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How to define and test explanations
In populations

Peter J. Veazie”

Abstract

Solving applied social, economic, psychological, health care and
public health problems can require an understanding of facts or
phenomena related to populations of interest. Therefore, it can be
useful to test whether an explanation of a phenomenon holds in a
population. However, different definitions for the phrase “explain
in a population” lead to different interpretations and methods of
testing. In this paper, | present two definitions: The first is based
on the number of members in the population that conform to the
explanation’s implications; the second is based on the total
magnitude of explanation-consistent effects in the population. |
show that claims based on either definition can be tested using
random coefficient models, but claims based on the second
definition can also be tested using the more common, and simpler,
population-level regression models.  Consequently, this paper
provides an understanding of the type of explanatory claims these
common methods can test.

Keywords: Explanation, statistical testing, population regression
models, random coefficient models, mixture models
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1. Introduction

Science provides explanations for facts, phenomena, and other
explanations. In applied research that draws on theories from disciplines such
as Economics, Psychology, Sociology, and Organizational Science, among
others, this can require testing whether a proposed explanation explains a
given fact, phenomenon, and other explanation in a specified population. For
example, one might wish to test whether a proposed explanation based on
Psychology’s Regulatory Focus Theory [1, 2] explains physician risk tolerance
in treatment choice (the phenomenon) among primary care physicians in the
United States (the population). However, what is meant by the phrase explains
in a population? Is it that the proposed explanation accounts for the behavior
of every member of the population? This is a high bar: one member of the
population for whom the explanation does not hold falsifies the claim. Is it
that the proposed explanation accounts for the behavior of at least one
member? This is equally extreme: only one member of a population for whom
the explanation holds warrants the claim. The claim is ambiguous. Specific
definitions are required if such claims are to be understood and tested.

This paper provides definitions and identifies methods for testing
corresponding explanatory claims. These definitions and the identification of
corresponding methods are new contributions that provide conceptual and
methodological guidance for researchers who seek to test explanations in
populations. The methods themselves, however, are in common use: random
coefficient models and population-level regression models.  Therefore,
whereas a goal of this paper is to show which methods can be used to test
specific explanatory claims, I do not present the implementation of the
methods: there are many textbooks and articles that provide this information
[e.g. 3, 4]. For simplicity of presentation, | only reference phenomena as the
target of explanation rather than also facts and other explanations; however,
any of these are applicable throughout.

2. Defining explain

Before providing the required definitions, I will clarify what | mean by to
explain and by an explanation. For this paper, to explain something is to
provide a way of understanding it through a conceptual structure that accounts,
at least in part, for that which is being explained [5, Ch. 9]. The conceptual
structure is the explanation. One might imagine there is a single explanation
for any given phenomenon. However, for macro-level phenomena, such as
organization and human behaviors, there may be multiple ways of
understanding them. For example, a human behavioral phenomenon may have
sociological  explanations, psychological explanations, physiological
explanations, and more. Any one of the explanations could be referred to as
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How to define and test explanations in populations

an explanation, and no one of them referred to as exclusively the explanation.
Moreover, an explanation need not be complete. There may be many causal
factors or mechanisms that contribute to the phenomenon; however, an
explanation might focus only on a subset.

An explanation can be intended to provide an understanding of a
phenomenon as it is [6, Ch. 4], a de re explanation; or, it can be intended to
provide an understanding that, nonetheless, contains explicitly presumed
falsehoods [7, 8], a de ficta explanation. All terms of a de re explanation refer
to presumed real objects, qualities, characteristics, and relationships.
Designation as a de re explanation does not guarantee truth, nor does it imply
the researcher believes it is true; indeed, if the researcher believed the
explanation was in fact true, there is no need for further inquiry [9].
Moreover, it is common to expect even a well-established theory-based
explanation to be incorrect in some unknown way. It is the ontological
commitments (the presumption that explanatory terms intend to have real
referents) of the explanation’s terms that qualify it as a de re explanation.
However, a de ficta explanation contains at least one identified term that is
presumed to be false. These are often explanations that contain idealizations
(e.g. the discrete energy levels in the Bohr model of the atom [10-12], and the
rationality of the rational choice model in classic microeconomics [13, 14]) or
analogies (e.g. the computer analogy or corporate analogy of information
processing in cognitive science [15]). Given there need only be a single
presumed false term to warrant designation as a de ficta explanation, the
remaining terms have substantive ontological commitments. Such de ficta
explanations are presumed to be partially true [7]. Although these definitions
do not restrict explanations to those that are amenable to empirical
investigation, this paper is written to provide guidance for empirical
researchers. Consequently, the focus of the discussion herein is on scientific
explanations that have empirical implications.

