now, since  contains at least one generator of , then 

every  contains at least one generator of  which is a contradiction. Hence, 

. 

Remarks 4.3 

i. If  is a multigroup over a cyclic group . Then the union of all 

the minimal generating sets of  is equal to . 

ii. Every minimal generating set contains a non-generator. 

iii. Given a multigroup  over a cyclic group with 

order , If  is a minimal generating set of  then  gives  

elements of . 

 

Theorem 4.16 Every irregular multigroup with complete maximal 

submultigroups over a group is fully Frattini. 

Proof. For multigroup  to be  irregular implies , . 

Now let  for each  be the complete maximal submultigroups of . For  

to be complete in  implies . Since  is complete in , then there 

exists  such that  . Therefore  for 

each . 

 

Theorem 4.17 Every irregular multigroup with an incomplete maximal 

submultigroups over a non-cyclic group is fully Frattini. 

Proof.  is a non-cyclic group, implies it has no generator and  

. Now let  for each  be the incomplete maximal submultigroups 

of . Then for each ,  is contained in at least one of the with 

   

 
 

Theorem  Every cyclic multigroup with incomplete maximal 

submultigroups is not fully Frattini. 

Proof. Suppose  is a cyclic group and  is a multigroup with incomplete 

maximal submultigroups over . Where  has set of generators . Now 
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let  for some finite  then , where are 

the root sets of all the maximal submultigroups of  for each  and  .by 

remark 4.2 ,   Hence,  is not fully Frattini. 

 

Theorem 4.19 Every regular multigroup over a group is non-fully Frattini. 

Proof. Let   be a group and  be a multigroup over . For  to be a regular 

multigroup implies , . Let  for each  be the 

maximal submultigroup of . Since  is regular and by Definition , there 

exists at least an element  such that  for each  and so 

 

Remark 4.4. Let  be a nontrivial fully Frattini multigroup over a group  

then  has at least three maximalsubmultigroups if   

where  is the identity element of .  

 
 

5  Conclusions 

Most results in Frattini subgroup are extended to multigroup. A number of 

new results were obtained. Notion of cyclic, generators, non-generators, 

minimal generating sets were introduced and results with reference to Frattini 

submultigroups were established. Notwithstanding, more properties of 

maximal and Frattini submultigroups, fully and non-fully Frattini 

submultigroups and also cyclic multigroups are amenable for further 

investigation in multigroup framework. 
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The relationship between vertices of a graph is always an interest-
ing fact, but the relations of vertices and edges also seeks attention.
Motivation of the relationship between vertices and edges of a graph
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1 Introduction

Graph theory plays a vital role in the quantification of chemical structures
through topological indices. Topological indices are molecular descriptors which
characterize the topology of a graph through numerical parameters. Abundant
number of topological indices are identified these days. Amongst these the first
degree based topological indices are Zagreb indices [Gutman and Trinajstić, 1972].
Recently along with Zagreb indices Zagreb coindices is also gaining much at-
tention for research. This has put forward versitile forms of Zagreb indices of
graphs. The present work aims to establish some new form of topological indices
of graphs.

This paper considers the graph to be simple, finite and undirected. The
graph is denoted as G = (V,E) with |V (G)| = n as the vertex set and |E(G)| =
m as the edge set. The set of vertices are also referred to as the order of the graph
G and the edge set as the size of the graph G. The edge connecting the two vertices
u and v is denoted as e = uv. The degree of the vertex u in a graph G is denoted as
dG(u) and defined as the number of edges of a graph G incident with the vertex u.
The degree of edge dG(e) of a graph G is defined as dG(e) = dG(u) + dG(v)− 2.
The complement G of a graph G is one in which two vertices are adjacent if and
only if they are not adjacent in G. For G, |V (G)| = n, |E(G)| = m =

(
n
2

)
−m

[Alwardi et al., 2018]. Also uv ∈ E(G) ⇐⇒ uv /∈ E(G). The degree of a
vertex u in G is denoted as dG(u) and defined as dG(u) = n − 1 − dG(u) [Al-
wardi et al., 2018]. The degree of edge of G is represented as dG(e), defined as
dG(e) = dG(u) + dG(v)− 2. For undefined terminologies refer [Harary, 1969].
The Zagreb indices were defined by Gutman and Trinajstić [Gutman and Trina-
jstić, 1972] as

M1(G) =
∑

u∈V (G)

dG(u)
2 (1)

M2(G) =
∑

uv∈E(G)

dG(u)dG(v) . (2)

Here M1(G) refers first Zagreb index and M2(G) refers second Zagreb index.
First Zagreb index is also expressed as [Došlić, 2008, Došlic et al., 2011]

M1(G) =
∑

uv∈E(G)

(
dG(u) + dG(v)

)
. (3)

For properties and information on Zagreb indices refer [Gutman and Das,
2004, Zhou and Gutman, 2005, Zhou, 2004].
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Further, Zagreb coindices were introduced by Došlić [Došlić, 2008] as

M1(G) =
∑

uv/∈E(G)

(
dG(u) + dG(v)

)
(4)

M2(G) =
∑

uv/∈E(G)

dG(u)dG(v). (5)

The detailed study on Zagreb coindices is reported in [Ashrafi et al., 2010,
2011], the association between Zagreb indices and coindices is encountered in
[Das et al., 2012, Gutman et al., 2015].
Shirdel et al. [Shirdel et al., 2013] defined hyper Zagreb index as

HM(G) =
∑

uv∈E(G)

(
dG(u) + dG(v)

)2
. (6)

Further, hyper Zagreb coindex was introduced as

HM(G) =
∑

uv/∈E(G)

(
dG(u) + dG(v)

)2
. (7)

These graph invariants were studied in [Pattabiraman and Vijayaragavan, 2017,
Veylaki et al., 2016]. Relationship between hyper Zagreb index and coindex is es-
tablished in [Gutman, 2017].

Now, we introduce a set of new degree-based topological indices and coindices
named as Karnatak College Dharwad indices and coindices or KCD indices and
coindices in short, which is dedicated to Karnatak College Dharwad as the college
has completed hundred years of its service in education to the society in the year
2017. Further the research Supervisior and research scholar belong to the same
college.
i.e., The first and second KCD indices of a graph G are respectively

KCD1(G) =
∑

e=uv∈E(G)

((
dG(u) + dG(v)

)
+ dG(e)

)
(8)

KCD2(G) =
∑

e=uv∈E(G)

(
dG(u) + dG(v)

)
dG(e). (9)

We proceed further to define KCD coindices as follows

KCD1(G) =
∑

e=uv/∈E(G)

((
dG(u) + dG(v)

)
+ dG(e)

)
(10)

KCD2(G) =
∑

e=uv/∈E(G)

(
dG(u) + dG(v)

)
dG(e). (11)
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Here KCD1(G) and KCD2(G) are first and second KCD coindices of a graph
G respectively.

The remaining paper is distributed as follows. Section 2 expresses the prop-
erties of first KCD indices and coindices of a graph and its complement. Section
3 concentrates on properties of second KCD indices and coindices of a graph
and its complement, while Section 4 is devoted for the study of KCD indices of
certain graph operations.
The following previously known results are considered for present investigation.

Theorem 1.1. [Gutman et al., 2015] Let G be a graph with n vertices and m
edges. Then,

M1(G) = M1(G) + n(n− 1)2 − 4m(n− 1) (12)
M1(G) = 2m(n− 1)−M1(G). (13)

Corollary 1.2. [Gutman et al., 2015] Let G be any graph and G its complement.
Then

M1(G) = M1(G). (14)

Theorem 1.3. [Gutman, 2017] Let G be a graph with n vertices and m edges.
Then,

HM(G) = 4m2 + (n− 2)M1(G)−HM(G) (15)
HM(G) = 2n(n− 1)3 − 12m(n− 1)2 + 4m2 (16)

+(5n− 6)M1(G)−HM(G)

HM(G) = 4m(n− 1)2 + 4(n− 1)M1(G) +HM(G). (17)

2 Basic properties of first KCD indices and coindices
Theorem 2.1. Let G be a graph with n vertices and m edges. Then,

KCD1(G) = (4n− 6)m− 4m(n− 1) + 2M1(G) (18)
KCD1(G) = 4n(m−m)− 6m+ 4m+ 2M1(G) (19)

KCD1(G) = 4m(n− 1)− 2
(
m+M1(G)

)
(20)

KCD1(G) = (4n− 6)m− 2M1(G). (21)

Proof.
Proof of Eq. (18):
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For any vertex u of G,

dG(u) = n− 1− dG(u). (22)

and for any edge e = uv of G,

dG(e) = 2n− 4−
(
dG(u) + dG(v)

)
. (23)

Thus by Eqs. (8), (22) and (23), we have

KCD1(G) =
∑

e=uv∈E(G)

((
dG(u) + dG(v)

)
+ dG(e)

)

=
∑

e=uv/∈E(G)

((
n− 1− dG(u) + n− 1− dG(v)

)

+
(
2n− 4− (dG(u) + dG(v)

))

=
∑

e=uv/∈E(G)

(
4n− 6− 2

(
dG(u) + dG(v)

))

= (4n− 6)m− 2
∑

e=uv/∈E(G)

(
dG(u) + dG(v)

)
.

According To Eq. (4)

M1(G) =
∑

uv/∈E(G)

(
dG(u) + dG(v)

)
.

Hence,

KCD1(G) = (4n− 6)m− 2M1(G) (24)

Substitution of Eqs. (13) and (14) in (24) results into Eq. (18).

Proof of Eq. (19):

For any vertex u of the complement G,

dG(u) = n− 1− dG(u). (25)
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and for any edge e = uv of the complement G,

dG(e) = 2n− 4−
(
dG(u) + dG(v)

)
. (26)

Bearing in mind Eqs. (8), (25) and (26), we get

KCD1(G) =
∑

e=uv∈E(G)

((
dG(u) + dG(v)

)
+ dG(e)

)

=
∑

e=uv/∈E(G)

((
n− 1− dG(u) + n− 1− dG(v)

)

+
(
2n− 4− (dG(u) + dG(v)

))

=
∑

e=uv/∈E(G)

(
4n− 6− 2

(
dG(u) + dG(v)

))

= (4n− 6)m− 2
∑

e=uv/∈E(G)

(
dG(u) + dG(v)

)
.

Thus by Eq. (4),

KCD1(G) = (4n− 6)m− 2M1(G) (27)

Employing Eq. (13) in (27) generates Eq. (19).

Proof of Eq. (20):

Using Eqs. (10), (22) and (23), we have

KCD1(G) =
∑

e=uv/∈E(G)

((
dG(u) + dG(v)

)
+ dG(e)

)

=
∑

e=uv∈E(G)

((
n− 1− dG(u) + n− 1− dG(v)

)

+
(
2n− 4− (dG(u) + dG(v)

))

=
∑

e=uv∈E(G)

(
4n− 6− 2

(
dG(u) + dG(v)

))
.
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By Eq. (3)

M1(G) =
∑

uv∈E(G)

(
dG(u) + dG(v)

)
.

Thus,

KCD1(G) = (4n− 6)m− 2M1(G) (28)

Substitution of Eq. (12) in (28) gives Eq. (20).

Proof of Eq. (21):

In view of Eq. (10), (25) and (26), we get

KCD1(G) =
∑

e=uv/∈E(G)

((
dG(u) + dG(v)

)
+ dG(e)

)

=
∑

e=uv∈E(G)

((
n− 1− dG(u) + n− 1− dG(v)

)

+
(
2n− 4− (dG(u) + dG(v)

))

=
∑

e=uv∈E(G)

(
4n− 6− 2

(
dG(u) + dG(v)

))

= (4n− 6)m− 2
∑

e=uv∈E(G)

(
dG(u) + dG(v)

)

Considering Eq. (3) we directly arrive at Eq. (21).

2
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3 Basic properties of second KCD indices
and coindices

Theorem 3.1. Let G be a graph with n vertices and m edges. Then,

KCD2(G) = HM(G)− 2M1(G) (29)

KCD2(G) = 4(n− 1)
(
m(n− 2)−m(2n− 3)

)
+ 4m2 (30)

+(5n− 8)M1(G)−HM(G)

KCD2(G) = 4(n− 1)(n− 2)m− (4n− 6)(n− 1)
(
n(n− 1)− 4m

)
(31)

+2(n− 1)2
(
n(n− 1)− 6m

)
+ 4m2 + nM1(G)−HM(G)

KCD2(G) = 4(n− 1)(n− 2)m− (4n− 6)M1(G) +HM(G). (32)

Proof.

Proof of Eq. (29):

Considering Eqs. (9), (22) and (23), we have

KCD2(G) =
∑

e=uv∈E(G)

(
dG(u) + dG(v)

)
dG(e)

=
∑

e=uv/∈E(G)

(
n− 1− dG(u) + n− 1− dG(v)

)(
2n− 4− (dG(u) + dG(v)

)
=

∑
e=uv/∈E(G)

4(n− 1)(n− 2)− (4n− 6)
∑

e=uv/∈E(G)

(
dG(u) + dG(v)

)
+

∑
e=uv/∈E(G)

(
dG(u) + dG(v)

)2
.

By an analogous reasoning,

M1(G) =
∑

uv/∈E(G)

(
dG(u) + dG(v)

)
and HM(G) =

∑
uv/∈E(G)

(
dG(u) + dG(v)

)2
.

Thus,

KCD2(G) = 4m(n− 1)(n− 2)− (4n− 6)M1(G) +HM(G).

In view of Eq. (14)

KCD2(G) = 4m(n− 1)(n− 2)− (4n− 6)M1(G) +HM(G) (33)
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Taking into account Eqs. (13) and (17), Eq. (33) results into Eq. (29).

Proof of Eq. (30):

In view of Eqs. (9), (25) and (26), we get

KCD2(G) =
∑

e=uv∈E(G)

(
dG(u) + dG(v)

)
dG(e)

=
∑

e=uv/∈E(G)

(
n− 1− dG(u) + n− 1− dG(v)

)(
2n− 4− (dG(u) + dG(v)

)
=

∑
e=uv/∈E(G)

4(n− 1)(n− 2)− (4n− 6)
∑

e=uv/∈E(G)

(
dG(u) + dG(v)

)
+

∑
e=uv/∈E(G)

(
dG(u) + dG(v)

)2
.

By Eqs. (4) and (7), it directly follows

KCD2(G) = 4m(n− 1)(n− 2)− (4n− 6)M1(G) +HM(G) (34)

Application of Eqs. (13) and (15) to Eq. (34) yields Eq. (30).

Proof of Eq. (31):

Using Eqs. (11), (22) and (23), we have

KCD2(G) =
∑

e=uv/∈E(G)

(
dG(u) + dG(v)

)
dG(e)

=
∑

e=uv∈E(G)

(
n− 1− dG(u) + n− 1− dG(v)

)
(
2n− 4− (dG(u) + dG(v)

)
=

∑
e=uv∈E(G)

4(n− 1)(n− 2)− (4n− 6)
∑

e=uv∈E(G)

(
dG(u) + dG(v)

)
+

∑
e=uv∈E(G)

(
dG(u) + dG(v)

)2
.

By reasoning,

M1(G) =
∑

uv∈E(G)

(
dG(u) + dG(v)

)
and HM(G) =

∑
uv∈E(G)

(
dG(u) + dG(v)

)2
.
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Hence

KCD2(G) = 4m(n− 1)(n− 2)− (4n− 6)M1(G) +HM(G) (35)

Substituting Eqs. (12) and (16) in Eq. (35), simple calculation yields Eq. (31).

Proof of Eq. (32):

With the help of Eqs. (11), (25) and (26), we get

KCD2(G) =
∑

e=uv/∈E(G)

(
dG(u) + dG(v)

)
dG(e)

=
∑

e=uv∈E(G)

(
n− 1− dG(u) + n− 1− dG(v)

)(
2n− 4− (dG(u) + dG(v)

)
=

∑
e=uv∈E(G)

4(n− 1)(n− 2)− (4n− 6)
∑

e=uv∈E(G)

(
dG(u) + dG(v)

)
+

∑
e=uv∈E(G)

(
dG(u) + dG(v)

)2
Eq. (32) immediately follows.

2

4 KCD indices of some graph operations

In this section, we study the graph operations using KCD indices. The
well-known graph operations sum(join), cartesian product and composition of
graphs are considered. All operations considered under the context are binary,
with finite and simple graphs G and H . For the graphs G and H vertex and edge
sets are denoted by V (G) and V (H), E(G) and E(H) respectively. The detailed
information on sum(join) of graphs is refered in[Khalifeh et al., 2008a], cartesian
product of graphs studied in[Khalifeh et al., 2008b] and composition of graphs is
reported in [Imrich and Klavzar, 2000, Khalifeh et al., 2008a]. We refer [Khalifeh
et al., 2009] for detailed information about graph operations.

Sum(join):
The sum(join) G + H of two graphs G and H with disjoint vertex sets

|V (G)| and |V (H)| is the graph on the vertex set V (G) ∪ V (H) and the edge
set E(G) ∪ E(H) ∪ {uv : u ∈ V (G) and v ∈ V (H)}. For the graph G + H ,
|V (G+H)| = |V (G)|+V (H)|, |E(G+H)| = |E(G)|+|E(H)|+|V (G)||V (H)|,
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the degree of any vertex u ∈ G+H is

dG+H(u) =

{
dG(u) + |V (H)| u ∈ V (G)
dH(u) + |V (G)| u ∈ V (H).

Theorem 4.1. Let G and H be graphs. Then

KCD1(G+H) = 2

(
M1(G) +M1(H) + |E(H)|

(
4|V (G)| − 1

)
+|E(G)|

(
4|V (H)| − 1

)
+|V (G)||V (H)|

(
|V (G)|+ |V (H)| − 1

))
.

Proof:
By definition of sum(join) G+H of two graphs G, H and Eq. (8), we have

KCD1(G+H) =
∑

e=uv∈E(G+H)

((
dG+H(u) + dG+H(v)

)
+ dG+H(e)

)
.

Since,

dG+H(e) = dG+H(u) + dG+H(v)− 2.

KCD1(G+H) = 2
∑

e=uv∈E(G+H)

(
dG+H(u) + dG+H(v)− 1

)
.

KCD1(G+H) = 2
∑

e=uv∈E(H)

(
dG+H(u) + dG+H(v)− 1

)
(36)

+2
∑

e=uv∈E(G)

(
dG+H(u) + dG+H(v)− 1

)
+2

∑
e=uv∈{uv:u∈V (G),v∈V (H)}

(
dG+H(u) + dG+H(v)− 1

)
.

Observe that,∑
e=uv∈E(H)

(
dG+H(u) + dG+H(v)− 1

)
=

∑
e=uv∈E(H)

(
dH(u) + |V (G)|

+dH(v) + |V (G)| − 1
)

=
∑

e=uv∈E(H)

(
dH(u) + dH(v) + 2|V (G)| − 1

)
.
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Thus, ∑
e=uv∈E(H)

(
dG+H(u) + dG+H(v)− 1

)
= M1(H) + 2|V (G)||E(H)| (37)

−|E(H)|.

Similarly,∑
e=uv∈E(G)

(
dG+H(u) + dG+H(v)− 1

)
= M1(G) + 2|V (H)||E(G)| (38)

−|E(G)|.

In the same way,∑
u∈V (G),v∈V (H)

(
dG+H(u) + dG+H(v)− 1

)
= 2|V (H)||E(G)|+ |V (H)|2|V (G)|

+2|E(H)||V (G)|+ |V (G)|2|V (H)| − |V (G)||V (H)|.
(39)

Substituting Eqs. (37), (38) and (39) in Eq. (36) completes the proof.

2

Theorem 4.2. Let G and H be graphs. Then

KCD2(G+H) = HM(G) +HM(H) +
(
5|V (H)| − 2

)
M1(G) +

(
5|V (G)| − 2

)
M1(H)

+8

(
|V (G)||E(H)|

(
|V (G)| − 1

)
+ |V (H)||E(G)|

(
|V (H)| − 1

)
+ |E(G)||E(H)|

)

+|V (G)||V (H)|

((
|V (G)|+ |V (H)|

)2
+ 4
(
|E(G)|+ |E(H)|

)
− 2
(
|V (G)|+ |V (H)|

))
.

Proof.
With the knowledge of sum(join) G+H of two graphs G, H and Eq. (9), we have

KCD2(G+H) =
∑

e=uv∈E(G+H)

(
dG+H(u) + dG+H(v)

)
dG+H(e).

As,

dG+H(e) = dG+H(u) + dG+H(v)− 2.
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This implies,

KCD2(G+H) =
∑

e=uv∈E(G+H)

(
dG+H(u) + dG+H(v)

)2
− 2
(
dG+H(u) + dG+H(v)

)
=

∑
e=uv∈E(H)

(
dG+H(u) + dG+H(v)

)2
− 2
(
dG+H(u) + dG+H(v)

)
+

∑
e=uv∈E(G)

(
dG+H(u) + dG+H(v)

)2
− 2
(
dG+H(u) + dG+H(v)

)
+

∑
e=uv∈{uv:u∈V (G),v∈V (H)}

(
dG+H(u) + dG+H(v)

)2
−2
(
dG+H(u) + dG+H(v)

)
.

It follows that,

∑
e=uv∈E(H)

(
dG+H(u) + dG+H(v)

)2
− 2
(
dG+H(u) + dG+H(v)

)
=

∑
e=uv∈E(H)

((
dH(u)

+|V (G)|+ dH(v) + |V (G)|
)2
− 2
(
dH(u) + |V (G)|+ dH(v) + |V (G)|

))

=
∑

e=uv∈E(H)

((
dH(u) + dH(v)

)2
+ 4|V (G)|2 + 4|V (G)|

(
dH(u) + dH(v)

)
− 2
(
dH(u)

+dH(v)
)
− 4|V (G)|

)
.

∑
e=uv∈E(H)

(
dG+H(u) + dG+H(v)

)2
− 2
(
dG+H(u) + dG+H(v)

)
= HM(H)

+4|V (G)|2|E(H)|+ 4|V (G)|M1(H)− 2M1(H)− 4|V (G)||E(H)|.
(40)

Similarly,∑
e=uv∈E(G)

(
dG+H(u) + dG+H(v)

)2
− 2
(
dG+H(u) + dG+H(v)

)
= HM(G)

+4|V (H)|2|E(G)|+ 4|V (H)|M1(G)− 2M1(G)− 4|V (H)||E(G)|.
(41)
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In the same way

∑
u∈V (G),v∈V (H)

(
dG+H(u) + dG+H(v)

)2
− 2
(
dG+H(u) + dG+H(v)

)
= M1(G)|V (H)|

+M1(H)|V (G)|+ 8|E(G)||E(H)|+ |V (G)||V (H)|
(
|V (G)|+ |V (H)|

)2
+4|E(G)||V (H)|2 + 4|E(G)||V (G)||V (H)|+ 4|E(H)||V (G)||V (H)|

+4|E(H)||V (G)|2 − 4|E(G)||V (H)| − 4|E(H)||V (G)|

−2|V (G)||V (H)|
(
|V (G)|+ |V (H)|

)
.

(42)

Finally, the summaton of Eqs. (40), (41) and (42) gives the desired result.