In the applied sciences, the goal of both de re and de ficta explanations is to
guide interventions, actions, or policy. The pursuit and use of a de re
explanation are based on the belief that understanding the world as it is
provides assurance that consequent interventions, actions, and policies are
more likely to work and generalize, and the causes for their failure are more
likely to be identified. The de ficta explanation does not carry as great an
assurance in these regards as it includes identified false claims. However, the
de ficta explanation can be simpler, easier to develop and understand, and
easier to apply. Both types of explanation are usefully employed.

Explanations are often assessed in terms of explanatory power.
Explanatory power characterizes explanations in terms of explanatory virtues
such as generality, coherence, accuracy, and predictive ability, among others
[8, 16]. It has been qualitatively defined in terms of the scope of questions it
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can address [16], and it has been the basis for formal probability-based
measures [17-20]. However, for the purposes of applied science another
aspect of power can be useful: effective power.

Applied researchers often focus on the ability to influence specific
outcomes and therefore seek explanations to inform actions that can produce
specific effects. For example, researchers may seek to reduce systolic blood
pressure, decrease expected expenditures, or expand social networks rather
than seek to account for variation. To achieve such goals, it can be important
to assess a phenomenon’s responsiveness to an explanation, its effective
power. Effective power is different from accuracy and predictive power (the
abilities to account for and predict phenomena and behavior). Consider an
explanation of the relationship between behavior Y and explanatory factor X
for two individuals w and v. Suppose the effect of the explanation on Y can be
modeled as a simple linear function of X with a positive coefficient, in which
variable X completely determines Y for individual w and only partially
determines Y for individual v:

Yw = Bw'xw
and
Yv = Bv-Xv + B

The predictive power for w is greater than that for v; indeed, the predictive
power for w is perfect, whereas it is only partial for v, due to the additional
term Ey. However, if Bw = Py, then variable X has the same relationship with
behavior Y for both and thereby having the same effective power: a difference
in X corresponds to the same difference in Y for both w and v. If By > Bw, then
the explanation has greater effective power for v, even though it has greater
predictive power for w. Effective power represents the responsiveness to the
explanation whereas accuracy and predictive power represents the extent of Y
accounted for by the explanation. As an analogy, consider a regression
analysis, in the above example effective power is analogous to B and
predictive power is analogous to the coefficient of determination (commonly
termed R-square) or an out-of-sample prediction metric. Like Schupbach and
Sprenger’s [18] definition of explanatory power, effective power can be
negative for a proposed explanation, if the response is counter to that implied
by the explanation: for example, the case in which the B’s in the preceding
example were in fact negative, contrary to the explanatory implication of
positive B’s.

We can understand a population-level de re or de ficta explanatory claim as
a reductive explanation: an explanation that applies to a population in virtue of
an aggregation of the explanation’s application to its members. This is kin to
what Strevens terms an aggregative explanation [8]. For example, where |
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may seek to explain physician risk tolerance in treatment choice among
primary care physicians in the United States, the proposed explanation is
regarding its members’ relevant behaviors (the behaviors of individual
physicians). So, regardless of the number of members in the population,
which can be as few as one, our definition of the phrase a potential
explanation explains a given phenomenon in a population represents an
aggregation of an individual-level explanation across the members of the
population.

As stated in the introduction, definitions that require explanation of either
every member or only one member of a population are extreme. Appropriate
definitions are likely somewhere in between. This paper focuses on two:

Definition 1. An explanation explains a phenomenon in a population if, and
only if, it has positive effective power for most members of the population.

Definition 2. An explanation explains a phenomenon in a population if, and
only if, its cumulative magnitudes of effective power among the members of
the population for whom the explanation holds exceeds its cumulative
magnitudes of effective power among the members of the population for
whom the explanation does not hold.

These definitions are based on minimal criteria. In the first case, it would
be difficult to support an explanatory claim regarding scope if the possible
explanation only applied to a minority of population members. In the second
case, it would be difficult to support an explanatory claim regarding
cumulative power if the possible explanation was associated with less
cumulative power than the counter-explanation in a population. However, this
is arbitrary, and we need not take the minimal stance. We can generalize the
definitions to vary with a definitional parameter q:

General Definition 1. An explanation explains a phenomenon in a
population if, and only if, it has effective power for at least q percent of the
members of the population.