2

Cartesian Product:
The cartesian product G × H of two graphs G and H has the vertex set

V (G × H) = V (G) × V (H) and e = (a, x)(b, y) is an edge of G × H if a = b
and xy ∈ E(H), or ab ∈ E(H) and x = y. For the graph G×H , |V (G×H)| =
|V (G)|V (H)|, |E(G×H)| = |E(G)||V (H)|+ |V (G)||E(H)|, The degree of any
vertex (a, x) ∈ G×H is dG×H((a, x)) = dG(a) + dH(x).

Theorem 4.3. Let G and H be graphs. Then

KCD1(G×H) = 2

(
|V (G)|M1(H) + |V (H)|M1(G) + 8|E(G)||E(H)| −

(
|V (G)||E(H)|+ |V (H)||E(G)|

))
.

Proof.
In the view of definition of cartesian product G×H of two graphs G, H and Eq.
(8), we have

KCD1(G×H) =
∑

e=(a,x)(b,y)∈E(G×H)

((
dG×H((a, x)) + dG×H((b, y))

)
+ dG×H((e))

)
.

It is known that,

dG×H((e)) = dG×H((a, x)) + dG×H((b, y))− 2.
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Thus,

KCD1(G×H) = 2
∑

e=(a,x)(b,y)∈E(G×H)

(
dG×H((a, x)) + dG×H((b, y))− 1

)
= 2

∑
a∈V (G)

∑
xy∈E(H)

(
dG(a) + dH(x) + dG(a) + dH(y)− 1

)
+2

∑
x∈V (H)

∑
ab∈E(G)

(
dH(x) + dG(a) + dH(x) + dG(b)− 1

)

= 2
∑

a∈V (G)

∑
xy∈E(H)

(
2dG(a) +

(
dH(x) + dH(y)

)
− 1

)

+2
∑

x∈V (H)

∑
ab∈E(G)

(
2dH(x) +

(
dG(a) + dG(b)

)
− 1

)

By simple reasoning we straightforwardly obtain the required result.

2

Theorem 4.4. Let G and H be graphs. Then

KCD2(G×H) = |V (G)|HM(H) + |V (H)|HM(G) +
(
12|E(H)| − 2|V (H)|

)
M1(G)

+
(
12|E(G)| − 2|V (G)|

)
M1(H)− 16|E(G)||E(H)|.

Proof.
Taking into account the definition of cartesian product G × H of two graphs G
and H , start with Eq. (9) as

KCD2(G×H) =
∑

e=(a,x)(b,y)∈E(G×H)

(
dG×H((a, x)) + dG×H((b, y))

)
dG×H((e)).

Since

dG×H((e)) = dG×H((a, x)) + dG×H((b, y))− 2.
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We have

KCD2(G×H) =
∑

e=(a,x)(b,y)∈E(G×H)

((
dG×H((a, x)) + dG×H((b, y))

)2
−2
(
dG×H((a, x)) + dG×H((b, y))

))

=
∑

a∈V (G)

∑
xy∈E(H)

((
dG(a) + dH(x) + dG(a) + dH(y)

)2
−2
(
dG(a) + dH(x) + dG(a) + dH(y)

))
+
∑

x∈V (H)

∑
ab∈E(G)

((
dH(x)

+dG(a) + dH(x) + dG(b)
)2
− 2
(
dH(x) + dG(a) + dH(x) + dG(b)

))

=
∑

a∈V (G)

∑
xy∈E(H)

((
2dG(a) + dH(x) + dH(y)

)2
− 2
(
2dG(a) + dH(x)

+dH(y)
))

+
∑

x∈V (H)

∑
ab∈E(G)

((
2dH(x) + dG(a) + dG(b)

)2
−2
(
2dH(x) + dG(a) + dG(b)

))

KCD2(G×H) =
∑

a∈V (G)

∑
xy∈E(H)

(
4
(
dG(a)

)2
+
(
dH(x) + dH(y)

)2
+4dG(a)

(
dH(x) + dH(y)

)
− 2
(
2dG(a) +

(
dH(x) + dH(y)

)))

+
∑

x∈V (H)

∑
ab∈E(G)

(
4
(
dH(x)

)2
+
(
dG(a) + dG(b)

)2
+4dH(x)

(
dG(a) + dG(b)

)
− 2
(
2dH(x) +

(
dG(a) + dG(b)

)))
and the required result immediately follows.
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2

Composition:
The composition G[H] of two graphs G and H with disjoint vertex sets

V (G) and V (H), edge sets E(G) and E(H) is the graph with vertex set V (G) ×
V (H) and (a,x) is adjacent to (b,y) whenever a is adjacent to b, or a = b and x
is adjacent to y. For the graph G[H], |V (G[H])| = |V (G)||V (H)|, |E(G[H])| =
|E(G)||V (H)|2 + |E(H)||V (G)|, The degree of any vertex (a, x) ∈ G[H] is
dG[H]((a, x)) = |V (H)|dG(a) + dH(x).

Theorem 4.5. Let G and H be graphs. Then

KCD1(G[H]) = 2
(
|V (H)|3M1(G) + |V (G)|M1(H) + 8|V (H)||E(G)||E(H)|

−|V (H)|2|E(G)| − |E(H)||V (G)|
)
.

Proof.
Using the definition of composition G[H] of two graphs G, H and Eq. (8), we
have

KCD1(G[H]) =
∑

e=(a,x)(b,y)∈E(G[H])

((
dG[H]((a, x)) + dG[H]((b, y))

)
+ dG[H]((e))

)
.

But

dG[H]((e)) = dG[H]((a, x)) + dG[H]((b, y))− 2.

This implies,

KCD1(G[H]) = 2
∑

e=(a,x)(b,y)∈E(G[H])

(
dG[H]((a, x)) + dG[H]((b, y))− 1

)
.

KCD1(G[H]) = 2
∑

x∈V (H)

∑
y∈V (H)

∑
ab∈E(G)

(
|V (H)|dG(a) + dH(x) + |V (H)|dG(b)

+dH(y)− 1
)
+ 2

∑
a∈V (G)

∑
xy∈E(H)

(
|V (H)|dG(a) + dH(x)

+|V (H)|dG(a) + dH(y)− 1
)
.

(43)

We start with
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∑
x∈V (H)

∑
y∈V (H)

∑
ab∈E(G)

(
|V (H)|dG(a) + dH(x) + |V (H)|dG(b) + dH(y)− 1

)
=

∑
x∈V (H)

∑
y∈V (H)

∑
ab∈E(G)

(
|V (H)|

(
dG(a) + dG(b)

)
+
(
dH(x) + dH(y)

)
− 1

)

Thus,∑
x∈V (H)

∑
y∈V (H)

∑
ab∈E(G)

(
|V (H)|dG(a) + dH(x) + |V (H)|dG(b) + dH(y)− 1

)
=

|V (H)|3M1(G) + 4|V (H)||E(G)||E(H)| − |V (H)|2|E(G)|.
(44)

Similarly,∑
a∈V (G)

∑
xy∈E(H)

(
|V (H)|dG(a) + dH(x) + |V (H)|dG(a) + dH(y)− 1

)
=

4|V (H)||E(G)||E(H)|+ |V (G)|M1(H)− |V (G)||E(H)|.
(45)

Substituting Eqs. (44) and (45) in Eq. (43) generates the desired result.

2

Theorem 4.6. Let G and H be graphs. Then

KCD2(G[H]) = |V (H)|4HM(G) + |V (G)|HM(H)

+2|V (H)|2M1(G)
(
6|E(H)| − |V (H)|

)
+2M1(H)

(
5|V (H)||E(G)| − |V (G)|

)
+8|E(G)||E(H)|

(
|E(H)| − 2|V (H)|

)
.

Proof.
In view of definition of composition G[H] of two graphs G, H and Eq. (9), we
start with

KCD2(G[H]) =
∑

e=(a,x)(b,y)∈E(G[H])

(
dG[H]((a, x)) + dG[H]((b, y))

)
dG[H]((e)).

It is known that,

dG[H]((e)) = dG[H]((a, x)) + dG[H]((b, y))− 2.
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We get,

KCD2(G[H]) =
∑

e=(a,x)(b,y)∈E(G[H])

((
dG[H]((a, x)) + dG[H]((b, y))

)2
−2
(
dG[H]((a, x)) + dG[H]((b, y))

))
.

KCD2(G[H]) =
∑

x∈V (H)

∑
y∈V (H)

∑
ab∈E(G)

((
|V (H)|dG(a) + dH(x) + |V (H)|dG(b) + dH(y)

)2
−2
(
|V (H)|dG(a) + dH(x) + |V (H)|dG(b) + dH(y)

))

+
∑

a∈V (G)

∑
xy∈E(H)

((
|V (H)|dG(a) + dH(x) + |V (H)|dG(a) + dH(y)

)2
−2
(
|V (H)|dG(a) + dH(x) + |V (H)|dG(a) + dH(y)

))
.

Thus,

KCD2(G[H]) =
∑

x∈V (H)

∑
y∈V (H)

∑
ab∈E(G)

((
|V (H)|

(
dG(a) + dG(b)

)
+ dH(x) + dH(y)

)2
−2
(
|V (H)|

(
dG(a) + dG(b)

)
+ dH(x) + dH(y)

))

+
∑

a∈V (G)

∑
xy∈E(H)

((
2|V (H)|dG(a) + dH(x) + dH(y)

)2
−2
(
2|V (H)|dG(a) + dH(x) + dH(y)

))
.
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It follows that,

∑
x∈V (H)

∑
y∈V (H)

∑
ab∈E(G)

((
|V (H)|

(
dG(a) + dG(b)

)
+ dH(x) + dH(y)

)2
−2
(
|V (H)|

(
dG(a) + dG(b)

)
+ dH(x) + dH(y)

))

=
∑

x∈V (H)

∑
y∈V (H)

∑
ab∈E(G)

(
|V (H)|2

(
dG(a) + dG(b)

)2
+
(
dH(x) + dH(y)

)2
+2|V (H)|

(
dG(a) + dG(b)

)(
dH(x) + dH(y)

)
− 2|V (H)|

(
dG(a) + dG(b)

)
−2|V (H)|dH(x)− 2|V (H)|dH(y)

)

Hence,

∑
x∈V (H)

∑
y∈V (H)

∑
ab∈E(G)

((
|V (H)|

(
dG(a) + dG(b)

)
+ dH(x) + dH(y)

)2
−2
(
|V (H)|

(
dG(a) + dG(b)

)
+ dH(x) + dH(y)

))
= |V (H)|4HM(G)

+2|V (H)||E(G)|M1(H) + 8|E(H)|2|E(G)|+ 8|V (H)|2|E(H)|M1(G)

−2|V (H)|3M1(G)− 8|E(H)||E(G)||V (H)|.

(46)

Similarly,

∑
a∈V (G)

∑
xy∈E(H)

((
2|V (H)|dG(a) + dH(x) + dH(y)

)2
− 2
(
2|V (H)|dG(a)

+dH(x) + dH(y)
))

= 4|V (H)|2|E(H)|M1(G) + |V (G)|HM(H)

+8|V (H)||E(G)|M1(H)− 8|V (H)||E(G)||E(H)| − 2|V (G)|M1(H).

(47)

Finally, summation of Eqs. (46) and (47) gives the required result.

2
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5 Conclusion

In this paper, we have introduced few new degree based topological indices
and coindices named KCD indices and coindices. A set of properties of these in-
dices and coindices are obtained. Finally, some graph operations are studied using
KCD indices. These results have scope for further development using remaining
graph operations.
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Ivan Gutman and Nenad Trinajstić. Graph theory and molecular orbitals. total
ϕ-electron energy of alternant hydrocarbons. Chemical Physics Letters, 17(4):
535–538, 1972.

Ivan Gutman, Boris Furtula, Zana Kovijanić Vukićević, and Goran Popivoda. On
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In this paper, cosine and sine wavelet is considered. Two new CAS
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(f) and E
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(f) for the

approximation of a function f whose first derivative f ′ and second
derivative f ′′ belong to Hölder’s class Hα[0, 1) of order 0 < α 6 1,
have been obtained. These estimators are sharper and best in wavelet
analysis. Using CAS wavelet, a computational method has been
developed to solve Fredholm integral equation of second kind. In
this process, Fredholm integral equations are reduced into a system of
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1 Introduction
Wavelet is a very recent and powerful tool in pure as well as

applied mathematical research area. It has wide range applications in engineering,
science and technology, signal analysis, time-frequency analysis, fast numerical
algorithm. Several problems of Physics, Engineering, science and Technology
are found in the form of integral equations. In some cases, integral equations are
reformulated into ordinary differential equations and partial differential equations.
In many cases, it is very difficult to solve integral equations analytically and
hence there is a need of approximate solution of integral equations. In recents
years, the approximate solutions of integral equations have been obtained by
orthogonal basis functions as well as orthogonal wavelets. The main advantage
of using orthonormal basis is that it converts the mathematical problems to a
system of algebraic equations. Working in same direction, several researchers
like [2], Sahu [3] etc. have been solved integral equations. It is known that
wavelets are considerably useful in the solution of integral equations. In science
and Technology, some problems are available in the form of Fredholm integral
equations of second kind:

u(x) = f(x) +

∫ 1

0

K(x, y)u(y)dy (1)

where f ∈ L2[0, 1) and K ∈ L2[0, 1) × L2[0, 1) are known functions and u is
unknown function to be determined (Ray and Sahu [3]).

In best of our knowledge, there is no work associated with the solution of
Fredholm integral eqn (1) by CAS wavelet method. The main objectives of the
research paper are as follows:

1. To estimate the approximation of functions belonging to Hölder’s class
Hα[0, 1) of order 0 < α 6 1 by CAS wavelet method.

2. To develop a procedure to solve Fredholm integral equation of second kind
by using CAS wavelet approximation.

3. To compare the solutions of Fredholm integral eqn (1) obtained by CAS
wavelet, Legendre wavelet and Haar wavelet method with their exact
solutions.

It is remarkable to note that the solution of Fredholm integral eqn (1)
obtained by CAS wavelet method and its exact solution are almost same. The
solution of Fredholm integral eqn (1) obtained by CAS wavelet method is
better and more closed to its exact solution than the solutions obtained by
Legendre wavelet and Haar wavelet method. It is observed in numerical
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comparison of these solutions. It is a significant achievement of the proposed
method.

2 Definitions and Preliminaries

2.1 Basic Wavelets And CAS Wavelets
Let ψ ∈ L2(IR). ψ is called a basic wavelet if it satisfies the admissibility

condition:

Cψ =

∫ ∞
−∞

| ψ̂ |2

| w |
dw <∞ (Chui [1]) (2)

The integral wavelet transform, relative to a basic wavelet ψ, is defined by

(Wψf)(b, a) = |a|−1/2
∫ ∞
−∞

f(t)ψ(
b− a
a

)dt , f ∈ L2(IR) (3)

where a, b ∈ IR, a 6= 0 . Set

ψb,a(t) = |a|−1/2ψ(
b− a
a

). (4)

This is a family of wavelets. If we restrict the parameters a and b to discrete values

a = a−k0 , b = nb0a
−k
0 , a0 > 1, b0 > 0

where n and k are positive integers, then

ψb,a(t) = ψn,k(t) = |a0|k/2ψ(ak0t− nb0). (5)

Taking a0 = 2, b0 = 1 in eqn (5),

ψn,k(t) = 2k/2ψ(2kt− n). (6)

If

ψ(2kt− n) = cos(2mπ(2kt− n+ 1)) + sin(2mπ(2kt− n+ 1)) (7)
= CASm(2kt− n+ 1). (8)

Using eqn(7), eqn (6) becomes

ψn,m(t) =

{
2
k
2 {cos(2mπ(2kt− n+ 1)) + sin(2mπ(2kt− n+ 1))}, if n−1

2k
6 t < n

2k
,

0, otherwise.

{ψn,m}n,m∈Z are orthonormal CAS wavelets defined on [0,1) .
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3 Function belonging to Hölder’s class Hα[0, 1)

A function f is said to belong to Hölder’s class Hα[0, 1) of order 0 < α 6 1
if f satifies the following condition :

|f(x)− f(y)| 6 A|x− y|α, ∀x, y ∈ IR (9)

for some positive constant A (Zheng, Wei [4]).

3.1 Proposition
Let f be a function such that its second derivative f ′′ is in Hα[0, 1), then its

first derivative f ′ is in Hα[0, 1).
Proof : Let φ′′ ∈ Hα[0, 1) .

f(x) =

∫ xα

0

φ
′
(t) dt

f
′
(x) =

∫ xα

0

φ
′′
(t) dt and f

′
(y) =

∫ yα

0

φ
′′
(t) dt

|f ′(x)− f ′(y)| = |
∫ xα

0

φ
′′
(t) dt−

∫ yα

0

φ
′′
(t) dt| = |

∫ xα

yα
φ
′′
(t) dt|

≤ M |xα − yα| ≤M |x− y|α, M = sup
t∈[0,1)

{φ′′(t)}

Converse is not true. Consider the example f(x) = xα+1

α+1
0 < α < 1.Then,

f
′
(x) = xα and f

′′
(x) = αxα−1. For x = 1

N
1

1−α
, y = 1

(1+N)
1

1−α
, we have

|x− y| ≤ 1

N
1

1−α
− 1

(1+N)
1

1−α
≤ 1

N
1

1−α
= δ.

And |f ′′(x)− f ′′(y)| = α(1 +N −N) = α
If 0 < ε < α, then |f ′′(x) − f ′′(y)| � ε whenever |x − y| ≤ δ = 1

N
1

1−α
. Hence,

f
′ ∈ Hα[0, 1) but f ′′ 6∈ Hα[0, 1).

3.2 Difference between Hölder’s class and Lipschitz class
1. Consider the function f(x) =

√
x2 + 5 ∀x ∈ [0, 1]. Then

|f(x)− f(y)| ≤ |
√
x2 + 5−

√
y2 + 5| ≤ |

√
x2 − y2| ≤

√
2|x− y|

1
2 (10)

Eqn(10) shows that f ∈ H 1
2 [0, 1). And also, we have

|f ′(x)| ≤ | x

x2 + 5
| ≤ 1, ∀ x ∈ [0, 1] (11)
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Eqn(10) and Eqn(11) shows that f ∈ Lip 1
2
[0, 1).

2. Define the function f(x) =
√
x ∀x ∈ [0, 1], then we have

|f(x)− f(y)| ≤ |
√
x−√y| ≤ |x− y|

1
2 =⇒ f ∈ H

1
2 [0, 1).

And since, f ′(x) = 1
2
√
x
→∞ as x→ 0+. Hence, f is not bounded.

∴ f 6∈ Lip 1
2
[0, 1). Hence, we conclude that Lipα[0, 1] ⊂ Hα[0, 1].

4 Approximation of function
Since {ψn,m}n,m∈Z forms an orthonormal basis for L2[0, 1] , therefore a func-

tion f ∈ L2[0, 1) can be expressed into CAS wavelet series as:

f(t) =
∞∑
n=1

∞∑
m=−∞

cn,mψn,m(t) (12)

where the coefficients cn,m are given by

cn,m =< f, ψn,m > (13)

(2k, 2M + 1)th partial sum S2k,2M+1(f)(t) of (12) is given by

S2k,2M+1(f)(t) =
2k∑
n=1

M∑
m=−M

cn,mψn,m(t) = CTΨ(t) (14)

where C and Ψ(t) are given by
C = [c1,(−M), c1,(−M+1), ..., c1,M , c2,(−M), ..., c2,M , ..., c2k,(−M), ..., c2k,M ]T

and

Ψ(t) = [ψ1,(−M)(t), ψ1,(−M+1)(t), ..., ψ1,M(t), ψ2,(−M)(t), ..., ψ2,M(t), ...,

ψ2k,(−M)(t), ..., ψ2k,M(t)]T .

Extended Legendre Wavelet expansion of function f ∈ L2[0, 1) is

f(x) =
∞∑
n=1

∞∑
m=0

cn,mψ
(µ)
n,m(x),

and its (µk,M)th partial sum is

Sµk,M(f)(x) =

µk∑
n=1

M∑
m=0

cn,mψ
(µ)
n,m(x).
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The extended Legendre wavelet approximation Eµk,M(f) of f by (µk,M)thpartial
sum Sµk,M(f) is defined by

Eµk,M(f) = min
S
µk,M

(f)
||f − Sµk,M(f)||2 .