General Definition 2. An explanation explains a phenomenon in a
population if, and only if, its cumulative magnitudes of effective power among
the members of the population for whom the explanation holds exceeds q
times its cumulative magnitudes of effective power among the members of the
population for whom the explanation does not hold.

The remaining sections focus on the minimal definitions, however the
general testing method in Section 4.1 can be used to test these general
definitions as well.
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3. Defining Testable Implications

To test claims based on the preceding definitions, we required
corresponding operational definitions in terms of testable implications:

Operational Definition 1. If an explanation explains a phenomenon in a
population, then the implications of the explanation hold for most of the
members of the population. And, under reasonable presumption (i.e. credible
alternative explanations are accounted for), if the implications of the
explanation hold for most of the members of the population, then an
explanation explains a phenomenon in a population.

Operational Definition 2. If an explanation explains a phenomenon in a
population, then the cumulative strength of the explanation’s implications
among the members of the population for whom the explanation holds exceeds
the cumulative strength of the counter-implications among the members of the
population for whom the explanation does not hold. And, under reasonable
presumption (i.e. credible alternative explanations are accounted for), if the
cumulative strength of the explanation’s implications among the members of
the population for whom the explanation holds exceeds the cumulative
strength of the counter-implications among the members of the population for
whom the explanation does not hold, then an explanation explains a
phenomenon in a population.

The first conditional in each operational definition allows evidence against
each consequent (the testable implications) to provide evidence against the
explanatory claim. The second conditional allows evidence for each
antecedent (the testable implications) to provide evidence for the explanatory
claim. The first conditionals are typically derived from the explanation. The
second conditionals draw more upon the weaker condition of presumption-
based reasoning [21], which is grounded in current background knowledge and
is thereby defeasible: future changes in scientific understanding can negate the
conditional. A strong reasonable presumption for the second conditionals is
achieved if there are no credible alternative explanations for the testable
implications.

Regarding operational definition 1, we might say, for example, that a
Regulatory-Focus-Theory-based explanation explains physician risk tolerance
in treatment choice among primary care physicians in the United States if a
higher promotion focus (a term in Regulatory Focus Theory [1, 22]) leads
physicians to have higher risk tolerance (the explanation’s implication) for
more than half of the physicians, accounting for alternative explanations.
Regarding operational definition 2, we might say that a Regulatory-Focus-
Theory-based explanation explains physician risk tolerance in treatment choice
among primary care physicians in the United States if the cumulative
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magnitudes of effect of promotion focus on risk tolerance among physicians
for whom a higher promotion focus leads the physician to have higher risk
tolerance exceeds the cumulative magnitudes of effect of promotion focus on
risk tolerance among physicians for whom a higher promotion focus leads the
physician to have lower risk tolerance (or no relationship).

We can generalize the operational definitions, as we did with the original
definitions, to vary with a definitional parameter g:

General Operational Definition 1. If an explanation explains a phenomenon
in a population, then the implications of the explanation hold for q percent of
the members of the population. And, under reasonable presumption (i.e.
credible alternative explanations are accounted for), if the implications of the
explanation hold for g percent of the members of the population, then an
explanation explains a phenomenon in a population

General Operational Definition 2. If an explanation explains a phenomenon
in a population, then the cumulative strength of the explanation’s implications
among the members of the population for whom the explanation holds exceeds
g times the cumulative strength of the counter-implications among the
members of the population for whom the explanation does not hold. And,
under reasonable presumption (i.e. credible alternative explanations are
accounted for), if the cumulative strength of the explanation’s implications
among the members of the population for whom the explanation holds exceeds
g times the cumulative strength of the counter-implications among the
members of the population for whom the explanation does not hold, then an
explanation explains a phenomenon in a population.

To test claims based on the preceding definitions, we start by identifying
the proposed explanation’s implications.  Specifically, we presume an
explanation-implied relationships g between variables Y and X (as defined in
the context of the phenomenon and explanation), with parameter &

og(x; 0
y =9g(x;0) ,Suchthat%e]me , VXeR, . 1)
This is to say that we have a proposed explanation e of a phenomenon that
implies variables X and Y are related by some, perhaps unknown, function g
such that for all values x in range R, the derivative of g with respect to x (or

the difference quotient if R, is a discrete set) is in the set D,. Note that the
The 29(x0)
OX

derivatives across multiple X variables. And, the implications for any given
derivative can be multi-part, having different ranges for the derivative across

implications can be more general: term can be a vector of

11
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different x-values. However, for ease of presentation this paper focuses on
single-part implications.