In our case, the CAS wavelet approximation E2k,2M+1(f) of f by (2k, 2M + 1)th

partial sum S2k,2M+1(f) of series (12) is defined by

E2k,2M+1(f) = min
S
2k,2M+1

(f)
||f − S2k,2M+1(f)||2 . (15)

5 Theorems
In this paper, we prove the following theorems:

Theorem 5.1. If f ∈ L2[0, 1) is a function such that f
′ ∈ Hα[0, 1) and its CAS

wavelet expansion is

f(t) =
∞∑
n=1

∞∑
m=−∞

cn,mψn,m(t) (16)

then the approximation error E(1)

2k,2M+1
(f) of f by (2k, 2M + 1)th partial sum

S2k,2M+1(f)(t) =
2k∑
n=1

M∑
m=−M

cn,mψn,m(t) (17)

of expansion 16 is given by

E
(1)

2k,2M+1
(f) = min

S
2k,2M+1

(f)
||f − (S2k,2M+1f)||2 = O(

1√
M + 1 2k(α+1)

) (18)

Theorem 5.2. If f ∈ L2[0, 1) is a function such that f
′′ ∈ Hα[0, 1) and its

CAS wavelet expansion is given by the series (16) , then the approximation error
E

(2)

2k,2M+1
(f) of f by (2k, 2M + 1)th partial sum S2k,2M+1(f)(t) of series (16) is

given by

E
(2)

2k,2M+1
(f) = min

S
2k,2M+1

(f)
||f − (S2k,2M+1f)||2 = O(

1

(M + 1)
3
2 2k(α+2)

) (19)
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Proof of theorem (5.1) Since

f(t) =
∞∑
n=1

∞∑
m=−∞

cn,mψn,m(t)

and

S2k,2M+1(f)(t) =
2k∑
n=1

M∑
m=−M

cn,mψn,m(t)

∴ f(t)− S2k,2M+1(f)(t) =
∞∑
n=1

∞∑
m=−∞

cn,mψn,m(t)−
2k∑
n=1

M∑
m=−M

cn,mψn,m(t)

= (
2k∑
n=1

+
∞∑

n=2k+1

)(
−M−1∑
m=−∞

+
M∑

m=−M

+
∞∑

m=M+1

)cn,mψn,m(t)

−
2k∑
n=1

M∑
m=−M

cn,mψn,m(t)

=
2k∑
n=1

−M−1∑
m=−∞

cn,mψn,m(t) +
2k∑
n=1

∞∑
m=M+1

cn,mψn,m(t)

(f(t)− S2k,2M+1(f)(t))2 =
2k∑
n=1

−M−1∑
m=−∞

c2n,mψ
2
n,m(t) +

2k∑
n=1

∞∑
m=M+1

c2n,mψ
2
n,m(t)

+2
∑∑

16 n6=n′≤ 2k

∑∑
−∞≤m6=m′≤−M−1

cn,mcn′,m′ψ
T
n,m(t)ψn′,m′(t)

+2
∑∑

16 n6=n′≤ 2k

∑∑
M+1≤m 6=m′≤∞

cn,mcn′,m′ψ
T
n,m(t)ψn′,m′(t)

||f − S2k,2M+1(f)||22 =

∫ 1

0

|f(t)− S2k,2M+1(f)(t)|2dt

6
2k∑
n=1

−M−1∑
m=−∞

|cn,m|2
∫ 1

0

|ψn,m(t)|2dt

+
2k∑
n=1

∞∑
m=M+1

|cn,m|2
∫ 1

0

|ψn,m(t)|2dt

+ 2
∑∑

16 n6=n′≤ 2k

∑∑
−∞≤m 6=m′≤−M−1

|cn,m||cn′,m′|∫ 1

0

|ψTn,m(t)ψn′,m′(t)|dt

193



Shyam Lal and Satish Kumar

+2
∑∑

16 n6=n′≤ 2k

∑∑
M+1≤m6=m′≤∞

|cn,m||cn′,m′|
∫ 1

0

|ψTn,m(t)ψn′,m′(t)|dt

=
2k∑
n=1

−M−1∑
m=−∞

|cn,m|2 +
2k∑
n=1

∞∑
m=M+1

|cn,m|2 , by orthonormality of {ψn,m}n,m∈Z

||f − S2k,2M+1(f)||22 ≤
2k∑
n=1

(
−M−1∑
m=−∞

+
∞∑

m=M+1

)|cn,m|2 (20)

cn,m = < f, ψn,m >

=

∫ n

2k

n−1

2k

f(t) 2
k
2 {cos(2mπ(2kt− n+ 1)) + sin(2mπ(2kt− n+ 1))} dt

=
1

2
k
2

∫ 1

0

f(
x+ n− 1

2k
) (cos(2mπx) + sin(2mπx)) dx, 2kt− n+ 1 = x

=
1

(2mπ) 2
3k
2

∫ 1

0

f
′
(
x+ n− 1

2k
)(cos(2mπx)− sin(2mπx))dx, integrating by part

=
1

(2mπ) 2
3k
2

[

∫ 1

0

{f ′(x+ n− 1

2k
)− f ′(n− 1

2k
)}(cos(2mπx)− sin(2mπx))dx

−f ′(n− 1

2k
)

∫ 1

0

(cos(2mπx)− sin(2mπx))dx]

=
1

(2mπ) 2
3k
2

∫ 1

0

{f ′(x+ n− 1

2k
)− f ′(n− 1

2k
)}(cos(2mπx)− sin(2mπx))dx

|cn,m| 6
1

(2mπ) 2
3k
2

∫ 1

0

|f ′(x+ n− 1

2k
)− f ′(n− 1

2k
)| |cos(2mπx)− sin(2mπx)|dx

6
A

(2mπ) 2
3k
2

∫ 1

0

| x
2k
|α |cos(2mπx)− sin(2mπx)| dx, since f

′ ∈ Hα[0, 1)

Now by Cauchy Schwarz inequality, we have

|cn,m| 6
A

(2mπ) 2
3k
2

{
∫ 1

0

| x
2k
|2α dx}

1
2 {
∫ 1

0

|cos(2mπx)− sin(2mπx)|2dx}
1
2

=
A

(2mπ) 2( 3k
2
+kα)
{
∫ 1

0

|x|2α dx}
1
2

=
A

(2mπ) 2( 3
2
+α)k

1√
2α + 1

|cn,m| 6
A

2mπ
√

2α + 1 2( 3
2
+α)k
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By eqn (20) and (21) , we have

||f − S2k,2M+1(f)||22 ≤
2k∑
n=1

(
−M−1∑
m=−∞

+
∞∑

m=M+1

)
A2

4m2π2(2α + 1) 2(3+2α)k
,

=
A2

4π2(2α + 1)
(
−M−1∑
m=−∞

+
∞∑

m=M+1

)
2k

2(3+2α)k m2

=
A2

4π2(2α + 1)

1

2(2+2α)k
(
−M−1∑
m=−∞

1

m2
+

∞∑
m=M+1

1

m2
)

=
A2

4π2(2α + 1)

1

2(1+α)2k
(

1

M + 1
+

1

M + 1
)

=
A2

2π2(2α + 1)

1

2(1+α)2k

1

M + 1

∴ min
S
2k,2M+1

(f)
||f − S2k,2M+1(f)||2 6

A

π
√

2(2α + 1)

1

2k(α+1)

1√
M + 1

∴ E
(1)

2k,2M+1
(f) = min

S
2k,2M+1

(f)
||f − S2k,2M+1(f)||2 = O(

1√
M + 1 2k(α+1)

)

Thus, theorem (5.1) is completely established.

Proof of theorem (5.2) Following the steps of the proof of theorem ( 5.1)

cn,m =
1

(2mπ) 2
3k
2

∫ 1

0

f
′
(
x+ n− 1

2k
)(cos(2mπx)− sin(2mπx))dx

=
−1

(4m2π2) 2
5k
2

∫ 1

0

f
′′
(
x+ n− 1

2k
)(cos(2mπx) + sin(2mπx))dx,

=
−1

(4m2π2) 2
5k
2

[

∫ 1

0

{f ′′(x+ n− 1

2k
)− f ′′(n− 1

2k
)}(cos(2mπx) + sin(2mπx))dx

−f ′′(n− 1

2k
)

∫ 1

0

(cos(2mπx)− sin(2mπx))dx]

|cn,m| 6
1

(4m2π2) 2
5k
2

∫ 1

0

|f ′′(x+ n− 1

2k
)− f ′′(n− 1

2k
)| |cos(2mπx) + sin(2mπx)|dx

6
B

(4m2π2) 2
5k
2

∫ 1

0

| x
2k
|α |cos(2mπx) + sin(2mπx)|dx, sincef

′′ ∈ Hα[0, 1)

Now by Cauchy Schwarz inequality, we have

|cn,m| 6
B

(4m2π2) 2( 5k
2
+kα)
{
∫ 1

0

| x
2k
|2αdx}

1
2{
∫ 1

0

|cos(2mπx) + sin(2mπx)|2dx}
1
2
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|cn,m| 6
B

(4m2π2) 2( 5
2
+α)k

(
1√

2α + 1
)

|cn,m| 6
B

4m2π2
√

2α + 1 2( 5
2
+α)k

(21)

From eqn (20) and (21), we have

||f − S2k,2M+1(f)||22 =
2k∑
n=1

(
−M−1∑
m=−∞

+
∞∑

m=M+1

)|cn,m|2

6
2k∑
n=1

(
−M−1∑
m=−∞

+
∞∑

m=M+1

)
B2

16m4π4 (2α + 1) 2(5+2α)k
,

=
B2

16π4 (2α + 1) 2(5+2α)k
(
−M−1∑
m=−∞

+
∞∑

m=M+1

)
2k

m4

=
B2

16π4 (2α + 1) 2(4+2α)k
(
−M−1∑
m=−∞

1

m4
+

∞∑
m=M+1

1

m4
)

=
B2

16π4 (2α + 1) 2(4+2α)k
(

1

3(M + 1)3
+

1

3(M + 1)3
)

=
B2

24π4 (2α + 1) 22k(α+2)

1

(M + 1)3

∴ min
S
2k,M

(f)
||f − S2k,2M+1(f)||2 6

B

2
√

6π2
√

(2α + 1) 2k(α+2)

1

(M + 1)
3
2

∴ E
(2)

2k,2M+1
(f) = min

S
2k,2M+1

(f)
||f − S2k,2M+1(f)||2 = O(

1

(M + 1)
3
2 2k(α+2)

)

Hence, theorem (5.2) has been proved.

6 Solution of the Fredholm integral equation of sec-
ond kind

Consider the Fredholm integral equation of second kind given by eqn (1).
Using CAS wavelet approximations,

u(x) = UTΨ(x) = ΨT (x)U , (22)
f(x) = F TΨ(x) = ΨT (x)F ,

and K(x, y) = ΨT (x)KΨ(y) ,
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where K is a square matrix of order 2k(2M + 1), which is calculated as follows∫ 1

0

∫ 1

0

ψn,m(x)ψn′ ,m′ (y)K(x, y)dxdy , (23)

where 1 6 n, n
′
6 2k and−M 6 m,m

′
6M , equation (1) becomes

Ψt(x)U = Ψt(x)F + Ψt(x)K
∫ 1

0

Ψ(y)Ψt(y)Udy (24)

By orthonormality of CAS wavelets, equation (24) reduces to

U = (I −K)−1F (25)

where I is identity matrix of order 2k(2M + 1) . Subtituting the value of U from
eqn (25) in eqn (22) , the solution u(x) of Fredholm integral equation of second
kind (1) can be obtained.

6.1 Solution of integral eqn (1) by Haar wavelet method
Let Haar wavelet solution of intgral eqn (1) be of the form

u(x) =
2M∑
i=1

aihi(x) (26)

Subtituting the eqn (26) in eqn (1) , we have

2M∑
i=1

ai(hi(x)− gi(x)) = f(x) (27)

where

gi(x) =

∫ 1

0

k(x, y)hi(y)dy (28)

Taking the collocation points xk =
k− 1

2

2M
, k = 1, 2, ..., 2M , in eqns (27) and (26),

we obtain

2M∑
i=1

ai(hi(xk)− gi(xk)) = f(xk) (29)
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and u(xk) =
2M∑
i=1

aihi(xk) (30)

The wavelet coefficients ai, i = 1, 2, ..., 2M are obtained by solving 2M
system of equations in (29). Subtituting these coefficients in the eqn( 30) we
can obtain the Haar wavelet solution of the integral eqn (1).

7 Illustrated Numerical Examples
Two Fredholm integral equations have been solved by proposed method ie.

CAS wavelet method discussed in this paper. Exact solutions of
considered integral eqn are compared with their approximate solutions obtained
by CAS wavelet, Legendre wavelet and Haar wavelet method. The graphs of
these solutions are plotted. It is observed that exact solution and approximate
solutions of Fredholm integral equations obtained by CAS wavelet method are
almost equal. The solutions of Fredholm integral equation derived by the help of
CAS wavelet method are more closed than the solutions of this integral equation
obtained by Legendre wavelet and Haar wavelet method. This comparison shows
the advantages of proposed method of this paper. This is illustrated in following
two examples.

Example 1
Subtituting f(x) = sin(8πx) and K(x, y) = y2 , in the Fredholm integral

equation (1), it reduces to

u(x) = sin(8πx) +

∫ 1

0

y2u(y)dy (31)

The exact solution of integral eqn (31) is given by

u(x) = sin(8πx)− 3

16π
(32)

CAS wavelet solution
For CAS wavelet solution, take k = 2,M = 1 in the eqn (14) . In this case,

Ψ(x) = [ψ1,−1(x), ψ1,0(x), ψ1,1(x), ψ2,−1(x), ψ2,0(x), ψ2,1(x),

ψ3,−1(x), ψ3,0(x), ψ3,1(x), ψ4,−1(x), ψ4,0(x), ψ4,1(x)]T (33)
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where

ψ1,−1(x) = 2(cos(8πx)− sin(8πx))

ψ1,0(x) = 2

ψ1,1(x) = 2(cos(8πx) + sin(8πx))

 0 6 x <
1

4
,

ψ2,−1(x) = 2(cos(8πx)− sin(8πx))

ψ2,0(x) = 2

ψ2,1(x) = 2(cos(8πx) + sin(8πx))

 1

4
6 x <

1

2
,

ψ3,−1(x) = 2(cos(8πx)− sin(8πx))

ψ3,0(x) = 2

ψ3,1(x) = 2(cos(8πx) + sin(8πx))

 1

2
6 x <

3

4
,

and

ψ4,−1(x) = 2(cos(8πx)− sin(8πx))

ψ4,0(x) = 2

ψ4,1(x) = 2(cos(8πx) + sin(8πx))

 3

4
6 x < 1 .

F = [
−1

4
, 0,

1

4
,
−1

4
, 0,

1

4
,
−1

4
, 0,

1

4
,
−1

4
, 0,

1

4
]T ,

The matrix K is calculated as follows:
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Ki,j =

∫ 1

0

∫ 1

0

ψi(x)K(x, y)ψj(y)dydx

=

∫ 1

0

ψi(x) (

∫ 1

0

y2ψj(y)dy) dx

= (

∫ 1

0

ψi(x)dx) (

∫ 1

0

y2ψj(y)dy)

K =



π+1
64π2

1
96

− π+1
64π2

3π+1
64π2

7
96

−3π+1
64π2

5π+1
64π2

19
96

−5π+1
64π2

7π+1
64π2

37
96

−7π+1
96π2



[
0 1

2
0 0 1

2
0 0 1

2
0 0 1

2
0
]
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K =



0 π+1
128π2 0 0 π+1

128π2 0 0 π+1
128π2 0 0 π+1

128π2 0

0 1
192

0 0 1
192

0 0 1
192

0 0 1
192

0

0 −π+1
128π2 0 0 −π+1

128π2 0 0 −π+1
128π2 0 0 −π+1

128π2 0

0 3π+1
128π2 0 0 3π+1

128π2 0 0 3π+1
128π2 0 0 3π+1

128π2 0

0 7
192

0 0 7
192

0 0 7
192

0 0 7
192

0

0 −3π+1
128π2 0 0 −3π+1

128π2 0 0 −3π+1
128π2 0 0 −3π+1

128π2 0

0 5π+1
128π2 0 0 5π+1

128π2 0 0 5π+1
128π2 0 0 5π+1

128π2 0

0 19
192

0 0 19
192

0 0 19
192

0 0
19

192
0

0 −5π+1
128π2 0 0 −5π+1

128π2 0 0 −5π+1
128π2 0 0 −5π+1

128π2 0

0 7π+1
128π2 0 0 7π+1

128π2 0 0 7π+1
128π2 0 0 7π+1

128π2 0

0 37
192

0 0 37
192

0 0 37
192

0 0 37
192

0

0 −7π+1
128π2 0 0 −7π+1

128π2 0 0 −7π+1
128π2 0 0 −7π+1

128π2 0



∴ U = (I −K)−1F

= [
−1

4
, 0,

1

4
,
−1

4
, 0,

1

4
,
−1

4
, 0,

1

4
,
−1

4
, 0,

1

4
]T (34)

Putting the values of Ψ(x) and U from eqns (33) and (34) in eqn (22), we have

u(x) = sin(8πx) (35)

which is the CAS wavelet solution of the integral equation (31) .
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Legendre wavelet solution

Legendre wavelets ψ(L)
n,m(t) = ψ(L)(k, n,m, t) having four arguments; k =

2, 3, ...,
2n − 1 , n = 1, 2, 3, ..., 2k−1, m is the order of the Legendre polynomial and t
is the normalised time, are defined by :

ψ(L)
n,m(t) =

{
(m+ 1

2
)
1
2 2

k
2Pm(2kt− 2n+ 1), if n−1

2k−1 6 t < n
2k−1 ,

0, otherwise.
(36)

where Pm(t) are Legendre ploynomials of order m (Rehman and Khan [7]). The
set {ψ(L)

n,m}n,m∈Z of Legendre wavelets forms an orthonormal set. A function f ∈
L2[0, 1) may be expanded into Legendre wavelet series as:

f(t) =
∞∑
n=1

∞∑
m=0

cn,mψ
(L)
n,m(t), (37)

where cn,m =< f, ψ
(L)
n,m > .The series (37) may be truncated as:

(f)(t) ≈
2k−1∑
n=1

M−1∑
m=0

cn,mψ
(L)
n,m(t) = CTΨ(L)(t) (38)

where C and Ψ(L)(t) are 2k−1M × 1 matrices given by:

C = [c1,0, c1,1, ..., c1,M−1, c2,0, ..., c2,M−1, ...,

c2k−1,0, ..., c2k−1,M−1]
T

and

Ψ(L)(t) = [ψ
(L)
1,0 (t), ψ

(L)
1,1 (t), ..., ψ

(L)
1,M−1(t), ψ

(L)
2,0 (t), ..., ψ

(L)
2,M−1(t), ...,

ψ
(L)

2k−1,0
(t), ..., ψ

(L)

2k−1,M−1(t)]
T

Similarly, a function K ∈ L2[0, 1)× L2[0, 1) may be approximated as:

K(x, y) ≈ (Ψ(L))T (x)K(L)Ψ(L)(y),

where K(L) is 2k−1M × 2k−1M matrix, whose entries are given by

K(L)
i,j =< ψ

(L)
i (x), < K(x, y), ψ

(L)
j (y) >> . (39)

For Legendre wavelet solution, take M = 3, k = 3 in eqn (38), then twelve basis
functions are given by
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Ψ(L)(x) = [ψ
(L)
1,0 (x), ψ

(L)
1,1 (x), ψ

(L)
1,2 (x), ψ

(L)
2,0 (x), ψ

(L)
2,1 (x), ψ

(L)
2,2 (x),

ψ
(L)
3,0 (x), ψ

(L)
3,1 (x), ψ

(L)
3,2 (x), ψ

(L)
4,0 (x), ψ

(L)
4,1 (x), ψ

(L)
4,2 (x)]T (40)

where

ψ
(L)
1,0 (x) = 2

ψ
(L)
1,1 (x) = 2

√
3(8x− 1)

ψ
(L)
1,2 (x) =

√
5(3(8x− 1)2 − 1)

 0 6 x <
1

4
,

ψ
(L)
2,0 (x) = 2

ψ
(L)
2,1 (x) = 2

√
3(8x− 3)

ψ
(L)
2,2 (x) =

√
5(3(8x− 3)2 − 1)


1

4
6 x <

1

2
,

ψ
(L)
3,0 (x) = 2

ψ
(L)
3,1 (x) = 2

√
3(8x− 5)

ψ
(L)
3,2 (x) =

√
5(3(8x− 5)2 − 1)


1

2
6 x <

3

4
,

and

ψ
(L)
4,0 (x) = 2

ψ
(L)
4,1 (x) = 2

√
3(8x− 7)

ψ
(L)
4,2 (x) =

√
5(3(8x− 7)2 − 1)


3

4
6 x < 1 .
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K(L) =



1
192

0 0 1
192

0 0 1
192

0 0 1
192

0 0

√
3

384
0 0

√
3

384
0 0

√
3

384
0 0

√
3

384
0 0

√
5

1920
0 0

√
5

1920
0 0

√
5

1920
0 0

√
5

1920
0 0

7
192

0 0 7
192

0 0 7
192

0 0 7
192

0 0

√
3

128
0 0

√
3

128
0 0

√
3

128
0 0

√
3

128
0 0

√
5

1920
0 0

√
5

1920
0 0

√
5

1920
0 0

√
5

1920
0 0

19
192

0 0 19
192

0 0 19
192

0 0 19
192

0 0

5
√
3

384
0 0 5

√
3

384
0 0 5

√
3

384
0 0 5

√
3

384
0 0

√
5

1920
0 0

√
5

1920
0 0

√
5

1920
0 0

√
5

1920
0 0

37
92

0 0 37
92

0 0 37
92

0 0 37
92

0 0

7
√
3

384
0 0 7

√
3

384
0 0 7

√
3

384
0 0 7

√
3

384
0 0

√
5

1920
0 0

√
5

1920
0 0

√
5

1920
0 0

√
5

1920
0 0



F (L) = [0,
−
√

3

2π
, 0, 0,

−
√

3

2π
, 0, 0,

−
√

3

2π
, 0, 0,

−
√

3

2π
, 0]T ,

U (L) = (I −K(L))−1F (L)

= [0,
−
√

3

2π
, 0, 0,

−
√

3

2π
, 0, 0,

−
√

3

2π
, 0, 0,

−
√

3

2π
, 0]T . (41)

Putting the values of Ψ(L)(x) and U (L) from eqns (40) and (41) in eqn (22), we get
the Legendre wavelet solution of the integral equation (31) as:

u(x) = −
√

3

2π
ψ

(L)
1,1 (x)−

√
3

2π
ψ

(L)
2,1 (x)−

√
3

2π
ψ

(L)
3,1 (x)−

√
3

2π
ψ

(L)
4,1 (x) (42)
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Haar wavelet solution
The Haar wavelet family for x ∈ [0, 1] is defined as follows:

hi(x) =


1 if x ∈ [ k

m
,
k+ 1

2

m
),

−1 ifx ∈ [
k+ 1

2

m
, k+1
m

),

0, otherwise

(43)

where m = 2b, b = 0, 1, ..., J is the level of wavelet; k = 0, 1, ...,m − 1 is
the translation parameter. J is the maximum level of resulution. i is calculated by
i = m + k + 1. The minimum value of i for m = 1, k = 0 is 2. The maximum
value of i is i = 2M = 2J+1 (Arbabi and Darvishi [6]).

For i = 1, h1(x) is taken to be scaling function which is defined as follows:

h1(x) =

{
1 if x ∈ [0, 1),

0, otherwise

Any function f(x) can be expressed in terms of Haar wavelets as follows:

f(x) =
2M∑
i=1

aihi(x), (44)

where the wavelet coefficients ai, i = 1, 2, ..., 2M are to be determined. For Haar
wavelet solution take J = 3 in eqn (43), b = 0, 1, 2, 3 , then m = 2b = 1, 2, 4, 8.
By eqns (28) the Haar wavelet coefficients ai, i = 1, 2, ..., 16 are given by

[−0.008071, 0.001459, 0.002497, 0.001447, 0.000485, 0.006380,

0.000488,−0.000476, 1.000010, 1, 1, 0.988178, 1, 1, 0.999039, 1] (45)

Putting these values of ai in the eqn (26), we get the solution of integral equation
(31) by Haar wavelet method. The Haar wavelet solutions of integral eqn 31 are
shown in the Table (1).

The exact solution and approximate solutions of Fredholm integral equation
(31) obtained by CAS wavelet, Legendre wavelet and Haar wavelet method for
different values of x are given in the Table (1).
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Table (1)
x Exact soln CAS wavelet soln Legendre wavelet soln Haar wavelet soln

by eqn 32 by eqn (35) by eqn (42) by eqn (26)
0 -0.059680 0 0.954930 0.996370

0.1 0.528105 0.587785 0.190986 -1.003630
0.2 -1.010736 -0.951056 -0.572958 0.995399
0.3 0.891376 0.951056 0.572958 0.995399
0.4 -0.647465 -0.587785 -0.190986 0.972689
0.5 -0.059680 0 -0.954930 0.992404
0.6 0.528105 0.587785 0.190986 -1.008083
0.7 -1.010736 -0.951056 -0.572958 -1.007595
0.8 0.891376 0.951056 0.572958 0.987585
0.9 -0.647465 -0.587785 -0.190986 0.989498

The graphs of the exact solution and approximate solutions of integral equation
(31) obtained by CAS wavelet, Legendre wavelet and Haar wavelet method are
shown in the Fig.(1).

Fig.(1)

By numerical comparison in Table(1) and graphs shown in Fig.(1), it is clear
that the solution of Fredholm integral equation (31) by CAS wavelet method is
better than solutions obtained by Legendre wavelet and Haar wavelet methods.
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Example 2
Consider the Fredholm integral equation:

u(x) = sin(4πx) +

∫ 1

0

xyu(y)dy . (46)

It is obtained by subtituting f(x) = sin(4πx) and K(x, y) = xy , in the Fredholm
integral equation (1). The exact solution of Fredholm integral equation (46) is
given by

u(x) = sin(4πx)− 3x

8π
(47)

CAS wavelet solution
For CAS wavelet solution, take k = 1,M = 1 in eqn (14), then following the

procedure of example (31), we have

F ∗ = [
−1

2
√

2
, 0,

1

2
√

2
,
−1

2
√

2
, 0,

1

2
√

2
]T ,

The matrix K∗ is calculated as follows:

K∗i,j =

∫ 1

0

∫ 1

0

ψi(x)K(x, y)ψj(y)dydx

=

∫ 1

0

ψi(x) (

∫ 1

0

xyψj(y)dy) dx

= (

∫ 1

0

xψi(x)dx) (

∫ 1

0

yψj(y)dy)

K =



√
2

8π

√
2
8

−
√
2

8π

√
2

8π

√
2
8

−
√
2

8π



[ √
2

8π

√
2
8
−
√
2

8π

√
2

8π

√
2
8
−
√
2

8π

]
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K∗ =



1
32π2

1
32π

−1
32π2

1
32π2

1
32π

−1
32π2

1
32π

1
32

−1
32π

1
32π

1
32

−1
32π

−1
32π2

−1
32π

1
32π2

−1
32π2

−1
32π

1
32π2

1
32π2

1
32π

−1
32π2

1
32π2

1
32π

−1
32π2

3
32π

3
32

−3
32π

3
32π

3
32

−3
32π

−1
32π2

−1
32π

1
32π2

−1
32π2

−1
32π

1
32π2


and

U∗ = [
−1

2
√

2
, 0,

1

2
√

2
,
−1

2
√

2
, 0,

1

2
√

2
]T .

u(x) = 1.0188 sin(4πx)− 0.0294 (48)

This is the approximate solution of the integral equation (46) by CAS wavelet
method.

Legendre wavelet solution

For Legendre wavelet solution, take M = 3, k = 2 in eqn (38), then we have

Ψ(L)(x) = [ψ
(L)
1,0 (x), ψ

(L)
1,1 (x), ψ

(L)
1,2 (x), ψ

(L)
2,0 (x), ψ

(L)
2,1 (x), ψ

(L)
2,2 (x)]. (49)

Following the procedure of the example (1), we have

(F ∗)(L) = [0,
−
√

6

2π
, 0, 0,

−
√

6

2π
, 0]T ,

(U∗)(L) = [−0.0211,−0.4020, 0,−0.0633,−0.4020, 0]T (50)

Putting the values of Ψ(L)(x) and (U∗)(L) from eqns (49) and (50) in eqn (22), we
get the solution of the integral equation (46) by Legendre wavelet method as

u(x) = −0.0211ψ
(L)
1,0 (x)−0.4020ψ

(L)
1,1 (x)−0.0633ψ

(L)
2,0 (x)−0.4020ψ

(L)
2,1 (x) (51)
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(K∗)(L) =



1
32

√
3

96
0 3

32

√
3

96
0

√
3

96
1
96

0
√
3

32
1
96

0

0 0 0 0 0 0

3
32

√
3

32
0 9

32

√
3

32
0

√
3

96
1
96

0
√
3

32
1
96

0

0 0 0 0 0 0



Haar wavelet solution

For Haar wavelet solution, take J = 2 in eqn (43),b = 0, 1, 2 then m = 2b =
1, 2, 4. The Haar wavelet coefficients ai, i = 1, 2, ..., 8 are given by

[0.061361, 0.027885, 0.616015, 0.670955, 0.000922, 1.465270, 0.000264, 0.004906]

Putting these values of ai in the eqn (26), we get the solution of integral equation
(46) by Haar wavelet method. The Haar wavelet solutions of integral eqn 46 are
given in the Table (2).

The exact solution and approximate solutions of Fredholm integral equation
(46) obtained by CAS wavelet, Legendre wavelet and Haar wavelet method for
different values of x are given in the Table (2).

Table (2)
x Exact soln CAS wavelet soln Legendre wavelet soln Haar wavelet soln

by eqn (47) by eqn (48) by eqn (51) by eqn (26)
0 0 -0.0294 0.9549 0.6955

0.1 0.9391 0.9395 0.5610 0.6955
0.2 0.5639 0.5694 0.1671 0.6722
0.3 -0.6236 -0.6282 -0.2268 -0.7701
0.4 -0.9988 -0.9983 -0.6207 -1.7239
0.5 -0.0597 -0.0294 0.8952 0.6194
0.6 0.8794 0.9395 0.5013 0.6194
0.7 0.5042 0.5694 0.1074 -0.3672
0.8 -0.6833 -0.6282 -0.2865 -0.8337
0.9 -1.0585 -0.9983 -0.6803 -0.8532
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The graphs of the exact solution and approximate solutions of integral equation
(46) obtained by CAS wavelet, Legendre wavelet and Haar wavelet method are
shown in the Fig.(2).

Fig.(2)

By numerical comparison in Table(2) and graphs shown in Fig.(2), it is observed
that the solution of Fredholm integral equation (46) by CAS wavelet method is
more accurate than solutions obtained by Legendre wavelet and Haar wavelet
methods.
Note: The solutions of Fredholm integral equations in examples (1) and (2) by
CAS wavelet method propoesd in this research paper and their numerical
comparison with Legendre wavelet and Haar wavelet methods show the
advantages of CAS wavelet method than Legendre wavelet and Haar wavelet
methods.

8 Remarks

1. CAS wavelet approximation of Theorem (5.1) is given by
E

(1)

2k,2M+1
(f) = O( 1√

M+1 2k(α+1) ) . E(1)

2k,2M+1
(f)→ 0 as M →∞, k →∞ .

CAS wavelet approximation of Theorem (5.2) is given by
E

(2)

2k,2M+1
(f) = O( 1

(M+1)
3
2 2k(α+2)

) . E(2)

2k,2M+1
(f)→ 0 as M →∞, k →∞ .

Therefore, estimatorsE(1)

2k,2M+1
(f) andE(2)

2k,2M+1
(f) are best possible in wavelet
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analysis (Zygmund [5]).

2. ∵ (M + 1)
3
2 2k(α+2) > (M + 1)

1
2 2k(α+1), M > 1, k > 1

∴
1

(M + 1)
3
2 2k(α+2)

6
1

(M + 1)
1
2 2k(α+1)

ie. E
(2)

2k,2M+1
(f) 6 E

(1)

2k,2M+1
(f).

Hence, estimator E(2)

2k,2M+1
(f) is sharper than estimator E(1)

2k,2M+1
(f) . This shows

that the estimator of a function f having f ′′ ∈ Hα[0, 1) is sharper than the estima-
tor of f having f ′ ∈ Hα[0, 1).

3. CAS wavelet method is more effective than Legendre wavelet and Haar wavelet
method in finding the solution of Fredholm integral equations (31) and (46).

4. Fredholm integral equation of first kind,∫ 1

0

K(x, t)y(t)dt = f(x)

can be solved by CAS wavelet method as follows:∫ 1

0

Ψ(x)KΨT (t)Ψ(t)Y = Ψ(x)F

Using orthonormality of CAS wavelet, we get KY = F . By finding the matrix K
and F as in the case of Fredholm integral of second kind, we can find Y and hence
the solution y(x).
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1 Introduction, Definitions and Results
Let f be a non-constant meromorphic function defined in the open complex

plane C and a = a(z) be a polynomial. We denote by E(a; f) the set of zeros of
f −a, counted with multiplicities and by E(a; f) the set of distinct zeros of f −a.

If for two non-constant meromorphic functions f and g, we have E(a; f) =
E(a; g), we say that f and g share a CM and if E(a; f) = E(a; g), we say that f
and g share a IM.

We denote by S(r, f) any function satisfying S(r, f) = o{T (r, f)}, as r →
∞, possibly outside of a set with finite measure.

For an entire function f , we define deg(f) in the following way:
deg(f) =∞, if f is a transcendental entire function and deg(f) is the degree

of the polynomial, if f is a polynomial.
The investigation of uniqueness of an entire function sharing two values intro-

duced by L. A. Rubel and C. C. Yang [Rubel and Yang, 1977] in 1977. Following
is their result.

Theorem A. [Rubel and Yang, 1977] Let f be a non-constant entire function. If
E(a; f) = E(a; f (1)) and E(b; f) = E(b; f (1)), for distinct finite complex num-
bers a and b, then f ≡ f (1).

In 1979 E. Mues and N. Steinmetz [Mues and Steinmetz, 1979] tried to im-
prove TheoremA by considering IM sharing of values. They proved the following
theorem.

Theorem B. [Mues and Steinmetz, 1979]. Let f be a non-constant entire func-
tion and a, b be two distinct finite complex values. If E(a; f) = E(a; f (1)) and
E(b; f) = E(b; f (1)), then f ≡ f (1).

In 1986 G. Jank, E. Mues and L. Volkmann [Jank et al., 1986] considered an
entire function sharing a nonzero value with its derivatives and they proved the
following result.

Theorem C. [Jank et al., 1986] Let f be a non-constant entire function and a be
a non-zero finite value. If E(a; f) = E(a; f (1)) ⊂ E(a; f (2)), then f ≡ f (1).

H. Zhong [Zhong, 1995] tried to improve Theorem C by taking higher order
derivatives. By the following example he concluded that in Theorem C the second
derivative cannot be straight way replaced by any higher order derivatives.

Example 1.1. [Zhong, 1995] Let k(≥ 3) be a positive integer and ω( 6= 1) be a
(k − 1)th root of unity. If f = eωz + ω − 1, then f , f (1), and f (k) share the value
ω CM, but f 6≡ f (1).
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Considering two consecutive higher order derivatives H. Zhong [Zhong, 1995]
improved Theorem C in another direction. The following is the improved result.

Theorem D. [Zhong, 1995] Let f be a non-constant entire function and a be
a non-zero finite value. If E(a; f) = E(a; f (1)) and E(a; f) ⊂ E(a; f (n)) ∩
E(a; f (n+1)) for n(≥ 1), then f ≡ f (n).

For further discussion we need the following notation. Let f be a non-constant
meromorphic function, a = a(z) be a polynomial and A be a set of complex num-
bers. We denote by nA(t, a; f), the number of zeros of f−a, counted according to
their multiplicities which lie in A∩{z : |z|≤r}. The integrated counting function
NA(r, a; f) of the zeros of f − a which lie in A ∩ {z : |z|≤r} is defined as

NA(r, a; f) =

∫ r

0

nA(t, a; f)− nA(0, a; f)

t
dt+ nA(0, a; f) log r,

where nA(0, a; f) denotes the multiplicity of zeros of f−a at origin. NA(r, a; f)
be the reduced counting function of zeros of f − a in A ∩ {z : |z|≤r}. Clearly if
A = C then NA(r, a; f) = N(r, a; f) and NA(r, a; f) = N(r, a; f).

For standard definitions and notations of the value distribution theory we refer
the reader to [Hayman, 1964] and [Yang and Yi, 2003].

Recently I. Lahiri and I. Kaish [Lahiri and Kaish, 2017] improved Theorem D
by considering a shared polynomial. They proved the following result.

Theorem E. [Lahiri and Kaish, 2017] Let f be a non-constant entire function
and a = a(z)(6≡ 0) be a polynomial with deg(a) 6= deg(f). Suppose that A =
E(a; f)∆E(a; f (1)) and B = E(a, f (1))\{E(a, f (n)) ∩ E(a, f (n+1))}, where 4
denotes the symmetric difference of sets and n(≥ 1) is an integer. If

(i) NA(r, a; f) +NA(r, a; f (1)) = O{logT (r, f)},

(ii) NB(r, a; f (1)) = S(r, f) and

(iii) each common zero of f − a and f (1) − a has the same multiplicity,

then f = λez, where λ( 6= 0) is a constant.

Throughout the paper we denote by L = L(f) a nonconstant linear differential
polynomial generated by f of the form

L = L(f) = a1f
(1) + a2f

(2) + .........+ anf
(n), (1)

where a1, a2, ......., an(6= 0) are constants.
Considering Linear differential polynomial P.Li [Li, 1999] improved Theorem

D in the following way.
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Theorem F. [Li, 1999]. Let f be a non-constant entire function and L be defined
in (1) and a be a non-zero finite complex number. If E(a; f) = E(a; f (1)) ⊂
E(a;L) ∩ E(a;L(1)) then f = f (1) = L.

In this paper we extend Theorem D and Theorem F in the following way

Theorem 1.1. Let f be a non-constant entire function, L be defined in (1) and
a = a(z)(6≡ 0) be a polynomial with deg(a) 6= deg(f). Suppose that A =
E(a; f)∆E(a; f (1)) and B = E(a, f (1))\{E(a, L(p))∩E(a, L(q))} where p, q are
integers satisfying q > p ≥ deg(a).

If

(i) NA(r, a; f) +NA(r, a; f (1)) = O{log T (r, f)},

(ii) NB(r, a; f (1)) = S(r, f) and

(iii) each common zero of f − a and f (1) − a has the same multiplicity,

then f = L = λez, where λ( 6= 0) is a constant.

Putting A = B = ∅ we get the following corollary.

Corolary 1.1. Let f be a non-constant entire function, L be defined in (1) and
a = a(z)(6≡ 0) be a polynomial with deg(a) 6= deg(f). If E(a; f) = E(a; f (1))
and E(a, f (1)) ⊂ E(a, L(p)) ∩ E(a, L(q)) where p, q are integers satisfying q >
p ≥ deg(a), then f = L = λez, where λ( 6= 0) is a constant.

Remark 1.1. If in Corollary 1.1, a is a non-zero constant and p = deg(a) =
0, q = p+ 1 then it is a particular form of Theorem F.

Remark 1.2. If in (1), a1 = a2 = .......an−1 = 0 and an = 1 then L = f (n)

and if in Corollary 1.1, a is a non-zero constant and p = deg(a), q = p + 1, then
Corollary 1.1 is the Theorem D.

Remark 1.3. It is an open problem whether the Theorem 1.1 is valid or not if we
omit the condition p ≥ deg(a).

2 Lemmas
In this section we present some necessary lemmas.

Lemma 2.1. [Lahiri and Kaish, 2017]. Let f be a transcendental entire function
of finite order and a = a(z)(6≡ 0) be a polynomial and A = E(a; f)∆E(a; f (1)).

If
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(i) NA(r, a; f) +NA(r, a; f (1)) = O{log T (r, f)},

(ii) each common zero of f − a and f (1) − a has the same multiplicity,

then m(r, a; f) = S(r, f).

Lemma 2.2. [Lain, 1993]. Suppose f be an entire function, a0, a1, .....an are
polynomials and a0, an are not identically zero. Then each solution of the linear
differential equation anf (n) + an−1f

(n−1) + ......+ a0f = 0 is of finite order.

Lemma 2.3. [Hayman, 1964]. Let f be a non-constant meromorphic function and
a1, a2, a3 be three distinct meromorphic functions satisfying T (r, aν) = S(r, f)
for ν = 1, 2, 3 then

T (r, f) ≤ N(r, 0; f − a1) +N(r, 0; f − a2) +N(r, 0; f − a3) + S(r, f).

Lemma 2.4. Let f be a transcendental entire function and a = a(z)(6≡ 0) be a
polynomial. Also let L(f), L(a) be the linear differential polynomials generated
by f and a respectively. Suppose

h =
(a− a(1))(L(p)(f)− L(p)(a))− (a− L(p)(a))(f (1) − a(1))

f − a
,

A = E(a; f)\E(a; f (1)) and B = E(a, f (1))\{E(a, L(p)) ∩ E(a, L(q))}, where
p, q are integers satisfying 0 ≤ p < q.

If

(i) NA(r, a; f) +NB(r, a; f (1)) = S(r, f),

(ii) each common zero of f − a and f (1) − a has the same multiplicity,

(iii) h is a transcendental entire or meromorphic,

then m(r, a, f (1)) = S(r, f).

Proof. Since a−a(1) = (f (1)−a(1))− (f (1)−a), if z0 be a common zero of f −a
and f (1)−a with multiplicity r(≥ 2), then z0 is a zero of a−a(1) with multiplicity
r − 1. So

N(2(r, a; f) ≤ 2N(r, 0; a− a(1)) +NA(r, a; f) = S(r, f), (2)

where N(2(r, a; f) be the counting function of multiple zeros of f − a.
Using (2) and from the hypothesis we get

N(r, h) ≤ NA(r, a; f) +NB(r, a; f (1)) +N(2(r, a; f) + S(r, f)

= S(r, f)
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Since m(r, h) = S(r, f), we have T (r, h) = S(r, f)

From h =
(a− a(1))(L(p)(f)− L(p)(a))− (a− L(p)(a))(f (1) − a(1))

f − a
, we get

f = a+
1

h
{(a− a(1))(L(p)(f)− L(p)(a))− (a− L(p)(a))(f (1) − a(1))}

= a+
1

h
{(a− a(1))(L(p)(f)− a)− (a− L(p)(a))(f (1) − a)}. (3)

Case 1. Let p > 0 . Differentiating (3) we get

f (1) = a(1) + (
1

h
)(1){(a− a(1))(L(p)(f)− a)− (a− L(p)(a))(f (1) − a)}+

1

h
{(a(1) − a(2))(L(p)(f)− a) + (a− a(1))(L(p+1) − a(1))} −

1

h
{(a(1) − L(p+1)(a))(f (1) − a) + (a− L(p)(a))(f (2) − a(1))}.

This implies
(f (1) − a){1 + ( 1

h
)(1)(a− L(p)(a)) + 1

h
(a(1) − L(p+1)(a))}

= a(1)− a+ ( 1
h
)(1)(a− a(1))(L(p)(f)− a) + 1

h
(a(1)− a(2))(L(p)(f)− a) + 1

h
(a−

a(1))(L(p+1)(f)− a(1))− 1
h
(a− L(p)(a))(f (2) − a(1))

= a(1) − a + (a−a
(1)

h
)(1)(L(p)(f) − L(p−1)(a)) + (a−a

(1)

h
)(1)(L(p−1)(a) − a) +

a−a(1)
h

(L(p+1)(f)−L(p)(a)) + a−a(1)
h

(L(p)(a)−a(1))− 1
h
(a−L(p)(a))(f (2)−a(1)),

or,
(f (1) − a){1 + (a−L

(p)(a)
h

))(1)} = (a(1) − a) + {(a−a(1)
h

)(L(p−1)(a)− a)}(1) +

(a−a
(1)

h
)(1)(L(p)(f)−L(p−1)(a))+a−a(1)

h
(L(p+1)(f)−L(p)(a))− 1

h
(a−L(p)(a))(f (2)−

a(1)),
or

1

f (1) − a
=

h1
h2
− 1

h2
(
a− a(1)

h
)(1)(

L(p)(f)− L(p−1)(a)

f (1) − a
)

+(
a− a(1)

hh2
)(
L(p+1)(f)− L(p)(a)

f (1) − a
)

− 1

hh2
(a− L(p)(a))(

f (2) − a(1)

f (1) − a
), (4)

where h1 = 1 + (a−L
(p)(a)
h

)(1),
h2 = a(1) − a+ {(a−a(1)

h
)(L(p−1)(a)− a)}(1).

We now verify that h1 6≡ 0, h2 6≡ 0.
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If h1 ≡ 0, then 1 + (a−L
(p)(a)
h

)(1) ≡ 0. Integrating we get 1
h

= c1−z
a−L(p)(a)

, where
c1 is a constant. This is a contradiction, because h is transcendental.

If h2 ≡ 0, then a(1) − a + {(a−a(1)
h

)(L(p−1)(a)− a)}(1) ≡ 0. Integrating

we get h = (a−a(1))(L(p−1)(a)−a)
P (z)

, where P (z) is a polynomial. This is again a
contradiction. Therefore h1 6≡ 0, h2 6≡ 0. Again T (r, h1) + T (r, h1) = S(r, f),
since T (r, h) = S(r, f).

Now from (4) and using Lemma of logarithmic derivative we getm(r, a; f (1)) =
m(r, 1

f (1)−a) = S(r, f).
Case 2. Let p = 0. Then L(p)(f) = L(f).
Suppose L(f) = a1f

(1) + a2f
(2) + .........+ anf

(n)

and L(a) = a1a
(1) + a2a

(2) + ......... + ana
(n), where a1, a2, ......., an( 6= 0) are

constant, n(≥ 1) be an integer.
From the definition of h we get
f = a+ 1

h
{(a− a(1))(L(f)− a)− (a− L(a))(f (1) − a)}

Differentiating we get

f (1) = a(1) + (
1

h
)(1){(a− a(1))(L(f)− a)− (a− L(a))(f (1) − a)}

+
1

h
{(a(1) − a(2))(L(f)− a) + (a− a(1))(L(1)(f)− a(1))}

−1

h
{(a(1) − L(1)(a))(f (1) − a)− (a− L(a))(f (2) − a(1))}.

This implies
(f (1)−a){1 + (a−L(a)

h
)(1)} = (a(1)−a)+(a−a

(1)

h
)(1)(L(f)−a)+a−a(1)

h
(L(1)(f)−

a(1))−a−L(a)
h

(f (2)−a(1)) = (a(1)−a)+(a−a
(1)

h
)(1)(L(f)−L1(a))+(a−a

(1)

h
)(1)(L1(a)−

a)+(a−a
(1)

h
)(L(1)(f)−L(a))+(a−a

(1)

h
)(L(a)−a(1))− a−L(a)

h
(f (2)−a(1)) = (a(1)−

a) + {(a−a(1)
h

)(L1(a)− a)}(1) + (a−a
(1)

h
)(1)(L(f) − L1(a)) + (a−a

(1)

h
)(L(1)(f) −

L(a))− a−L(a)
h

(f (2) − a(1))
Or,

1

f (1) − a
=

h3
h4
− 1

h4
(
a− a(1)

h
)(1)(

L(f)− L1(a)

f (1) − a
)

+(
a− a(1)

hh4
)(
L(1)(f)− L(a)

f (1) − a
)− (

a− L(a)

hh4
)(
f (2) − a(1)

f (1) − a
), (5)

where
L1(a) = a1a+ a2a

(1) + .....+ ana
(n−1),

h3 = 1 + (a−L(a)
h

)(1) and
h4 = a(1) − a+ {(a−a(1)

h
)(L1(a)− a)}(1)

219



I. Kaish and N. Gazi

Similarly as in Case 1, h3 6≡ 0, h4 6≡ 0. Also T (r, h3) + T (r, h4) = S(r, f).
Therefore from (5) and using Lemma of logarithmic derivative we get

m(r, a; f (1)) = m(r, 1
f (1)−a) = S(r, f).

This completes the proof of the lemma.

Lemma 2.5. Let f be a transcendental entire function, a = a(z)(6≡ 0) be a
polynomial and L = L(f) be define in (1). Suppose

(i) NA(r, a; f) +NA(r, a; f (1)) = S(r, f), where A = E(a; f)∆E(a; f (1))

(ii) NB(r, a; f (1))) = S(r, f), where B = E(a, f (1))\{E(a, L(p)) ∩ E(a, L(q))}
p, q are integers satisfying q > p ≥ deg(a),

(iii) each common zero of f − a and f (1) − a has the same multiplicity,

(iv) m(r, a; f) = S(r, f), then f = L = λez, where λ(6= 0) is a constant.