A simple example is g specified as a linear relationship, y = o + B-X, such
that the proposed explanation e implies dy/dx > 0, i.e. D, = (0,00), for all

positive values of X, i.e. R, = (0,0). Applying this equation to all members of

Q, we can say that if 3 is positive for most members of a population Q, then e
explains by definition 1. If the sum of the magnitude of B’s across all
members of Q for whom >0 exceeds the sum of the magnitudes of B’s across
all members for whom <0, then e explains by definition 2.

To formalize the concept of explain, consider the following variable A
defined forw e Qandx € R, :

)

A(W, X) = h(wj .

OX

The function h provides the relevant interpretation for explain. The two
functions considered in this paper for h provide interpretations for explain as
the scope of the explanation (definition 1 above) and as the power of the
explanation (definition 2 above). These are detailed below.

We can use two functions to separate the A’s into groups. The first picks
out A for the explanation-implied range of values for dg/ox, and the second
picks out A for the range of values outside of the explanation-implied range—
the counter-explanation range:

A(w, x) if Meﬂ)

A (W, X) = OX ¢ 3
0 Otherwise
and
. 0g(x;0(w))
A (W, x) = A(w, x) if —ax e]l))e. (@)
0 Otherwise

The sum of the magnitudes of A* across population Q at value x reflects the
extent of the proposed explanation’s implications in the population at x (the
interpretation depending on h). The sum of the magnitudes of A" across
population Q at value x reflects the extent of counter-explanation implications
in the population at x.

For both specifications of h discussed below, a useful formalization of
explain is to say that the proposed explanation explains a phenomenon in a
population if the accumulated magnitudes of A is larger in the explanation-

12
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implied region than in the counter-explanation region for all points in a
specified set B of x-values. For arbitrary value x in B, this implies for both
definitions 1 and 2 that

> (A+(w,x)|)> > (|A‘(W,x)|). (5)

wef{w: X (w)=x} wef{w: X (w)=x}

For the generalized definitions this is

S (we)se S () ©

we{w: X (w)=x} we{w: X (w)=x}

where g° = /(100 — q) for generalized definition 1, and q°= q for generalized
definition 2.

Denoting the statement e explains p in Q on set B asE(e, p,Q2,B), the
corresponding claims are E(e, p,Q,B) =True and E(e, p,Q2,B) = False. The
claim that the proposed explanation holds (i.e. E(e, p,Q2,B)=True) is

asserted if for all points x in the set B the proposed explanation’s implication
exceeds that for the counter-explanation implication. The claim that the
proposed explanation does not hold (i.e. E(e, p,Q2,B)=False) is asserted if

there exists at least one point in B for which the counter-explanation
implication exceeds the proposed explanation’s implication.
It is useful to take B to be one of two sets: either a singleton {x} or the

phenomenologically-relevant rangeR, . Claims E(e, p,QQ,R,) are what we
may consider when testing whether a proposed explanation explains, whereas
point-wise claims E (e, p, Q,{x}) are useful in understanding where in the range
of x-values the claims E(e, p,<Q, R, ) fail, if indeed they fail, or at which points
of X is the underlying proposed explanation is either least or most powerful.
There are occasions, however, when E(e, p,Q,R, ) is too strict: do we really

want to say a proposed explanation does not explain in a population because it
doesn’t hold at a single point x? For example, suppose economic demand
follows the predicted relationship with price at all prices except at $1, do we
say the price-demand theory does not hold in the population because of this
singular exception? Perhaps we should account for how important it is that the
explanation hold at $1, or account for how many people face a price of $1 for
the good being considered. We can address these concerns by taking a

weighted average of x-specific effects across the range of x-values in R,
using a probability distribution for X conditional on x € R, . Denoting this
general explanatory claim as E(e, p,Q), it requires the weighted sum across
all x-values being considered and thereby can balance non-explanatory points
of R, with other strongly explanatory points. Its interpretation depends on

13
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the definition of the probability for X [23]. For example, it can be helpful to
consider claims regarding E(e, p,Q) in terms of random variables defined on

population Q, with equal probabilities assigned to each member of Q. Using
Q as its domain, the variable X provides the value x that each member is
facing. The probability distribution of X therefore represents the actual
normalized frequency of X in the population, and consequently E(e, p,Q) is

based on the corresponding weighted average across this distribution.
Figure 1 presents an example in which the explanation implies negative

derivatives of g with respect to x, i.e. I, =(—o,0) for all values of x in R,

but for which the actual g is as shown. It is clear, regarding the point-wise
explanations, that the claim E(e, p,2,{x}) = True holds true only for x less

than x*, but E(e, p,2,{x}) = False for all x greater than x*. Consequently,
due to the existing values of X for which the explanatory implications do not
hold (i.e. for x > x*), the overall claim is therefore E(e, p,Q,R, )= False.