Proof. Let

α =
f (1) − a
f − a

, (6)

From the hypothesis we get,

N(r, α) ≤ NA(r, a; f) + S(r, f) = S(r, f)

and

m(r, α) = m(r,
f (1) − a
f − a

)

= m(r,
f (1) − a(1) + a(1) − a

f − a
)

≤ m(r, a; f) + S(r, f)

= S(r, f).

Therefore T (r, α) = S(r, f).
From (6) we get

f (1) = αf + a(1− α)

= α1f + β1,

where α1 = α and β1 = a(1− α)
Differentiating we get,

f (2) = α2f + β2,
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where α2 = α
(1)
1 + α1α1 and β2 = β

(1)
1 + α1β1.

Similarly,
f (k) = αkf + βk,

where αk+1 = α
(1)
k + α1αk and βk+1 = β

(1)
k + αkβ1.

Clearly T (r, αk) + T (r, βk) = S(r, f), because T (r, α) = S(r, f).
Now

L(p) =
n∑
k=1

akf
(p+k)

= (
n∑
k=1

akαp+k)f + (
n∑
k=1

akβp+k)

= µ1f + ν1, (7)

where µ1 =
n∑
k=1

akαp+k, ν1 =
n∑
k=1

akβp+k

L(q) =
n∑
k=1

akf
(q+k)

= (
n∑
k=1

akαq+k)f + (
n∑
k=1

akβq+k)

= µ2f + ν2, (8)

where µ2 =
n∑
k=1

akαq+k, ν2 =
n∑
k=1

akβq+k.

Clearly T (r, µi) + T (r, νi) = S(r, f), i = 1, 2.
Let D = E(a; f) ∩ E(a; f (1)) ∩ E(a;L(p)) ∩ E(a;L(q)).
Note that D 6= ∅, because otherwise, N(r, a; f) = S(r, f). Then from the

hypothesis T (r, f) = S(r, f), a contradiction.
Let z1 ∈ D then f(z1) = f (1)(z1) = L(p)(z1) = L(q)(z1) = a(z1).
Now from (7) and (8) we get a(z1) = µ1(z1)a(z1) + ν1(z1) and a(z1) =

µ2(z1)a(z1) + ν2(z1)
If µ1a+ ν1 − a 6≡ 0, then

N(r, a; f) ≤ NA(r, a; f) +NB(r, a; f (1)) +ND(r, a; f) + S(r, f)

≤ NA(r, 0;µ1a+ ν1 − a) + S(r, f)

= S(r, f),

a contradiction. Therefore

µ1a+ ν1 − a ≡ 0. (9)
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Similarly

µ2a+ ν2 − a ≡ 0. (10)

From (9) and (10) we get µ1 ≡ µ2 ≡ 1 and ν1 ≡ 0 ≡ ν2.
Then from (7)

L(p) ≡ f. (11)

Also µ1 ≡ 1 implies

n∑
k=1

akαp+k ≡ 1. (12)

From (12) we see that α has no pole. Because if α has a pole of order d(≥ 1)
then the left hand side of (12) has a pole of order (p+ k)d but the right hand side
is a constant.

Again by simple calculation from (12) we get

anα
n+p + P [α] ≡ 0. (13)

where P [α] is a differential polynomial in α with degree not exceeding (n +
p− 1).

If α is transcendental entire, then by Clunie’s Lemma we have m(r, α) =
S(r, α), a contradiction.

If α is a nonconstant polynomial then left hand side of (13) is also a noncon-
stant polynomial, which is again a contradiction.

Therefore α is a constant.
Now from f (1)−a

f−a = α, we get f (1) − αf = a(1− α).
Integrating we get

e−αzf = (1− α)

∫
ae−αzdz

= (1− α)P (z)e−αz + λ,

where λ(6= 0) is a constant and P (z) is a polynomial of degree atmost deg(a),
or, f = (1− α)P (z) + λeαz.
Now f (r+1) = λαr+1eαz, if r = deg(a)
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Therefore

L(p) =
n∑
k=1

akf
(p+k)

= (
n∑
k=1

akα
p+k)λeαz

= λeαz

=
f (1)

α
− 1− α

α
p(1)(z), (14)

Suppose α 6= 1.
Since D = E(a; f) ∩ E(a; f (1)) ∩ E(a;L(p)) ∩ E(a;L(q)) 6= ∅,
we have f(z2) = f (1)(z2) = L(p)(z2) = L(q)(z2) = a(z2), for some z2 ∈ D.
From (14) we get

a(z2) =
a(z2)

α
− 1− α

α
P (1)(z2)

or,

a(z2)(1−
1

α
) +

1− α
α

P (1)(z2) = 0

or,

(α− 1){a(z2)− P (1)(z2)} = 0

or,

a(z2)− P (1)(z2) = 0.

Clearly a(z)− P (1)(z) 6≡ 0, because deg(P (1)(z)) is less than deg(a).

N(r, a; f) ≤ NA(r, a; f) +NB(r, a; f (1)) +ND(r, a; f) + S(r, f)

≤ N(r, 0; a− P (1)) + S(r, f)

= S(r, f).

Then from the hypothesis T (r, f) = S(r, f), a contradiction.
Therefore α = 1, so f = λez.
Again

L =
n∑
k=1

akf
(k)

= (
n∑
k=1

akα
k)λeαz

= λez.
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Therefore f = L = λez.
This completes the lemma.

3 Proof of the Main Theorem
Proof. First we claim that f is a transcendental entire function.

If f is a polynomial, then
T (r, f) = O(log r) and NA(r, a; f) +NA(r, a; f (1)) = O(log r).
Then from the hypothesis we get O(log r) = O(log T (r, f)) = S(r, f), which

implies T (r, f) = S(r, f), a contradiction. Therefore A = ∅.
Similarly NB(r, a; f (1)) = S(r, f) implies B = ∅.
Therefore E(a; f) = E(a; f (1)) and E(a; f (1)) ⊂ E(a;L(p)) ∩ E(a;L(q)).
Let deg(f) = m and deg(a) = r . If m ≥ r + 1 then deg(f − a) = m and

deg(f (1) − a) ≤ m− 1 which contradicts that E(a, f) = E(a, f (1)).
If m ≤ r − 1 , then deg(f − a) = deg(f (1) − a) = r. Since E(a, f) =

E(a, f (1)), (f − a) = t(f (1) − a), where t(6= 0) is a constant.
If t = 1, then f = f (1), which is a contradiction because f is a polynomial.
If t 6= 1 then tf (1)−f ≡ (t−1)a, which is impossible because deg((t−1)a) =

r and deg(tf (1) − f) = m and m < r. Therefore our claim ” f is transcendental
entire function ” is established. Now we prove the result into two cases.

Case 1. Let f ≡ L(p). Then

m(r, a; f) = m(r,
a

f − a
1

a
)

≤ m(r,
a

f − a
) + S(r, f)

= m(r,
a

f − a
+ 1− 1) + S(r, f)

≤ m(r,
a

f − a
+ 1) + S(r, f)

≤ m(r,
f

f − a
) + S(r, f)

= m(r,
L(p)

f − a
) + S(r, f), (15)

since p ≥ deg(a), by Lemma of logarithmic derivative, m(r, L
(p)

f−a) = S(r, f). So
from (15) m(r, a; f) = S(r, f). Therefore by Lemma 5, f = L = λez, λ(6= 0) is
a constant.

Case 2. Let f 6≡ L(p). This case can be divided into two subcases.
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Subcase 2.1. Let f (1) 6≡ L(p).
Since a−a(1) = (f (1)−a(1))−(f (1)−a), a common zero of f−a and f (1)−a

of multiplicity s(≥ 2) is a zero of a− a(1) with multiplicity s− 1(≥ 1).
Therefore N(2(r, a; f (1) | f = a) ≤ 2N(r, 0; a− a(1)) = S(r, f),

where N(2(r, a; f (1) | f = a) denotes the counting function (counted with
multiplicities) of those multiple zeros of f (1) − a which are also zeros of f − a.

Now

N(2(r, a; f (1)) ≤ NA(r, a; f (1)) +NB(r, a; f (1)) +N(2(r, a; f (1) | f = a) + S(r, f)

= S(r, f). (16)

Using (16) and from the hypothesis we get

N(r, a; f (1)) ≤ NB(r, a; f (1)) +N(r,
a− L(p)(a)

a− a(1)
;
L(p)(f)− L(p)(a)

f (1) − a(1)
) + S(r, f)

≤ T (r,
a− L(p)(a)

a− a(1)
;
L(p)(f)− L(p)(a)

f (1) − a(1)
) + S(r, f)

= N(r,
L(p)(f)− L(p)(a)

f (1) − a(1)
) + S(r, f)

≤ N(r, a(1); f (1)) + S(r, f). (17)

Again

m(r, a; f) = m(r,
f (1) − a(1)

f − a
1

f (1) − a(1)
)

≤ m(r, a(1); f (1)) + S(r, f)

= T (r, f (1))−N(r, a(1); f (1)) + S(r, f)

= m(r, f (1))−N(r, a(1); f (1)) + S(r, f)

≤ m(r, f)−N(r, a(1); f (1)) + S(r, f)

= T (r, f)−N(r, a(1); f (1)) + S(r, f),

i.e

N(r, a(1); f (1)) ≤ N(r, a; f) + S(r, f).

So from (17) we get

N(r, a; f (1)) ≤ N(r, a; f) + S(r, f). (18)

Also

N(r, a; f) ≤ NA(r, a; f) +N(r, a; f | f (1) = a)

≤ N(r, a; f (1)) + S(r, f). (19)
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From (18) and (19) we get

N(r, a; f (1)) = N(r, a; f) + S(r, f). (20)

Let

h =
(a− a(1))(L(p)(f)− L(p)(a))− (a− L(p)(a))(f (1) − a(1))

f − a
, which is de-

fined in Lemma 2.4.

Clearly T (r, h) = S(r, h).

Now

T (r, f) = m(r, f)

= m(r, a+
1

h
{(a− a(1))(L(p)(f)− L(p)(a))− (a− L(p))(f (1) − a(1))}

≤ m(r, (a− a(1))L(p)(f)− (a− L(p))f (1)) + S(r, f)

≤ m(r, f (1)) + S(r, f)

= T (r, f (1)) + S(r, f)

= m(r, f (1)) + S(r, f)

≤ m(r, f) + S(r, f)

= T (r, f) + S(r, f).

Therefore

T (r, f (1)) = T (r, f) + S(r, f). (21)

If h is transcendental, then by Lemma 2.4, m(r, a; f (1)) = S(r, f) and from
(20) and (21) m(r, a; f) = S(r, f). So from Lemma 2.5, f = L = λez, λ( 6= 0),
is a constant.

If h is rational, then by Lemma 2.2 we see that f is of finite order. So by
Lemma 2.1 we get m(r, a; f) = S(r, f).

Therefore from Lemma 2.5, f = L = λez, λ(6= 0) is a constant.
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Subcase 2.2. Let f (1) ≡ L(p). Now

m(r, a; f) = m(r,
a(1)

f − a
1

a(1)
)

≤ m(r,
a(1)

f − a
) + S(r, f)

= m(r,
f (1) − (f (1) − a(1))

f − a
+ S(r, f)

≤ m(r,
f (1)

f − a
) + S(r, f)

= m(r,
L(p)

f − a
) + S(r, f). (22)

Since p ≥ deg(a), by Lemma of logarithmic derivative, m(r, L
(p)

f−a) = S(r, f),
so from (22) m(r, a; f) = S(r, f).

Therefore from Lemma 2.5, we get f = L = λez, λ(6= 0), is a constant.
This completes the proof of the Main Theorem.

4 Conclusions
Finally we arrive at the conclusion that a non-constant entire function sharing

a polynomial with its linear differential polynomial with some conditions defined
in Theorem (1.1) belongs to the class of functions F = {λez : λ ∈ C \ {0}}.
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1 Introduction
Since the inception of the theory fuzzy multisets introduced by Yager (1986),

the subject has become an interesting area for researchers in algebra. The foun-
dation of algebraic structures of fuzzy multisets was laid by Shinoj et al. (2015);
Ibrahim and Awolola (2015) discussed further some new results which will bring
new openings and development of fuzzy multigroup concept. Some group con-
cepts like subgroups, abelian groups, normal subgroups and direct product of
groups have been established (Ejegwa, 2018a,b,d, 2019). The idea of homo-
morphism of fuzzy multigroups and their alpha-cuts have also been discussed
(Ejegwa, 2018c, 2020).

In this paper, more results on homomorphism of fuzzy multigroups are estab-
lished and the corresponding isomorphism theorems of fuzzy multigroups which
analogously exist in group setting are discussed.

2 Preliminaries
We recall here some basic definitions and results used in the sequel. We refer

the reader to (Miyamoto, 2001; Shinoj et al., 2015; Ibrahim and Awolola, 2015).

Definition 2.1. (Miyamoto, 2001) Let X be a nonempty set. A fuzzy multi-
set U over X is characterized by count membership function CMU : X →
[0, 1] (giving a multiset of the unit interval [0, 1]). An expedient notation for a
fuzzy multiset U over X is U = {(CMU(a)/a) | a ∈ X} with CMU(a) =
{µ1

U (a) , µ2
U(a), ..., µm

U (a), ...}, where µ1
U (a) , µ2

U(a), ..., µm
U (x), ... ∈ [0, 1] such

that (µ1
U (x) ≥ µ2

U (a) ≥, ...,≥ µm
U (a), ...).

If the fuzzy multiset U is finite, then CMU(a) = {µ1
U (a) , µ2

U(a), ..., µm
U (a)},

where µ1
U (a) , µ2

U(a), ..., µm
U (a) ∈ [0, 1] such that µ1

U (a) ≥ µ2
U (a) ≥, ...,≥

µm
U (a).

The set of all fuzzy multisets over X is denoted by FMS(X). Throughout
this paper fuzzy multisets are considered finite.

The usual set operations can be carried over to fuzzy multisets. For instance, let
U, V ∈ FMS(X), then

U ⊆ V ⇐⇒ CMU(a) ≤ CMV (a),∀ a ∈ X,
U ∩ V = {CMU(a) ∧ CMV (a)/a | a ∈ X},
U ∪ V = {CMU(a) ∨ CMV (a)/x | a ∈ X}.
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Definition 2.2 (Shinoj et al., 2015) Let P and Q be two nonempty sets such that
ϕ : P → Q is a mapping. Consider the fuzzy multisets U ∈ FMS(P ) and
V ∈ FMS(Q). Then,

(i) the image of U under ϕ is denoted by ϕ(U) has the count membership
function

CMϕ(U) (b) =

{ ∨
ϕ(a)=bCMU (a) , ϕ−1 (b) 6= ∅
0, ϕ−1 (b) = ∅

(ii) the inverse image of V under ϕ denoted by ϕ−1 (V ) has the count mem-
bership function CMϕ−1(V ) (a) = CMV (ϕ (a)).

Definition 2.4 (Shinoj et al., 2015) Let X be a group. A fuzzy multiset U over X
is called a fuzzy multigroup if

(i) CMU (ab) ≥ CMU (a)
∧
CMU (b) , ∀ a, b ∈ X, and

(ii) CMU (a−1) = CMU (a) , ∀ a ∈ X .

The immediate consequence is that CMU(e) ≥ CMU(a) ∀ a ∈ X , where e is the
identity element of X . The set all fuzzy multigroups is denoted by FMG(X).
The next definition can be found in Shinoj et al. (2015) .

Definition 2.5 Let U ∈ FMG(X). Then U is called an abelian fuzzy multigroup
over X if CMU (ab) = CMU (ba) , ∀ a, b ∈ X. The set AFMG (X) is the set
of all abelian fuzzy multigroups over X .

Definition 2.6 Let U ∈ FMS(X). Then U∗ = {x ∈ X | CU(a) = CU(e)}
Remark 2.1 For a fuzzy multigroup over a group X , U∗ is a group, certainly a
subgroup of X Shinoj et al. (2015).

Proposition 2.1 (Ibrahim and Awolola, 2015) Let U ∈ FMG(X), then xU =
yU ⇐⇒ x−1y ∈ U∗.

The following propositions are shown in (Ibrahim and Awolola, 2015) .

Proposition 2.2 Let U ∈ FMG(X). Then the following assertions are equiva-
lent:

(i) CMU(ab) = CMU(ba), ∀ a, b ∈ X ,
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(ii) CMU(aba−1) = CMU(b), ∀ a, b ∈ X ,

(iii) CMU(aba−1) ≥ CMA(b), ∀ a, b ∈ X ,

(iv) CMU(aba−1) ≤ CMU(b), ∀ a, b ∈ X .

Proposition 2.3 Let U ∈ FMG(X). Then CMU(ab−1) = CMU(e) implies
CMU(a) = CMU(b).

As to the converse problem whetherCMU(a) = CMU(b) impliesCMU(ab−1) =
CMU(e), we give a counter example. Let X = {1, s, t, r} be a klein’s 4-group
and U = {(1, 0.7, 0.6, 0.5, 0.5)/1, (0.6, 0.4, 0.2)/s}. We see that U is an abelian
fuzzy multigroup over X . Then, while CMU(t) = CMU(r) = 0, we have
CMU(tr−1) = CMU(tr) = CMU(s) = (0.6, 0.4, 0.2) 6= (1, 0.7, 0.6, 0.5, 0.5) =
CMU(1). Thus the converse problem above does not hold.

3 Main Results
Proposition 3.1 Let X be a group such that ϕ : X → X is an automorphism. If
U ∈ FMG(X), then ϕ(U) = U if and only if ϕ−1(U) = U .

Proof. Let a ∈ X . Then ϕ(a) = a.
Now CMϕ−1(U)(a) = CMU(ϕ(a)) = CMU(a)
=⇒ ϕ−1(U) = U
Conversely, let ϕ−1(U) = U . Since ϕ is an automorphism, then

CMϕ(U)(a) =
∨
{CMU(a

′
) | a′ ∈ X, ϕ(a

′
) = ϕ(a)}

= CMU(ϕ(a))

= CU(ϕ−1(U))(a)

= CMU(a)

Hence, the proof.

Proposition 3.2 Let ϕ : X → Y be a homomorphism of groups such that
U, V ∈ FMG(Y ). If U is a constant on Kerϕ, then ϕ−1(ϕ(U)) = U .

Proof. Let ϕ(a) = b. Then we have
CMϕ−1(ϕ(U))(a) = CMϕ(U)ϕ(a) = CMϕ(U)(b) =

∨
{CMU(a) | a ∈ X, ϕ(a) =
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b}. Since ϕ(a−1c) = ϕ(a−1)ϕ(c) = (ϕ(a))−1ϕ(c) = b−1b = e
′
, ∀ c ∈ X , such

that ϕ(c) = b, which implies that a−1c ∈ Kerϕ. Moreover, since U is constant
on Kerϕ, then CMU(a−1c) = CMU(e). Therefore, CMU(a) = CMU(c). This
completes the proof.

Proposition 3.3 Let U ∈ AFMG(X) such that a map ϕ : X → X/U is defined
by ϕ(a) = aU . Then ϕ is a homomorphism with Kerϕ = {a ∈ X | CMU(a) =
CMU(e)}.

Proof. Clearly, ϕ is a homomorphism. Also,

Kerϕ = {a ∈ X : ϕ(a) = eU}
= {a ∈ X : aU = eU}
= {a ∈ X : CMU(a−1b) = CMU(b) ∀ b ∈ X}
= {a ∈ X : CMU(a−1) = CMU(e)}
= {a ∈ X : CMU(a) = CMH(e)} = U∗

Proposition 3.4 Letϕ : X → Y be an epimorphism of groups andU ∈ AFMG(X),
then X/U∗ ∼= Y .

proof. Define Ψ : X/U∗ → Y by Ψ(xU∗) = ϕ(a) ∀ a ∈ X .
Let aU = bU such that CMU(a−1b) = CMU(e). This implies that a−1b ∈ U∗. It
is easy to show that Ψ is well-defined, homomorphism and epimorphism.

Moreover, ϕ(a) = ϕ(b)

=⇒ ϕ(a)−1ϕ(b) = ϕ(e)

=⇒ ϕ(a−1)ϕ(b) = ϕ(a−1b) = ϕ(e)

=⇒ a−1b ∈ U∗
=⇒ CMU(a−1b) = CMU(e)

=⇒ aU = bU

This shows that Ψ is an isomorphism.

Proposition 3.5 IfU, V ∈ AFMG(X) withCMU(e) = CMV (e), thenU∗V∗/V ∼=
U∗/U ∩ V .
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Proof. Clearly, for some x ∈ U∗V∗, a = uv such that u ∈ U∗ and v ∈ V∗.
Define ϕ : U∗V∗/V → U∗/U ∩ V by ϕ(aV ) = u(U ∩ V ).
If aV = bV with b = u1v1, u1 ∈ U∗ and v1 ∈ V∗, then

CMV (a−1b) = CMV ((uv)−1u1v1)

= CMV (v−1u−1u1v1)

= CMV (u−1u1v
−1v1)

= CMV (e).

Hence, CMV (u−1u1) = CMV (v−1v1) = CMV (e). Thus,

CMU∩V (u−1u1) = CMU(u−1u1) ∧ CMV (u−1u1)

= CMU(e) ∧ CMV (e)

= CMU∩V (e)

That is, u(U ∩ V ) = u1(U ∩ V ). Therefore, ϕ is well-defined.

If aV, bV ∈ U∗V∗/V , then ab = uvu1v1. Since U ∈ AFMG(X), then
CMU(vu1v1) = CMU(u1) =⇒ vu1v1 ∈ U∗.
Hence, ϕ(aV bV ) = ϕ(abV ) = u(vu1v1)(U ∩ V ) = u(U ∩ V )vu1v1(U ∩ V ) and

CMU∩V (u−11 (vu1u1)) ≥ CMU(u−11 vu1v1) ∧ CMV (u−11 vu1v1)

= CMU(u−11 (vu1v1)) ∧ CMV (v(u−11 u1v1))

= CMU(e) ∧ CMV (e)

= CMU∩V (e).

Hence, vu1v1(U ∩ V ) = u1(U ∩ V )
That is, ϕ(aV bV ) = u(U ∩ V )u1(U ∩ V ) = ϕ(aV )ϕ(bV ), and this shows that ϕ
is a homomorphism. Undeniably, it is also epimorphism.

Furthermore, if a, b ∈ U∗V∗ with a = uv and b = u1v1, u, u1 ∈ U∗
and v, v1 ∈ V∗ and u(U ∩ V ) = u1(U ∩ V ), then CMU∩V (u−1u1) = CMU∩V (e)
That is, CMU(u−1u1) ∧ CMV (u−1u1) = CMU(e) ∧ CMV (e).
However, CMU(e) = CMV (e) and CMU(u−1u1) = CMU(e)
=⇒ CMV (u−1u1) = CMV (e).
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Therefore,

CMV (a−1b) = CMV ((uv)−1u1v1)

= CMV (v−1u−1u1u1) = CMV (u−1u1v
−1v1)

≥ CMV (u−1u1) ∧ CMV (v−1v1)

= CMV (e) ∧ CMV (e) = CMV (e)

=⇒ CMV (a−1b) = CMV (e)

Thus, aV = bV .
Hence, U∗V∗/V ∼= U∗/U ∩ V .