On the other hand, for f(x) denoting the density of X based on P(x|xeR,),

the general claim weighted by this probability is E(e, p,2) =True as there is

little probability associated with x-values in the contra-explanatory range of
derivatives.

o

Figure 1. Example of B{g g, 00 E ) = Mo because dgidx = 0 for
some xin B (Le. for x = x¥), and Ele, p, €0) =Tes because the
density fweights dg/dy heavily in the explanation-consistent
region (1.e. where dg/dy = () and trivially in the non-explanation
consistent region (1e. where dg/dx = 0).

14
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As mentioned above, two specifications for h are considered here. The
first, for definition 1, specifies h as a constant function with value 1:

A(w,x) =1, for all w and x. @)
This leads to

. 0g(x;O(w))
1if =—=—">2D
A" (W, X) = oX =P (8)
0 Otherwise

and

= 0g(Xx;0(w))
1if ——>2¢D
A~ (W, X) = X °. ©)
0 Otherwise

By this definition, the sum of the absolute values of A" is the number of people
whose X and Y relationship follows the proposed explanation’s prediction at
specified x-values. The sum of absolute value of A" is the number of people
whose X and Y relationship do not follow the proposed explanation’s
prediction. A proposed explanation explains at x, by equation 5, if more
people in the population follow the prediction than do not when X = x.

The second specification, which is used for definition 2, is to define h as the
identity function, and therefore A is

A(W, X) = w . (10)
This leads to
og(x;0(w)) .. ag(x0(w))
A (W, X) = OX I OX <D (11)
0 Otherwise
and
og(x;0(w)) .. ag(x;0(w))
A (W, X) = OX I OX G (12)

0 Otherwise

The corresponding definition for explain compares the accumulated
magnitudes of A between the explanation-implied region and the counter-
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explanation region, which reflects the cumulative effective power of the
explanation in the population.

The difference between these two corresponding specifications for h is that
the first claim, E1, focuses on the scope (the number or proportion of the
population consistent with the explanation), whereas the second claim, E,
focuses on the cumulative power of the explanation. It is possible for an
explanation to apply to a minority of people in the population, but it does so
with greater strength in the magnitude of A among this minority than is the
magnitude of A for the majority, who are not in the implied region. In this
case the explanation would be considered as explaining in terms of E2, which
uses the identity function for h, but not in terms of E1, which uses the constant
function for h. On the other hand, in the case where a majority has only a tiny
magnitude of A in the implied region but a minority has a large magnitude of A
in the non-implied region, the explanation would be considered as explaining
in terms of E1 but not in terms of E;. This is analogous to considering the
importance of whether a treatment has a larger total positive effect among
those that benefit relative to the total negative affect among those who do not
benefit (E2), or whether the treatment simply positively affects a greater
proportion of people regardless of how small the effect (E1). Which definition
is appropriate depends on the research goal.

These definitions are population-specific. Consequently, it is possible for a
proposed explanation to explain in one population but not another. Moreover,
it is possible to not explain in a population but to explain in one of its
subpopulations, and vice versa. Consider a population 2 made up of two

subpopulations Qi1 and Q: it is possible forE(e, p,Q,R,)=False, and

yetE(e, p,Q2;,R,)=True. This is often the advantage of doing subgroup

analysis, to determine if a proposed explanation holds better in one group than
another. Indeed, the primary scientific aim of a study may be to identify for
which population the proposed explanation holds.

4. Testing explanations
4.1 General tests using random coefficient models

How do we empirically test a hypothesis of the form E(e, p,Q,R, ) =True

or E(e,p,QR,)=False? A general approach is conceptually

straightforward, albeit empirically challenging. This approach is based on the
idea that if we can estimate the distribution of A, we can estimate the
conditions for E(e, p,QQ,R,)=Trueand E(e, p,Q0,R,)="False. To estimate
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the distribution of A, assuming our data generating process can support it, we
can use a random coefficient model [3].