Proposition 3.6 Let U, V ∈ AFMG(X) such that U ⊆ V and CMU(e) =
CMV (e). Then X/V ∼= (X/U)/(V∗/U).

proof. Defineϕ : X/U → X/V byϕ(aU) = aV ∀ a ∈ X such thatCMU(a−1b) =
CMU(e) = CMV (e) ∀ aU = bU . Since U ⊆ V , we have CMV (a−1b) ≥
CMU(a−1b) = CMV (e) and thus CMV (a−1b) = CMV (e), that is, aV = bV ,
which implies that ϕ is well-defined. It is homomorphism and epimorphism too.

Moreover,

Kerϕ = {aU ∈ X/U : ϕ(aU) = eV }
= {aU ∈ X/U : aV = eV }
= {aU ∈ X/U : CMV (a) = CMV (e)}
= {aU ∈ X/U : a ∈ V∗} = V∗/U.

Thus, Kerϕ = V∗/U and so X/V ∼= (X/U)/(V∗/U).
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1 Introduction

The concept of generalized open sets introduced by Levine[Levine, 1970]
plays a significant role in General Topology. The study of generalized open
sets and its properties found to be useful in computer science and digital topol-
ogy[Khalimsky et al., 1990, Kovalevsky, 1994, Smyth, 1995]. Since Professor
El- Naschie has recently shown in [El Naschie, 1998, 2000, 2005] that the no-
tion of fuzzy topology may be relevant to quantum particle physics in connection
with string theory and ε∞ theory.So,the fuzzy topological version of the notions
and results introduced in this paper are very important. Recently, Ekici [Ekici,
2008] introduced the notion of a-open sets as a continuation of research done
by Velicko [Velicko, 1968] on the notion of δ-open sets.Dontchev et al., intro-
duced gδ-closed sets and gδ-continuity.In this paper,new generalizations of a-open
sets by using gδ-open and δ-closed sets called Da-open sets are presented. Also
Da-continuous functions,almost Da-continuous functions,Da-closed graphs and
(D,a)-closed graphs have been defined to study its properties in terms of Da-open
sets.

2 Prerequisites, Definitions and Theorems

In what follows,spaces always mean topological spaces on which no sepa-
ration axioms are assumed unless explicitly stated and f:(X,τ )→ (Y,η) or simply
f:X→Y denotes a function f of a space (X,τ ) into a space (Y,η). The δ-closure of
a subset A of X is the intersection of all δ-closed sets containing A and is denoted
by Clδ(A).

Definition 2.1. In (X,τ ),let N ⊂ X.Then N is called:
(i)regular closed[Stone, 1937] (resp.,a-closed[Ekici, 2008], δ-preclosed[Raychaudhuri
and Mukherjee, 1993], e∗-closed[Ekici, 2009], δ-semiclosed[Park et al., 1997],
β-closed[Abd El-Monsef, 1983], semiclosed[Levine, 1963], preclosed[Mashhour,
1982]) if N = Cl(Int(N)) (resp., Cl(Int(Clδ(N)))⊂N, Cl(Intδ(N))⊂N, Int(Cl(Intδ(N))
⊂ N, Int(Clδ(N)) ⊂ N, Int(Cl(Int(N)) ⊂ N, Int(Cl(N)) ⊂ N, Cl(Int(N)) ⊂ N).
(ii) δ-closed [Velicko, 1968] if N = Clδ(N)
where Clδ(N) = {p∈X:Int(Cl(O))∩N6=φ,O∈τ and p∈O}.
(iii)generalized δ-closed (briefly,gδ-closed)[Dontchev et al., 2000] if Cl(N)) ⊂ G
whenever N ⊂ G and G is δ-open in X.
(iv)generalized closed (briefly,g-closed)[Levine, 1970] if Cl(N)) ⊂ G whenever N
⊂ G and G is open in X.
The complements of the above mentioned closed sets are their respective open
sets.
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The set of all regular open (resp.,δ-open, β-open, δ-preopen, preopen, semiopen,
δ-semiopen,e∗-open,gδ-open and a-open) sets of (X,τ ) is denoted by RO(X) (resp.δO(X),
βO(X), δPO(X), PO(X), SO(X), δSO(X), e∗O(X), GδO(X) and aO(X)).

The a-closure[Ekici, 2008](resp, gδ-closure,δ-closure) of a set N is the inter-
section of all a-closed(resp, gδ-closed,δ-closed) sets containing N and is denoted
by a-Cl(N) (resp., Clgδ(N),Clδ(N)). The a-interior[Ekici, 2008](resp,gδ-interior,δ-
interior) of a set N is the union of all a-open(resp, gδ-open,δ-open) sets contained
in M and is denoted by a-Int(M)(resp, Intgδ(M),Intδ(M))

Definition 2.2. [Ekici, 2005] A topological space (X,τ ) is said to be:
(1) r-T1 if for each pair of distinct points x and y of X, there exist regular open sets
U and V such that x ∈ U, y /∈U and x /∈ V, y ∈ V.
(2) r-T2 if for each pair of distinct points x and y of X, there exist regular open sets
U and V such that x ∈ U, y ∈ V and U∩V =φ .

Theorem 2.1. Let C and D be subsets of a topological space (X,τ ).Then
(i)If C is gδ-closed,then Clgδ(C) = C.
(ii) If C⊂D,then Clgδ(C)⊂ Clgδ(D).
(iv) x ∈Clgδ(C) if and only if for each gδ-open set O containing x,O ∩ C6=φ,
(v)Clgδ(C)∪Clgδ(D)⊂ Clgδ(A∪D).
(vi)Clgδ(C∩D)⊆Clgδ(C)∩Clgδ(D).

3 Da-Open Sets.
Definition 3.1. A subset M of a topological space (X,τ ) is said to be:
(1) Da-open if M ⊂ Intgδ(Clδ(Intgδ(M)),
(2) Da-closed if Clgδ(Intδ(Clgδ(M))⊂M.
The collection of all Da-open(resp,Da-closed) sets in (X,τ ) is denoted by DaO(X)
(resp,DaC(X)).

Theorem 3.1. Let (X,τ ) be a space.Then for any N⊂X,
(i) N∈δO(X) implies N∈aO(X)[Ekici, 2008].
(ii) N∈δO(X) implies N ∈GδO(X)[Dontchev et al., 2000].
(iii)N∈GO(X) implies N ∈GδO(X)[Dontchev et al., 2000].
(iv) N ∈aO(X) implies N∈DaO(X).
(v) N∈GδO(X) implies N∈DaO(X).
Proof: (iv) Since δO(X)⊂GδO(X), Intδ(N) ⊂ Intgδ(N).
Now,let N∈aO(X), then N ⊂ Int(Cl(Intδ(N)). Therefore,
N ⊂ Int(Cl(Intδ(N))=Intδ(Cl(Intδ(N))⊂Intgδ(Clδ(Intgδ(N)). Hence N ∈DaO(X).
(v) Suppose N is gδ-open. Then Intgδ(N)=N.
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Therefore, Intgδ(N)⊂ Clδ(Intgδ(N).Then
N=Intgδ(N)=Intgδ(Intgδ(N)) ⊂ Intgδ(Clδ(Intgδ(N)). Hence N ∈DaO(X).

Remark 3.1. The following diagram holds for any subset of a space (X,τ ).

open set ←− δ-open set −→ a-open set
↙

↓ ↓ Da-open set
↗

g-open set −→ gδ-open set

None of these implications is reversible

Example 3.1. Let X={p,q,r,s} and τ={X,φ,{p},{q},{p,q},{p,r}.{p,q,r}},then
aO(X)={X,φ,{q},{p,r},{p,q,r}}
GδO(X)={X, φ,{p},{q},{r},{p,q},{p,r}{q,r},{p,q,r}}.
DaO(X)={X, φ,{p},{q},{r},{p,q},{p,r},{q,r}{p,q,r}{p,q,s},{q,r,s}}.
Therefore, {q,r,s}∈DaO(X) but {q,r,s}/∈aO(X) and {q,r,s}/∈ gδO(X).

Lemma 3.1. If there exists a M ∈ GδO(X) such that M ⊂ N ⊂Intgδ(Clδ(M)),then
N is Da-open.
Proof: Since M is gδ-open, Intδg(M)=M. Therefore,
Intgδ(Clδ(Intgδ(N)) ⊃Intgδ(Clδ(Intgδ(M)) = Intgδ(Clδ(M)) ⊃ N.
Hence N is Da-open.

Converse of the Lemma 3.1 is not true as shown in Example 3.1.

Example 3.2. In Example 3.1, {p,q,r}∈DaO(X) and {p,r}∈GδO(X) but {p,r} ⊆
{p,q,r} 6⊆ Intgδ(Clδ({p,r}))={p,r} .

Lemma 3.2. For a family { Bλ:λ∈∧} of subsets of a space (X,τ ),the following
hold:
(1) Clgδ(

⋂
{Bλ:λ∈∧}) ⊂

⋂
{Clgδ(Bλ):λ∈∧}.

(2) Clgδ(
⋃
{Vλ:λ∈∧}) ⊃

⋃
{Clgδ(Bλ):λ∈∧}.

(3) Clδ(
⋂
{Bλ:λ∈∧}) ⊂

⋂
{Clδ(Bλ):λ∈∧}.

(4) Clδ(
⋃
{Bλ:λ∈∧}) ⊃

⋃
{Clδ(Bλ):λ∈∧}

Theorem 3.2. If {Gα:λ∈∧} is a collection of Da-open sets in a space (X,τ ),then⋃
α∈∧

Gα is a Da-open set in (X,τ ) :

Proof: Since each Gαis Da-open, Gα ⊂ Intgδ(Clδ(Intgδ(Gα)) for each α∈∧ and
hence

⋃
α∈∧

Gα ⊂
⋃
α∈∧

Intgδ(Clδ(Intgδ(Gα))⊂Intgδ(Clδ(Intgδ(
⋃
α∈∧

Gα)). Thus
⋃
α∈∧

Gα is

Da-open.
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Corolary 3.1. If {Fα:α∈∧} is a collection of Da-closed sets in a space (X,τ ),then⋂
α∈∧

Fα is a Da-closed set in (X,τ )

Remark 3.2. M and N ∈ DaO(X) 6⇒M ∩ N ∈ DaO(X) as seen from Example 3.1,
where both M = {q,r,s} and N = {p,q,s} ∈ DaO(X) but
M ∩ N = {q,s} /∈ DaO(X).

Corolary 3.2. If M∈ DaO(X) and B∈aO(X),then M∪B∈ DaO(X).
Proof:Follows from Theorem 3.1(iv) and Theorem 3.2

Corolary 3.3. If M∈ DaO(X) and B∈GδO(X),then M∪B∈ DaO(X).
Proof:Follows from Theorem 3.1(v) and Theorem 3.2

Definition 3.2. In (X,τ ),let M ⊂ X.
(1)The Da-interior of M, denoted by IntDa (M) is defined as
IntDa (M)=

⋃
{G:G⊆M and M∈DaO(X)};

(2)The Da-closure of M, denoted by ClDa (M) is defined as
ClDa (A)=

⋂
{F:M⊆F and F∈DaC(X)}.

Theorem 3.3. In (X,τ ),let M, N,F ⊂ X.Then:
(1)M ⊂ ClDa (M)⊂aCl(M), ClDa (M)⊂Clgδ(M).
(2) ClDa (M) is a Da-closed set.
(3) If F is a Da-closed set, and F ⊃ M,then F ⊃ ClDa (M).
i.e.,ClDa (M) is the smallest Da-closed set containing M.
(4)M is Da-closed set if and only if ClDa (M)=M.
(5) ClDa (ClDa (M)) = ClDa (M).
(6)M ⊆ N implies ClDa (M) ⊆ ClDa (N).
(7)p ∈ClDa (M) if and only if for each Da-open set V containing p,V ∩ M 6=φ.
(8) ClDa (M) ∪ ClDa (N) ⊂ ClDa (M ∪ N).
(9) ClDa (M ∩ N) ⊂ ClDa (M) ∩ ClDa (N).
Proof: (1)It follows from Theorem 3.1(iv) and (v)
(2)It follows from Definition 3.2 and Corollary 3.1
(3)Let F be a Da-closed set,containing M.ClDa (M) is the intersection of Da-closed
sets containing M, and F is one among these;hence F ⊃ ClDa (M).
(4) Let M be Da-closed,then by Definition 3.2(2),ClDa (M)=M.
Conversely,let ClDa (M)=M. Then by (2) above,M is Da-closed.
(5)It follows from (2) and (4).
(6) Obvious.
(7) p /∈ClDa (M)⇔ (∃ G∈DaC(X))(M⊂G)(p /∈G)

⇔ (∃ G∈DaC(X))(M⊂G)(p ∈Gc)
⇔ (∃ Gc∈DaO(X))(M∩Gc=φ)(p ∈Gc)
⇔ (∃ Gc∈DaO(X,p))(M∩Gc=φ)
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i.e.,(∃ U(=Gc)∈ DaO(X,p))(M∩U=φ)
(8) and (9) follows from (6).

Remark 3.3. (1) ClDa (M) ∪ ClDa (N) 6= ClDa (M ∪ N), in general, as seen from Ex-
ample 3.1 where M = {p}, N = {r} and M ∪ N = {p,r}.Then ClDa (M)={p},
ClDa (N)={r},ClDa (M)∪ClDa (N)={p,r} and ClDa (M∪N)={p,r,s};
(2) ClDa (M∩N)6= ClDa (M)∩ClDa (N), in general,as seen from Example 3.1 where,M
= {p,q,r}, N = {s} and M∩N = φ.Then ClDa (M) = X, ClDa (N) = {s}, ClDa (M)∩ClDa (N)
= {s} and ClDa (M∩N)=φ

Lemma 3.3. In (X,τ ),let M ⊂ X.Then
(1) ClDa (X\M) = X\IntDa (M),
(2) IntDa (X\M) = X\ClDa (M).

Theorem 3.4. In (X,τ ),let M,N,G ⊂ X,
(1)aInt(M) ⊆ IntDa (M)⊆M, Intgδ(M)⊆IntDa (M).
(2) IntDa (M) is a Da-open set.
(3) If G is a Da-open set, and G ⊂ M,then G ⊂ IntDa (M).
i.e.,IntDa (M) is the largest Da-open set contained in M.
(4)M is Da-open set if and only if IntDa (M)=M.
(5) IntDa (IntDa (M)) = IntDa (M).
(6)M ⊆ N implies IntDa (M) ⊆ IntDa (N).
(7) p ∈ IntDa (M) if and only if there exists Da-open set N containing p such that N
⊆ M.
(8) IntDa (M ∩ N)⊆ IntDa (M) ∩ IntDa (N).
(9) IntDa (M) ∪ IntDa (N) ⊆IntDa (M ∪ N).
Proof:Similar to the proof of Theorem 3.3

Remark 3.4. (8)IntDa (M ∩ N)6= IntDa (M) ∩ IntDa (N), in general, as seen from Ex-
ample 3.1,where M = {p,q,s}, N = {q,r,s} and M ∩ N = {q,s}.Then IntDa (M) =
{p,q,s}, IntDa (N) = {q,r,s}, IntDa (M) ∩ IntDa (N) = {q,s} and IntDa (M∩N) = {q}.
(9) IntDa (M) ∪ IntDa (N) 6= IntDa (M ∪ N),in general, as seen from Example 3.1,
where M = {p,q,r}, N = {s} and M ∪ N = X.Then IntDa (M) = {p,q,r}, IntDa (N) =
φ, IntDa (M) ∪ IntDa (N) = {p,q,r} and IntDa (M ∪ N) = X.

Lemma 3.4. In (X,τ ),let M ⊂ X. Then
(1)M is Da-open if and only if M = M ∩ Intgδ(Clδ(Intgδ(M)).
(2)M is Da-closed if and only if M = M∪ Clgδ(Intδ(Clgδ(M)).

Proof:(1) Let M be an Da-open. Then,
M⊆Intgδ(Clδ(Intgδ(M)) implies M∩ Intgδ(Clδ(Intgδ(M))=M.
Conversely,let M = M∩ Intgδ(Clδ(Intgδ(M)) implies M ⊂ Intgδ(Clδ(Intgδ(M)).
(2)It follows from (1)
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Lemma 3.5. In (X,τ ),let M ⊂ X. Then
(i)M ∩ Intgδ(Clδ(Intgδ(M)) is Da-open
(ii)M∪ Clgδ(Intδ(Clgδ(M)) is Da-closed.
Proof: (i) Intgδ(Clδ(Intgδ(M∩ Intgδ(Clδ(Intgδ(M)))))) = Intgδ(Clδ(Intgδ(A)∩ Intgδ(Clδ(Intgδ(M)))))
= Intgδ(Clδ(Intgδ(M))). This implies that
M ∩ Intgδ(Clδ(Intgδ(M))) = M ∩ Intgδ(Clδ(Intgδ(M ∩ Intgδ(Clδ(Intgδ(M)))))) ⊆
Intgδ(Clδ(Intgδ(M ∩ Intgδ(Clδ(Intgδ(M)))))) . Therefore M ∩ Intgδ(Clδ(Intgδ(M)))
is Da-open.
(ii) From (i) we have X\(M∪Clgδ(Intδ(Clgδ(M))) = (X\M) ∩ Clgδ(Intδ(Clgδ(X\M)))
is Da-open so that M ∪Clgδ(Intδ(Clgδ(M))) is Da-closed.

Lemma 3.6. In (X,τ ),let M ⊂ X. Then
(i)IntDa (M)=M ∩ Intgδ(Clδ(Intgδ(M)).
(ii)ClDa (M)=M∪ Clgδ(Intδ(Clgδ(M)).
Proof:(i)Let N=IntDa (M),then N⊂M.Since N is Da-open,N⊂Intgδ(Clδ(Intgδ(N))
⊂Intgδ(Clδ(Intgδ(M)).Then N⊂M∩Intgδ(Clδ(Intgδ(M))⊂M.Therefore,by Lemma 3.5,
it follows that M∩Intgδ(Clδ(Intgδ(M)) is a Da-open set contained in M. But IntDa (M)
is the largest Da-open set contained in M it follows that
M∩Intgδ(Clδ(Intgδ(M))⊂ IntDa (M)=N.Then N=M∩Intgδ(Clδ(Intgδ(M)).
Therefore,IntDa (M)=M ∩ Intgδ(Clδ(Intgδ(M)).
(ii)It follows from (i)

4 Da-Continuous functions.
Definition 4.1. A function f:(X,τ )→ (Y,η) is said be a Da-continuous if for each
p∈X and each N∈O(Y,f(p)), there exists M ∈ DaO(X,p) such that f(M)⊂ N.

Theorem 4.1. For a function f:(X,τ )→ (Y,η),the following are equivalent
(1)f is Da-continuous;
(2)For each N∈O(Y),f−1(V)∈DaO(X).
Proof:(1)−→(2)Let N∈O(Y) and p∈ f−1(N). Since f(p) ∈ N,then by(1),there exists
Mp ∈ DaO(X,p) such that f(Mp) ⊂ N.It follows that
f−1(N)=∪{Mp: p∈f−1(N)}∈DaO(X), by Theorem 3.2 .
(2)−→(1) Let p ∈ X and N ∈O(Y,f(p)).Then,by (2),f−1(N)∈DaO(X,p).
Take M = f−1(N), then f(M) ⊂ N.

Corolary 4.1. A function f:(X,τ )→ (Y,η) is Da-continuous if and only if f−1(F)∈DaC(X)
for each F∈C(Y).
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Remark 4.1. The following implications hold for a function f:(X,τ )→ (Y,η):

continuity ←− δ-continuity −→ a-continuity
↙

↓ ↓ Da-continuity
↗

g-continuity −→ gδ-continuity

Example 4.1. Consider (X,τ ) as in Example 3.1 and η={X,φ,{p},{q},{p,q},{p,q,r}}.
Define f:(X,σ)→(X,η) by f(p)=s,f(q)=p,f(r)=q and f(s)=r.Then f is Da-continuous
but neither a-continuous nor gδ-continuous since {p,q,r} is open in (X,η),
f−1({p,q,r}) = {q,r,s}∈DaO(X) but {q,r,s}/∈aO(X) and {q,r,s}/∈ gδO(X).
The other Examples are shown in[3,5,21]

Theorem 4.2. The following conditions are equivalent for a function
f:(X,τ )→ (Y,η):
(1) f is Da-continuous;
(2) For each subset N of Y, Clgδ(Intδ(Clgδ(f−1(N))) ⊂ f−1(Cl(N);
(3)For each subset N of Y, f−1(Int(N)) ⊂ Intgδ(Clδ(Intgδ(f−1(N));
(4)For each subset N of Y,ClDa (f−1(N)) ⊂ f−1(Cl(N));
(5)For each subset M of X,f(ClDa (M)) ⊂ Cl(f(M));
(6)For each subset N of Y, f−1(Int(N)) ⊂ IntDa (f−1(N)).
Proof: (1)→(2) Let N ⊂ Y.Then by (1),f−1(Cl(N)) ∈ DaC(X) implies
f−1(Cl(N)⊃Clgδ(Intδ(Clgδ(f−1(Cl(N)))⊃ Clgδ(Intδ(Clgδ(f−1(N))).
(2)→(3).Replace N by Y\N in (2), we have
Clgδ(Intδ(Clgδ(f−1(Y\N)))⊂f−1(Cl(Y\N), and therefore
f−1(Int(N)) ⊂ Intgδ(Clδ(Intgδ(f−1(N)) for each subset N of Y.
(3)→(1). Clear
(1)→(4). Let N ⊂ Y .Then by (1), f−1(Cl(N))∈DaC(X). Thus
ClDa (f−1(N)) ⊂ ClDa (f−1(Cl(N))=f−1(Cl(N) by Theorem 3.3(4).
(4)→(1). Let N ∈C(Y).Then by (4),
ClDa (f−1(N)) ⊂ f−1(Cl(N)=f−1(N) implies ClDa (f−1(N))=f−1(N).
Then by Theorem 3.3(4), f−1(N) ∈ DaC(X).
(4)→(5).Let M ⊂ X.Then f(M) ⊂ Y.By (4), we have
f−1(Cl(f(M))) ⊃ ClDa (f−1(f(M))) ⊃ ClDa (M).
Therefore, f(ClDa (M)) ⊂ f(f−1(Cl(f(M))) ⊂ Cl(f(M).
(5)→(4).Let N ⊂ Y and M=f−1(N) ⊂ X.Then by (5),
f(ClDa (f−1(N))) ⊂ Cl(f(f−1(N)) ⊂ Cl(N) implies ClDa (f−1(N)) ⊂ f−1(Cl(N)).
(4)→(6).Replace N by Y \N in (4), we get
ClDa (f−1(Y\N)) ⊂ f−1(Cl(Y\N)) implies ClDa (X\f−1(N)) ⊂ f−1(Y\Int(N))
Therefore,f−1(int(N)) ⊂ IntDa (f−1(N)) for each subset N of Y.
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(6)→(1).Let G⊂Y be open.Then f−1(G)=f−1(Int(G)) ⊂ IntDa (f−1(G) implies
IntDa (f−1(G)=f−1(G).So by Theorem 3.4(4),f−1(G)∈DaO(X).

Definition 4.2. Two non-empty subsets A and B of a topological space (X,τ )
are said to be Da-separated if there exist two Da-open sets G and H,such that
A⊂G,B⊂H, A∩H=φ and B∩G=φ.

Definition 4.3. Two non-empty subsets A and B of a topological space (X,τ ) are
said to be strongly Da-separated if there exist two Da-open sets U and V,such that
A⊂U,B⊂V and U∩V=φ.

Definition 4.4. A topological space (X,τ ) is said to be
(1) Da-T2 if any two distinct points are strongly Da-separated in (X,τ )
(2) Da-T1 if every pair of distinct points is Da-separated in (X,τ ).

Remark 4.2. The following implications are hold for a topological space (X,τ )
a-T2 −→Da-T2←− T2

↓ ↓ ↓
a-T1 −→Da-T1←− T1

Theorem 4.3. If an injective function f:(X,τ )→ (Y,η) is Da-continuous and (Y,η)
is T1, then (X,τ ) is Da-T1.
Proof: Let (Y,σ) be T1 and p,q∈X with p 6=q. Then there exist open subsets G, H
in Y such that f(p) ∈ G, f(q) /∈ G, f(p) /∈ H and f(q) ∈ H. Since f is Da-continuous,
f−1(G) and f−1(H) ∈ DaO(X) such that p ∈ f−1(G), q /∈ f−1(G), p /∈ f−1(H) and
q ∈ f−1(H). Hence,(X,σ) is Da-T1 .

Theorem 4.4. If an injective function f: (X,τ )→ (Y,η) is Da-continuous and (Y,η)
is T2, then (X,τ ) is Da-T2.
Proof: Similar to the proof of Theorem 4.3

Recall that for a function f:(X,τ )→ (Y,η), the subset
Gf={(x,f(x)):x ∈X} ⊂ X×Y is said to be graph of f.

Definition 4.5. A graph Gf of a function f:(X,τ )→ (Y,η) is said to be Da-closed
if for each (p,q) /∈ Gf , there exist U∈DaO(X,p) and V∈O(Y,q) such that (U×V)∩
Gf = φ.

As a consequence of Definition 4.5 and the fact that for any subsets C⊂ X and
D ⊂ Y, (C×D)∩ Gf=φ if and only if f(C)∩D = φ,we have the following result.

Lemma 4.1. For a graph Gf of a function f:(X,τ )→ (Y,η), the following properties
are equivalent:
(1)Gf is Da-closed in X×Y;
(2)For each (p,q) /∈Gf , there exist U∈DaO(X,p) and V∈O(Y,q) such that f(U)∩V
= φ.
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Theorem 4.5. If f:(X,τ ) → (Y,η) is Da-continuous and (Y,η) is T2 , then Gf is
Da-closed in X×Y.
Proof: Let (p,q) /∈Gf , f(p) 6=q. Since Y is T2, there exist V,W ∈O(Y) such that
f(p)∈ V, q∈W and V∩W=φ. Since f is Da-continuous, f−1(V)∈DaC(X,p).Set U
=f−1(V), we have f(U)⊂ V. Therefore, f(U)∩W=φ and Gf is Da-closed in X×Y

Theorem 4.6. Let f:(X,τ ) → (Y,η) have a Da-closed graph Gf . If f is injective,
then (X,τ ) is Da-T1.
Proof:Let x1,x2∈X with x1 6=x2.Then f(x1)6=f(x2) as f is injective So that (x1,f(x2))
/∈Gf .Thus there exist U∈DaO(X,x1) and V∈O(Y,f(x2)) such that f(U)∩V = φ.Then
f(x2)/∈f(U) implies x2 /∈U and it follows that X is Da-T1.

Theorem 4.7. Let f:(X,τ )→ (Y,η) have a Da-closed graph Gf . If f is surjective,
then (Y,η) is T1.
Proof:Let y1,y2∈Y with y1 6=y2.Since f is surjective,f(x)=y2 for some x∈X and
(x,y2)/∈Gf .By Lemma 4.1,there exist U∈DaO(X,x) and V∈O(Y,y1) such that f(U)∩V
= φ.It follows that y2 /∈V.Hence Y is T1.

Theorem 4.8. Let f:(X,τ )→ (Y,η) have a Da-closed graph Gf . If f is surjective,
then (Y,η) is Da-T1.
Proof:Similar to the proof of Theorem 4.7

Corolary 4.2. Let f:(X,τ ) → (Y,η) have a Da-closed graph Gf . If f is bijective,
then both (X,τ ) and (Y,η) are Da-T1

Proof:Follows from Theorems 4.6 and 4.8

Definition 4.6. A graph Gf of a function f:(X,τ ) → (Y,η) is said to be (D,a)-
closed if for each (p,q) /∈ Gf , there exist U∈DaO(X,p) and V∈aO(Y,q) such that
(U×aCl(V))∩ Gf = φ.

Lemma 4.2. For a graph Gf of a function f:(X,τ )→ (Y,η), the following proper-
ties are equivalent:
(1)Gf is Da-closed in X×Y;
(2)For each (p,q) /∈Gf , there exist U∈DaO(X,p) and V∈aO(Y,q) such that f(U)∩aCl(V))
= φ.

Theorem 4.9. Let M ⊂ X.Then x∈ a-Cl(M) if and only if G ∩ M 6= Φ, for every
a-open set G containing x.
Proof:Similar to the proof of Theorem 3.3(7)

Theorem 4.10. Let f:(X,τ )→ (Y,η) have a (D,a)-closed graph Gf . If f is surjec-
tive, then (Y,η) is a-T2(resp,a-T1).
Proof:Let y1,y2∈Y with y1 6=y2.Since f surjective, f(x1)=y1 x1∈X and hence (x1,y2)/∈Gf .
By Lemma 4.2,there exist E∈DaO(X,x1) and F∈aO(Y,y2) such that f(E)∩ aCl(F)
= φ. Now, x1∈E implies f(x1)=y1∈f(E) so that y1 /∈aCl(F).By Theorem 4.9,there
exists D∈aO(Y,y1) such that D∩F=φ.Hence Y is a-T2.
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Theorem 4.11. Let f:(X,τ )→ (Y,η) have a (D,a)-closed graph Gf . If f is surjec-
tive, then (Y,η) is Da-T2(resp,Da-T1).
Proof:Similar to the proof of Theorem 4.10

Theorem 4.12. Let f:(X,τ )→ (Y,η) have a (D,a)-closed graph Gf . If f is injective,
then (X,τ ) is Da-T1.
Proof:Similar to the proof of Theorem 4.6

Corolary 4.3. Let f:(X,τ )→ (Y,η) have a (D,a)-closed graph Gf . If f is bijective,
then both (X,τ ) and (Y,η) are Da-T1

Proof:Follows from Theorems 4.11 and 4.12

5 Almost Da-Continuous functions.

Definition 5.1. A function f:(X,τ ) → (Y,η) is said to be almost Da-continuous if
for each point p ∈ X and each open subset V of Y containing f(p), there exists U ∈
DaO(X,p) such that f(U) ⊂ int(Cl(V)).

Theorem 5.1. If f:(X,τ ) → (Y,η) is Da-continuous function , then f is an almost
Da-continuous,but not conversely.
Proof:Obvious

Example 5.1. Consider (X,τ ) and (X,η) as in 4.1. Define f:(X,τ ) → (X,η) by
f(p)=p,f(q)=s,f(r)=q and f(s)=r Then f is almost Da-continuous but not Da-continuous
since {p,q,r} is open in (X,η), f−1({p,q,r})={p,r,s}/∈DaO(X,τ )

Definition 5.2. [Noiri and Popa, 1998] A space X is said to be semi-regular if for
any open set U of X and each point x ∈ U there exists a regular open set V of X
such that x ∈ V ⊂ U.

Theorem 5.2. If f:(X,τ ) → (Y,η) is an almost Da-continuous function and Y is
semi-regular, then f is Da-continuous.
Proof: Let p ∈ X and let V ∈ O(Y,f(p)). By the semi-regularity of Y , there exists
G∈RO(Y,f(p)) such that G ⊂ V . Since f is almost Da-continuous, there exists U ∈
DaO(X, x) such that f(U) ⊂ Int(Cl(G)) = G ⊂ V and hence f is Da-continuous.

Lemma 5.1. Let (X,τ ) be a space and let A be a subset of X. The following state-
ments are true:
(1) A ∈ PO(X) if and only if sCl(A) = Int(Cl(A)) [Janković, 1985].
(2) A ∈ βO(X) if and only if Cl(A) is regular closed [Abd El-Monsef, 1983].
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Theorem 5.3. Let f:(X,τ ) → (Y,η) be a function. Then the following conditions
are equivalent:
(1) f is almost Da-continuous;
(2) For every N∈RO(Y), f−1(N)∈DaO(X);
(3) For every M∈RC(Y), f−1(M)∈DaC(X);
(4) For each subset C of X, f(ClDa (C)) ⊂ Clδ(f(C));
(5)For each subset D of Y, ClDa (f−1(D)) ⊂ f−1(Clδ(D));
(6)For every G∈δC(Y), f−1(G)∈DaC(X);
(7)For every H∈δO(Y), f−1(H)∈DaO(X);
(8) For every N∈O(Y), f−1(Int(Cl(N)∈DaO(X);
(9) For every M∈C(Y), f−1(Cl(Int(M)∈DaC(X);
(10) For every N∈βO(Y), ClDa (f−1(N)) ⊂ f−1(Cl(N));
(11) For every M∈βC(Y), f−1(Int(M)) ⊂ IntDa (f−1(M));
(12) For every M∈SC(Y), f−1(Int(M)) ⊂ IntDa (f−1(M));
(13) For every N∈SO(Y), ClDa (f−1(N)) ⊂ f−1(Cl(N));
(14) For every M∈PO(Y), f−1(M) ⊂ IntDa (f−1(Int(Cl(M));
(15) For each p∈ X and each N∈O(Y,f(p)), there exists M ∈ DaO(X,p) such that
f(M) ⊂ sCl(N);
(16) For each p∈ X and each N∈RO(Y,f(p)), there exists M ∈ DaO(X,p) such that
f(M) ⊂ N;
(17) For each p∈ X and each N∈δO(Y,f(p)), there exists M ∈ DaO(X,p) such that
f(M) ⊂ N.
Proof: (1)−→(2) Similar to the proof of (1)−→(2) of Theorem 4.1.
(2)−→(3) It follows from the fact that f−1(Y\F) = X \f−1(F).
(3)−→(4) Suppose that D∈ δC(Y) such that f(C)⊂ D. Observe that D = Clδ(D)
=
⋂
{F:D⊂F and F∈RC(Y)} and so f−1(D) =

⋂
{f−1(F):D⊂F and F∈RC(Y)}.

By (3) and Corollary 3.1,we have f−1(D)∈DaC(X) and C⊂ f−1(D). Hence ClDa (C)
⊂f−1(D), and it follows that f(ClDa (C) ) ⊂ D. Since this is true for any δ-closed
set D containing f(C), we have f(ClDa (C))⊂ Clδ(f(C)).
(4)−→(5) Let D ⊂ Y, then f−1(D) ⊂ X. By (4),
f(ClDa (f−1(D)))⊂ Clδ(f(f−1(D)))⊂Clδ(D). So that
ClDa (f−1(D)) ⊂ f−1(Clδ(D)).
(5)−→(6) Let G∈δC(Y) Then by (5), ClDa (f−1(G)) ⊂ f−1(Clδ(G))=f−1(G). In
consequence, ClDa (f−1(G))=f−1(G) and hence by Theorem 3.3(4), f−1(G)∈DaC(X).
(6)−→(7):Clear.
(7)−→(1): Let p∈ X and let O∈O(Y,f(p)). Set D = Int(Cl(O)) and C =f−1(D).
Since D∈ δO(Y), then by (7), C = f−1(D) ∈ DaO(X). Now, f(p) ∈ O= Int(O)⊂
Int(Cl(O)) = D it follows that p∈f−1(D)=C and f(C)=f(f−1(D)⊂D=Int(Cl(O).
(2)←→(8): Let N∈O(Y). Since Int(Cl(N))∈RO(Y),by (2), f−1(Int(Cl(N))∈DaO(X).
The converse is similar.
(3)←→(9)It is similar to (8)←→(2).
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(3)−→ (10): Let N∈βO(Y).Then by Lemma 5.1(2),Cl(N)∈ RC(Y).So by(3),f−1(Cl(N))
∈DaC(X) .Since f−1(N)⊂ f−1(Cl(N)) and by Theorem 3.3(4),ClDa (f−1(N))⊂ f−1(Cl(N)).
(10)−→ (11): and (12)−→ (13):Follows from Lemma 3.3
(11)−→ (12):It follows from the fact that SC(Y)⊂βC(Y)
(13)−→ (3):It follows from the fact that RC(Y)⊂SO(Y).
(2)←→ (14): Let N ∈PO(Y). Since Int(Cl(N)) ∈ RO(Y),then by (2),
f−1(Int(Cl(N))) ∈ DaO(X) and hence
f−1(N) ⊂ f−1(int(Cl(N))) = IntDa (f−1(int(Cl(N)))). Conversely,let N∈RO(Y).
Since N∈ PO(Y), f−1(N)⊂ IntDa (f−1(int(Cl(N)))) =IntDa (f−1(N)). In consequence,
IntDa (f−1(N))=f−1(N) and by Theorem 3.4, f−1(N) ∈ DaO(X).
(1)−→ (15): Let p∈X and N∈O(Y,f(p)). By (1), there exists M∈ DaO(X,p) such
that f(M) ⊂ Int(Cl(N)).Since N∈PO(Y),by Lemma 5.1, f(M) ⊂ sCl(N).
(15)−→ (16): Let p∈ X and N∈RO(Y,f(p)). Since N∈O(Y,f(p)) and by (15), there
exists M∈DaO(X,p) such that f(M)⊂ sCl(N). Since N ∈PO(Y), then by Lemma 5.1,
f(M) ⊂Int(Cl(N)) = N.
(16)−→ (17):Let p∈ X and V∈δO(Y,f(p)). Then, there exists G∈O(Y.f(p))such
that G ⊂ Int(Cl(G)) ⊂ N. Since Int(Cl(G))∈RO(Y,f(p)), by (16), there exists M∈
DaO(X,p) such that f(M) ⊂ Int(Cl(G))⊂ N.
(17)−→(1). Let p∈ X and N∈O(Y,f(p)). Then Int(Cl(N))∈ δO(Y,f(p)). By (17),
there exists M∈ DaO(X,p) such that f(M) ⊂ Int(Cl(N)). Therefore,f is almost con-
tinuous

Theorem 5.4. If f:(X,τ ) → (Y,η) is an almost Da-continuous injective function
and (Y,η) is r-T1 , then (X,σ) is Da-T1 .
Proof: It is similar to the proof of Theorem 4.3

Theorem 5.5. If f:(X,τ ) → (Y,σ) is an almost Da-continuous injective function
and (Y,σ) is r-T2 , then (X,τ ) is Da-T2 .
Proof: It is similar to the proof of Theorem 4.4

Lemma 5.2. [Ayhan and Ozkoç, 2016] Let (X,τ ) be a space and let A be a subset
of X. Then:
A ∈e∗O(X) if and only if Clδ(A) is regular closed.

Theorem 5.6. For a function f:(X,τ )→ (Y,η),the following are equivalent:
(a) f is almost Da-continuous;
(b) For every e∗-open set N in Y,f−1(Clδ(N)) is Da-closed in X;
(c) For every δ-semiopen subset N of Y,f−1(Clδ(N)) is Da-closed set in X;
(d) For every δ-preopen subset N of Y,f−1(Int(Clδ(N))) is Da-open set in X;
(e) For every open subset N of Y,f−1(Int(Clδ(N))) is Da-open set in X;
(f) For every closed subset N of Y,f−1(Cl(Intδ(A))) is Da-closed set in X .
Proof: (a)→(b):Let N∈e∗O(Y) Then by Lemma 5.2,Clδ(N)∈RC(Y).
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By (a),f−1(Clδ(N))∈DaC(X).
(b)→(c):Obvious since δSO(Y)⊂ e∗O(Y).
(c)→(d):Let N ∈δPO(Y),then Intδ(Y\N)∈δ-SO(Y).By (c),
f−1(Clδ(Intδ(Y\N))∈DaC(X) which implies f−1(Int(Clδ(N))∈DaO(X).
(d)→(e):Obvious since O(Y)⊂ δPO(Y).
(e)→(f):Clear
(f)→(a):Let N∈RO(Y).Then N=Int(Clδ(N)) and hence Y\N∈C(X). By (f),
f−1(Y\N)=X\f−1(Int(Clδ(N)))=f−1(Cl(Intδ(Y\N))∈DaC(X).
Thus f−1(N)∈DaO(X).

Lemma 5.3. [Ayhan and Ozkoç, 2016] Let (X,τ ) be a space and let A ⊂ X. The
following statements are true:
(a) For each A∈e∗O(X), a-Cl(A)=Clδ(A)
(b)For each A∈δSO(X), δ-pCl(A)=Clδ(A).
(c)For each A∈δPO(X),δ-sCl(A)=Int(Clδ(A)).

As a consequence of Theorem 5.6 and Lemma 5.3, we have the following
result:

Theorem 5.7. The following are equivalent for a function f:(X,τ )→ (Y,η):
(a) f is almost Da-continuous;
(b) For every e∗-open subset G of Y,f−1(a-Cl(G)) is Da-closed set in X;
(c) For every δ-semiopen subset G of Y,f−1(δ-pCl(G)) is Da-closed set in X;
(d) For every δ-preopen subset G of Y,f−1(δ-sCl(G))) is Da-open set in X;

References
ME Abd El-Monsef. β-open sets and β-continuous mappings. Bull. Fac. Sci.

Assiut Univ., 12:77–90, 1983.
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In this paper we prove that if n, k and t be positive integer numbers such that t < 

k < n and G is a non abelian p-group of order pnk  with derived subgroup of 
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1. Introduction 

Let G be a finite group and G = FR a presentation for G as a factor group of the 

free group F. Then Schur in [11], show that M(G) = (F0\R) [F,R] . 

(1.1) Recall that, for two finite groups A and B, AB _= ( AA0 )( BB0 ). 
Michael R. Jones in years 1973 and 1974 for the finite group G, get some 

inequalities for d(M(G)) and e(M(G)), which d(M(G)) and e(M(G)) the minimal 

number of generators and exponent of finite group G, respectively. now in 

current paper we generalized and compute the value d(M(G)) and e(M(G)) for 

non-abelian pgroups of order q = pnk and nilpotency c. 

Notation: The notation used in this paper is as follows: 

(i) If G is a finite group then E(G) denotes exponent of G and D(G) denotes 

the minimal number of generators of G. 

(ii) The the lower central series of a group G is denoted by G = g1(G) _ g2(G) = 
G0 _ g3(G) _ ..., where for j _ 1, gi+1(G) = [gi(G),G]. 
And the upper central series of a group G is denoted by 1 = Z0(G) _ Z1(G) = 
G0 _ Z2(G) _ ..., where for i _ 0, Zi+1Zi_ Z( GZi(G) ). 
The main theorem of this paper as follows. 

 

Main Theorem: Let n, k and t be positive integer numbers such that t < k < n 

and G is a non abelian p-group of order pnk with derived subgroup of order pkt 

and nilpotency class c, then the minimal number of generators of G, (D|M(G)|) 

is p12 ((2c−1)n2−k(k−1)−3n+4. 

 

2. Some definition, lemma and theorems 

The results of this section are several lemma and theorems, where the proofs of 

their in references [6], [7] and [8], and so we will be omitted. 

2.1. Lemma: Let G be a finite group and B a normal subgroup. Set A = GB 

. Let G = F R be a presentation for G as a factor group of the free group F and 

suppose B = SR so that A = FS . Then [F,S] [F,R][F,S,F]S0 is isomorphic with a factor 

group of AB. 

Proof. See to ([6], Lemma 2.1). 

2.2. Corollary. Further to the notation and assumptions of Lemma 2.1, let B 

2 be a central subgroup of G. Then [F,R] [F,R]S0 is an epimorphic image of AB. 

Proof. See to ([6]). 

2.3. Definition. Let G be a finite group. We say that G has (special) rank r(G) if 
every subgroup of G may be generated by r(G) elements and there is at least one 

subgroup that cannot be generated by fewer than r(G) elements. 

Let G = F R be a presentation for the finite p-group G as a factor group of a free 

group F. Let i+1 = gi+1(F) for all i. Since G0 = F0R R we have by (1.1), that 
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M( G G0 ) _= (F0\F0R) [F,F0R] = F0 [F,F0R] . 

With this notation we have: 

 

2.4. Theorem: Let G be a finite p-group of nilpotency class c and Qi = G 

gi(G) for 2 _ i _ c. Then (i) |G0||M(G)| _ |M( G G0 )c−1 i=1 |Qi+1gi+1(G)|, 

(ii)D(M(G)) _ D(M( G G0 ))+c−1 i=1 D(Qi+1gi+1(G)), 

(iii) E(M(G)) _ E(M( G G0 ))c−1 i=1 E(Qi+1gi+1(G)). 
(i) In the above notation, |G0||M(G)| = | F0 [F,R] | = |M( G G0 )| |[F,F0R] 

[F,R]| = |M( G G0 )| |[F,Fi+2R] [F,R]| I k=1 | [F,k+1R| [F,k+2R, for all i _ 1. Now, 1 = 

gc+1(G) = c+1R R so that c+1 _ R and [F,Fc+1R] = [F,R]. 

Next, gi(G) = iR R for all i _ 2. Thus [F,R](iR)0[F,iR,F] = [F,R]i+2 = [F,i+1R] 
and (i) follows by Lemma 2.1. (ii) We have, 

r( F0[F,R] ) _ r(M( G G0 ))+r([F,2R] [F,R] so that D(M(G)) _ D(M( G G0 ))+c−1 

i=1 r([F,i+1R] [F,i+2R] ), and (ii) again follows by Lemma 2.1. 

(iii) This follows as for (i) and (ii). 

 

3. The proof of main Theorem 

In this section we show that, Let n, k and t be positive integer numbers such that 

t < k < n and G is a non abelian p-group of order pnk with derived subgroup of 

order pkt and nilpotency class c, then the minimal number of generators of G, 

(D|M(G)|) is p1 2 ((2c−1)n2−k(k−1)−3n+4. For proof of this work we action as follows: 

Proof. Let n, k and t be positive integer numbers such that t < k < n and G is 

a non abelian p-group of order pnk with derived subgroup of order pkt and 

nilpotency class c. Then by using of Theorem 2.4(ii),we have 

D(M(G)) _ D(M( G G0 ))+c−1 i=1 D(Qi+1gi+1(G)). 
If D(M(G)) = n then the above relation will coming as follows: 

D(M(G)) _ 12 ((n+k−2)(n−k−1)+1)+n(c−1 i=1 gi+1(G)). 
= 12((n+k−2)(n−k−1)+1)+n2(c−1). Which the result now follows. 

In 1904, Schur [11,12] prove that for every finite groups H and K, then M(H × 
K) = M(H)×M(K)× H H0  K K0 . 

In 1957, Green [5] show that if G be a p-group of order pn, then |M(G)| _ 
p1 2 n(n−1). 

In 1967, Gaschatz el al [4] prove that if G be a d-generator p-group of order pn, 

G0 has order pc and G Z(G) is a d- generator group, then |M(G)|_ p12 

d(2n−2c−d−1)+2(d−1)c. 

In 1973, Jones [4-6] show that if G be a p-group of order pn and |G0| = pk, then 

|M(G)| _ p1 2 n(n−1)−k. 

In 1982, Byel and Tappe [2] shown that if G be a Extra especial p-group of order 

p2m+1, then 
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(i) If m _ n, than |M(G)| = p2m2−m−1. 

(ii) If m = 1, then the order of Schur multiplier of D8,Q8,E1 and E2 are equal 2, 

1, p2 and 1, respectively. 

In 1991, Berkovich [1] show that if G be a p-group of order pn, then t(G) = 0 if 

and only if G _= Z(n) p , and also t(G) = 1 if and only if G _= Z(2) or G _= E1. 

In 1994, Zhou [14]prove that if G be a p-group of order pn, then t(G) = 2 if and 

only if G _= Z×Zp2 or G _= D8, G _= E1×Zp. 

In 1999, Ellis [3]show that if G be a p-group of order pn, then t(G)=3 if and only 

if G _= Zp3 , G _= Z(2) p ×Zp2 or G _= Q8, G _= E2, G _= D8×Z2 or G _= E1×Z(2) p . 

In 2009, P.Niroomand [10] show that if G be a non-abelian finite p-group of 

order pn and |G0| = pk, then |M(G)| is p1 2 ((n+k−2)(n−k−1)+1. In particular, |M(G)| 
_ p1 2 (n−2)(n−1)+1, and the equality holds in this last bound if and only if G = E1×Z, 

where Z is an elementary abelian p-group. 

The Schur multiplier of abelian groups may be calculated easily by a result [12] 

which was obtained by Schur. So in this paper, we focus on non-abelianp-

groups. 

This paper is devoted to the derivation of certain upper bound for the Schur 

multiplier of non-abelian p-groups of order pnk with derived subgroup of order 

pk. We prove that |M(G)| _ p12 (nk+nt−2)(nk−nt−1)+n . In particular, if |M(G)| = p1 2 

(n(k+1)−2)(n(k−1)−1)+n, we characterize the structure of the group G. If G is a 

p-group of order pn, Jones [4] proved that |M(G)||G0| _ p1 2 n(n−1) which shows 

that |M(G)| _ p1 2 n(n−1)+1 when G is a non-abelian p-group of order pn. So, the 

general bound given above is better than Joness bound unless |G| = p3, in which 

case the two bounds are the same.The principal result of this paper is presented 

in the following theorem. 

 

Main Theorem. Let G be a non-abelian finite p-group of order pnk. If |G0| = 
pnt , then we have M(G) _ p1 2 (nk+nt−2)(nk−nt−1)+n. In particular M(G) _ p12 

(n(k+1)−2)(n(k−1)−1)+n, 

and the equality holds in this last bound if and only if n−1 and G = H×Z, where 

H is an extra special p-group of order p3n and exponent p, and Z is an elementary 

abelian p-group. 

 

Preliminaries and Elementary Theorems. 

In this section, we want to several Theorems and Lemmas whose proved in 

references 

[1-14]. At first we list the following theorems, which are used in our proofs. 

Our method for the proof is similar to P. Niroomand (2009) and Berkovich, 

Ya.G. 

(1991), which we compute for groups of order pnk. 
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Theorem 2.1.(See [7,theorem 3.1 and Theorem 4.1].) Let G be a finite p- group 

and let N be a central subgroup of G. Then |M(G N | _ |M(G)||G0 \N| _ |M(G N 

||M(N)||G N N| . 
 

Theorem 2.2.(See[9, Theorem 3.3.6].) Let G be an extra special p-group of 

order p2m+1. Then: 

(i) If m _ 2, then M(G) = p2m2−m−1. 

(ii) If m=1, then M(G) _ p2, and the equality holds if and only if G is of exponent 

p. 

Theorem 2.3.(See [9, Theorem 2.2.10].) For every finite groups H and K, we 

Have M(H ×K _= M(H)×M(K)× H H0  K K0 . 

Corollary 2.4. If G _= Cm1 ×Cm2 ×...×Cmk , where mi+1 divides mi for all i, 

1 _ i _ k, then M(G) _=Cm2 ×C(2) m3 ×...×C(k−1) mk . 

Proof of the Main Theorem 

In this section we want to prove our result. The following technical lemmas 

shorten the proof of our main Theorem. 

Lemma 3.1. Let G be a finite p-group of order pn such that G G0 is elementary 6 

of order pn−1, then G is a central product of an extra special p-group H and Z(G) 
such that H \Z(G) = G0. 

Proof. Let H G0 be the complement of Z(G) G0 in G G0 . Then G = HZ(G), so G0 = 
H0 and Z(H) = Z(G) \H. On the other hand, 1 6= Z(G) \H _ G0, and the result 

follows. 

Lemma 3.2. Let G be an abelian p-group of order pn which is elementary 

abelian. Then M(G) _ p1 2 (n−1)(n−2). 

Proof. the result is obtained obviously if G is cyclic. So, let G _=Cpm1×Cpm2× 

...×Cpmk such that k i=1mi = n and m1 _ m2 _ ... _ mk. We know that m1 _ 2, 

and then, by using Corollary2.4, |M(G)| = pm2+2m3+...+(k−1)mk 

_ p(m2+m3+...+mk)+(m3+...+mk)+...+mk _ p1 2 (n−1)(n−2). 
 
Lemma 3.3. Let G be a non- abelian p-group of order pnk with derived subgroup 

of order p such that G G0 is not elementary abelian, then M(G) < p12 

(nk−1)(nk−2)+1. 

Proof. by using Theorem 2.1 and Lemma 3.2, 

M(G) _ p−1|M( G G0 )|| G G0 G0| _ p−1p1 2 (nk−2)(nk−3)p(nk−1)  < p1 2 (nk−1)(nk−2)+1. 

which completes the proof. 

Lemma 3.4. let G be a non- abelian p-group of order pnk, such that G 

G0 is elementary abelian of order pnk−1, then M(G) _ p1 2 (nk−1)(nk−2)+1 and the 

equality holds if and only if G = H×Z, where H is extra special p- group of order 

p3n and exponent p, and Z is elementary abelian p-group. 

Proof. By Lemma 3.1, G is central product of H and Z(G), and Theorem 2.2, 

7 we may assume that |Z(G)| _ p2. Let |H| = p2m+1, so |Z(G)| = pn−2m. 
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Suppose first that m _ 2. If Z(G) is elementary abelian, let T be a group such 

that Z(G) _= G0×T. By using Theorems 2.2 and 2.3, we have 

|M(G)| = |M(H ×T)| = |M(H)||M(T)|| H H0 T| = p2m2−m−1p (n−2m−1)(n−2m−2) 2  

2m(n−2m−1) = p1 2 (n2−3m) < p12 (n−1)(n−2)+1. 

Now assume that Z(G) is not elementary abelian. Theorems 2.1 and 2.3 imply 

That |M(G)| _ p|M(H ×Z(G)| = p|M(H)||M(Z(G))|| H H0 Z(G)|. 

Hence by using Theorem 2.2 and Lemma 3.2, we have 

|M(G)| _ pp2m2−m−1p12 (n−2m−1)(n−2m−2)p2m(n−2m−1) < p1 2 (n−1)(n−2)+1. 

If H is extra special of order p3n and Z(G) is not elementary abelian, then 

Theorem 2.1 implies that |M(G)| _ p−1|M( G Z(G) ||M(Z(G))|| G Z(G) Z(G)| _ p12 

nk(nk−3)+1 < p1  2 (nk−1)(nk−2)+1. 

By Theorem 2.2, it is easy to see that if Z(G) is elementary abelian, then |M(G)|= 
p1 2 (nk−1)(nk−2)+1 if H is extra special of order p3n and exponent p; and in other 

cases |M(G)| < p1 2 (nk−1)(nk−2)+1. 

 

Proof of the Main Theorem we prove the theorem by induction on t. if t = 1 

the result is obtained by Lemma 3.2 and 3.4. Let G be a non-abelian p-group of 

order pnk with derived subgroup of order pnt(t _ 2). Choose K in G0 \Z(G) of 

order p−1. By using induction hypothesis, we have |M(GK )| _ p12  

nk+nt−4)(nk−nt−1)+n. 

On the other hand, By using Theorem 2.1, implies that |M(G)| _ p−1|M(Gk 

||M(K)||( G G0 K)| _ p−1p12 (nk+nt−4)(nk−nt−1)pn−1p(nk−nt) _ p12 

(nk+nt−4)(nk−nt−1)pn−1p(nk−nt) p12 (nk+nt−2)(nk−nt−1)+n. 

Now let G be a p-group of order pnk such that |M(G)| = p1 2 (nk−1)(nk−2)+n. If 

|G0| _ p2k, then |M(G)| _ p1 2 (n(k−1)−1)(n(k+1)−2), which is a contradiction. 

Since |G0| = pk, Lemma 3.3 implies that G /G0 is elementary abelian. Hence 

Lemma 3.4 shows that G = H ×Z, where H is an extra special p- group of order 

p3n and exponent p, and Z is an elementary abelian p-group, so the result follows. 
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Abstract 

In this paper, we investigate on the thermodynamic behavior of Polytropic 

gas as a candidate for dark energy by considering the relation  𝑃 =

𝐾𝜌1+
1

𝑛  , where 𝐾 and 𝑛 are the Polytropic constant and Polytropic index 

respectively. Furthermore, 𝑃 indicates the pressure and 𝜌 is the energy 

density of the fluid such that 𝜌 =
𝑈

𝑉
 where 𝑈and 𝑉 represent the internal 

energy and volume, respectively. At first, we find an exact expression for 

the energy density of the Polytropic gas using thermodynamics and later 

on, discuss different physical parameters. Finally our study shows that the 

Polytropic gas may be used to describe the expansion history of the 

universe from the dust dominated era to the current accelerated era and it 

is thermodynamically stable. 
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1. Introduction 
 

Cosmologists suggest that our universe expands under an accelerated 

expansion [1]-[7]. In the standard Friedman Lemaitre Robertson Walker 

(FLRW) cosmology, a new energy with negative pressure, called dark energy 

(DE) is responsible for this expansion [8]. The nature of the DE is still 

unknown and various problems have been proposed by the researchers in this 

field. About 70% of the present energy of the universe is contained in the DE. 

The cosmological constant with the time independent equation of state is the 

earliest, simplest and most traditional candidate for the dark energy which can 

be taken into account as a perfect fluid satisfying the relation 𝜌 + 𝑃 = 0. But it 

has some problems like fine-tuning and cosmic coincidence puzzles [9], [10].  

Besides the cosmological constant, the other dark energy models are 

quintessence [11], phantom [12], tachyon [13], holographic dark energy [14] 

[15], K-essence [16] and Chaplygin gas models with various equation of state.  

Polytropic gas is one of the dynamical dark energy models [17].  

In the present study, we want to investigate the thermodynamic   

behavior of the Polytropic gas. K. Karami et al. investigated the interaction 

between the Polytropic gas and cold dark matter and found that the Polytropic 

gas behaves as the phantom dark energy [18]. K.  Karami and S. Ghaffari 

showed that the generalized second law of thermodynamics is always satisfied 

by a universe filled with a Polytropic gas and a cold dark matter [19]. K. 

Kleidis and N.K. Spyron used the first law of thermodynamics in the 

Polytropic gas model and they show that the Polytropic gas behaves as dark 

energy and this model leads to a suitable fitting with the observational data 

about the current expanding era [20]. H. Moradpour, A. Abri and H. Ebadi, 

investigated the thermo dynamical behavior and stability of the Polytropic gas 

[21]. M. Salti et al. discussed validity of the first and generalized second law 

of thermodynamics in locally rotationally symmetric Bianchi-type II space 

time which is dominated by a combination of Polytropic gas and baryonic 

matter[22]. Moreover, Muzaffer Askin et al. studied the cosmological 

scenarios of the Polytropic gas dark matter-energy proposal in a Friedmann- 

Robertson- Walker universe and they found an exact expression for the energy 

density of the Polytropic gas model according to the thermo dynamical point 

of views and a relationship between a homogeneous minimally coupled scalar 

field and the Polytropic gas [23].This paper is organized as follows: in section 

2 we construct the basic thermodynamic formalism of the Polytropic gas 

model and discuss the thermodynamic behavior of this model. Finally in 

section 3 we provide a brief discussion.     
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2. Basic Formalism  

 

In this work, we consider the following equation of state which is well known 

as Polytropic gas equation of state  

𝑃 = 𝐾𝜌1+
1

𝑛                (1) 

Here 𝐾(> 0) and 𝑛(< 0) are Polytropic constant and Polytropic index 

respectively. Moreover, 𝑃 is the pressure and 𝜌 is the energy density of the 

fluid such that 

𝜌 =
𝑈

𝑉
             (2) 

Where 𝑈and 𝑉 are the internal energy and volume filled by the fluid 

respectively. 

First of all, we try to find the internal energy 𝑈 and energy density 𝜌 of the 

polytropic gas as a function of its volume 𝑉 and entropy 𝑆.  

From the general thermodynamics, we have 

(
𝜕𝑈

𝜕𝑉
)

𝑆
= −𝑃                     (3) 

From the equations (1), (2) and (3), we get 

(
𝜕𝑈

𝜕𝑉
)

𝑆
= −𝐾 (

𝑈

𝑉
  )

1+
1

𝑛
                      (4) 

Integrating the equation (4), we get 

 

𝑈 = (−1)−𝑛 (𝐾𝑉−
1

𝑛 + ξ)
−𝑛

            (5) 

Where the parameter ξ is the constant of integration which may be a universal 

constant or a function of entropy 𝑆 only 

The equation (5) also can rewrite in the following form 

𝑈 = (−1)−𝑛𝐾−𝑛𝑉 (1 + (
V

ε
)

1

n
)

−𝑛

           (6) 

Where        𝜀 = (
𝐾

ξ
)

𝑛

         (7) 

And it has a dimension of volume. 

Therefore, the energy density 𝜌 of the Polytropic gas is 

𝜌 =
𝑈

𝑉
=  (−1)−𝑛𝐾−𝑛 (1 + (

V

ϵ
)

1

n
)

−𝑛

                    (8) 

When  𝑛 < 0 then equation (8) gives 

                                   𝜌 ∼  (−1)−𝑛𝐾−𝑛 𝜀

𝑉
                            (9) 

Now we will use these equations to discuss different physical parameters. 

 

 

 



Prasanta Das and Kangujam Priyokumar Singh 

 

264 

 

a) Pressure: 
 

Using the equation (8) in the equation (1) we get the pressure of the Polytropic 

gas as a function of entropy 𝑆 and volume 𝑉 in the following form 

𝑃 = (−1)𝑛+1𝐾−𝑛 (1 + (
V

ϵ
)

1

n
)

−(𝑛+1)

                             (10) 

We can rewrite the equation (10) in the following form 

𝑃 = −
𝜌

1+(
V

ϵ
)

1
n

                                                 (11) 

 

When 𝑛 < 0 and   𝜀 does not diverge then for small volume i.e. at early stage 

of universe,  𝑉 ≪ 𝜀 ie 
𝑉

𝜀
≪ 1 , we get 

P ≃ 0 , which represents a dust dominated universe. When 𝑛 < 0 and  𝜀 does 

not diverge then for large volume i.e. at late stage of universe, 𝑉 ≫ 𝜀 ie  
𝑉

𝜀
≫ 1, we get P ≃ −𝜌, which indicates an accelerated expansion of the 

universe.   

 

b) Caloric equation of state: 
 

Now from the equations (8) and (10) we get the caloric equation of state 

parameter as 

𝜔 =
𝑃

𝜌
= −

1

1+(
V

ϵ
)

1
n

                                                          (12) 

When 𝑛 < 0 and   𝜀 does not diverge then for small volume 𝑉 ≪ 𝜀 ie  
𝑉

𝜀
≪ 1 , 

we get 𝜔 ≃ 0  (Dust dominated)  

When 𝑛 < 0 and  𝜀 does not diverge then for large volume 𝑉 ≫ 𝜀 ie  
𝑉

𝜀
≫ 1 , 

we get 𝜔 ≃ −1 (Cosmological constant) 

Thus the equation of state parameter (  𝜔) of the Polytropic gas with 𝑛 < 0 is 

decreased from 𝜔 ≃ 0  (for small volume) to 𝜔 ≃ −1 (for large volume). It 

indicates that the universe expands from the dust dominated era to the current 

accelerating era. 

 

c) Deceleration parameter: 

We get the deceleration parameter of the Polytropic gas with the help of 

equation (12) 
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   𝑞 =
1

2
+

3

2

𝑃

𝜌
=

1

2
−

3

2

1

1+(
V

ϵ
)

1
n

            (13) 

When 𝑛 < 0 and   𝜀 does not diverge then for small volume 𝑉 ≪ 𝜀 ie  
𝑉

𝜀
≪ 1 , 

we get 𝑞 > 0,  which correspond to the deceleration universe.    

When 𝑛 < 0 and  𝜀 does not diverge then for large volume 𝑉 ≫ 𝜀 ie  
𝑉

𝜀
≫ 1 , 

we get 𝑞 < 0,  which correspond to the accelerated universe.  

 

d) Square velocity of sound: 
 

From the equation (11) we get the velocity of sound (𝑉𝑠 )  as 

     𝑉𝑠
2 = (

𝜕𝑃

𝜕𝜌
)

𝑆
= −

1

1+(
V

ϵ
)

1
n

                (14) 

When 𝑛 < 0 and   𝜀 does not diverge then for small volume 𝑉 ≪ 𝜀 ie 
𝑉

𝜀
≪ 1, 

we get 𝑉𝑠
2 ≃ 0  .Since velocity of sound is zero in vacuum. Therefore the 

Polytropic gas behaves like a pressure less fluid at the early stage of the 

universe. When 𝑛 < 0 and  𝜀 does not diverge then for large volume 𝑉 ≫ 𝜀  ie  
𝑉

𝜀
≫ 1, we get 𝑉𝑠

2 ≃ −1, which gives an imaginary speed of sound leading to a 

perturbation cosmology. 

 

e) Thermodynamic stability: 
 

The conditions of the thermodynamic stability of a fluid are  

(
𝜕𝑃

𝜕𝑉
)

𝑆
< 0                     (15) 

And                                    𝐶𝑉 > 0                (16) 

Here 𝐶𝑉  is the thermal capacity at constant volume. From the equation (10) 

we have 

 

(
𝜕𝑃

𝜕𝑉
)

𝑆
= − (1 +

1

𝑛
)

𝑃

𝑉

1

1+(
V

ϵ
)

−
1
n

              (17) 

If −1 < 𝑛 < 0 and 𝜀 < 0 then from (17), we have 

(
𝜕𝑃

𝜕𝑉
)

𝑆
< 0 

Thus the stability condition (15) of thermodynamics is satisfied. 

Now we have to verify the positivity of the thermal capacity at constant 

volume  𝐶𝑉   where   𝐶𝑉 = 𝑇 (
𝜕𝑆

𝜕𝑇
)

𝑉
   (18) 
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Now we determine the temperature 𝑇 of the Polytropic gas as a function of its 

entropy 𝑆 and its volume 𝑉. The temperature 𝑇 of the Polytropic gas is 

determined from the relation 

𝑇 = (
𝜕𝑈

𝜕𝑆
)

𝑉
      (19) 

Using (6) in (19) we get 

𝑇 = (−1)𝑛+1𝑉1+
1

𝑛 (𝐾 + 𝜉𝑉
1

𝑛)
−(𝑛+1)

𝑑𝜉

𝑑𝑆
                         (20) 

This gives the temperature of the Polytropic gas.  

We can rewrite the equation (20) in the following form 

𝑇 = −𝑛
𝜌𝑉

1+
1
𝑛

1+(
V

ϵ
)

1
n

𝑑𝜉

𝑑𝑆
              (21) 

From (5) we have 
[𝜉]−𝑛 = [𝑈]             (22) 

Since           [𝑈] = [𝑇𝑆]                          (23) 

Therefore from the equations (22) & (23) we get 

𝜉 = [𝑈]−
1

𝑛 = [𝑇∗𝑆]−
1

𝑛                       (24) 

Where 𝑇∗ (> 0) is a universal constant with temperature dimension. 

Differentiating (24) with respect to ‘S’ we get 
𝑑𝜉

𝑑𝑆
= −

1

𝑛
𝑇∗

−
1

𝑛𝑆−
1

𝑛
−1

                        (25) 

Using (8) & (24) in (25) we get 

𝑇 = (−1)𝑛𝑉1+
1

𝑛 (𝑇∗

−
1

𝑛𝑆−
1

𝑛
−1) [𝐾 + 𝑇∗

−
1

𝑛𝑆−
1

𝑛𝑉
1

𝑛]

−(𝑛+1)

 (26) 

This leads to the entropy of the Polytropic gas as 

𝑆 = [(−1)
𝑛

𝑛+1 (
𝑇∗

𝑇
)

1

𝑛+1
− 1]

𝑛

     
𝑉

𝐾𝑛𝑇∗
                      (27) 

We know that entropy (𝑆) of a thermo dynamical system should be positive 

ie 𝑆 > 0  [24] 

Here 𝑆 > 0 if 𝐾𝑛𝑇∗ > 0 

Now the thermal capacity at constant volume is   

𝐶𝑉 = 𝑇 (
𝜕𝑆

𝜕𝑇
)

𝑉
 

= (−1)
2𝑛+1

𝑛+1 (
𝑛

𝑛+1
)

𝑆

[(−1)
𝑛

𝑛+1(
𝑇∗
𝑇

)

𝑛
𝑛+1−1]

(
𝑇∗

𝑇
)

1

𝑛+1
     (28) 

Therefore, the condition  𝐶𝑉 > 0  is satisfied if 𝐾𝑛𝑇∗ > 0. Thus both the 

conditions of thermo dynamic stability are satisfied. So the Polytropic gas is 

thermo dynamically stable. 
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3. Discussion  
 

We have studied the thermo dynamical behavior of the Polytropic gas. Here, 

we have considered the value of   𝑛 < 0  to study the whole work done in this 

article. Some important results are given below:  

(i) As we have considered 𝑛 < 0 , the pressure goes more and 

more negative as volume increases. 

(ii) The equation of state parameter (𝜔) of the Polytropic gas is 

𝜔 ≃ 0 at early stage of the universe and 𝜔 ≃ −1 at late stage of 

the universe. This indicates that the universe expands from the 

dust dominated era to the present accelerated era. 

(iii) The deceleration parameter (𝑞) is investigated in the context of 

thermodynamics as well as Polytropic gas and our analysis 

shows that universe is decelerated (𝑞 > 0) at early stage of the 

universe and accelerated (𝑞 < 0) at late stage of the universe. 

Both the conditions of the thermo dynamical stability of the Polytropic gas are 

studied for 𝐾𝑛𝑇∗ > 0 and our analysis shows that the Polytropic gas is 

thermodynamically stable.   
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