Suppose we define random variables (or random vectors) Y, X, ®, and £ on
the population Q, representing a population model such that

Y (w) = g(X (w); ©(w)) + E(w), forw € Q. (13)

If we have a data generating process with N observations, i € {1, ...N}, we
can consider the mixture model for the regression of Y on X:

EQY, %)= [E(Y 1%.6)-dF (8| ). (14)
Substituting equation 13 for Y; on the right-hand side of equation 14, yields
E(Y 1%)=[9(%.6)-dF (8 %)+ [E(& %.6)-dF (8 1),  (15)

which is the expected value of g plus the expected value of &£, each
conditioned on X = x:

E(Y 1%)=[9(%.6)-dF (6| x)+E(& ). (16)

Under the assumption that the expected value of the error terms is O for all
values of X, the regression is

E(Y1%)=[g(x,8)-dF (8 |x). (17)

The derivative of g and the estimated distribution for F can be used to obtain a
distribution for A and thereby estimate the conditions for the explanation to
hold. Notice, however, from equation 17 the function g must be the expected
value of Y conditional on values of X and O, i.e. equation 14. Consequently, if

a statistically adequate model [24] for E(Y;|x,8) can be empirically

determined, an explicit a priori specification for g is not required, only
hypotheses regarding implications (e.g. derivatives or difference quotients) are
required a priori.

Estimation can be achieved using a mixture model, or random parameters
model, if the study design and context allow for estimation of such a model. It
IS best to use a non-parametric estimator for F(@ | x) since results in this case
are likely to be very sensitive to the distribution (we are integrating under
different regions of the distribution, rather than merely estimating parameters
of the distribution). For example, we may consider using Fox et al’s non-
parametric estimator for the distribution of random effects [25, 26].

Suppose we can assume the error term is independent of X and that we have
a relationship such that
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9(x,6)=e"", (18)
which has the derivative
49,0 _ g g1 (19
dx
The expected value of Y conditional on X is
E(Y; [%)=[e"®-dF(6,]x). (20)

With an estimator for F, denoted as F, we can estimate, using numeric
integration, the population proportion of those whose derivative falls in the
explanation-implied range for any x,

p(x) = [1(0-¢”* >0)-dF(9]x), (21)

in which [1(-) is an indicator function returning 1 if its argument is true, O
otherwise. Equation 21 can be used to test E;.

For the general Ei, based on the population distribution for X and
representative sampling, we would average estimates from equation 21 for
each observation in the data to obtain

S

ﬁ: Zﬁ(XJ (22)
i=1

In this case, because e*’is always positive, the sign of the derivative is
determined by the sign of & Therefore, we can estimate p based solely on an

indicator of 8 > 0:
p(x) = [1(0>0)-dF (0]x). (23)

If we can assume the distribution F is independent of x, i.e. F(€|x)=F(0)
for all x, then p is not a function of x, and p(x) is the same for all x;
therefore

p=[1(6>0)-dF(6)=1-F(0). (24)

In this case we can base our test on 1- If(O). Using a bootstrap distribution
for p (for either equation 23 or equation 24), if a legitimate bootstrap method
applies [27], we can test whether E: is the case using the p-
valueP(p=p|p=0.5) if p> 0.5 and p-valuep(p< p|p=0.5) if p< 05
[28].

For testing E: at specific x-values we calculate
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¢() = [(|(9>0).|9-e9* )]dﬁ(e). (25)

For testing the general E; we average c(x) across the data. Again, we can use
the bootstrap distribution for F to obtain p-values P(c>¢é|c=0)0r

P(c<¢|c=0).

)—(I(¢9$O)-|6?-e9'x

4.2 Testing E> using population-level regression models

The preceding method, which uses random coefficient models and numeric
integration, is complicated—particularly for E», which represents definition 2.
We can greatly simplify our method for testing E, if the explanation’s
implications are regarding positive vs non-positive (or negative vs non-
negative) derivatives. In this case, with an additional statistical assumption,
we can use population-level regression models to test the explanation. The
argument is as follows: As above, we say that e explains phenomenon p at x if

inequality 5 holds. Under the definition for E», in the case of D,being either

positive, negative, non-positive or non-negative, the absolute values can be
moved outside of the summations,

> (Awx)

we(w:X (w)=x}

>

> (a(wx)

we(w:X (w)=x}

. (26)

Consider D,= (0,:), i.e. the explanation implies positive derivatives. In

this case, for the left-hand side of inequality 26 the summation of the A* across
the population with X = x is the same as the summation of the product of each
A-value and its frequency for A-values greater than O:

> (AT (wx)= A-Freq(A|x). (27)

we(w:X (w)=x} A>0

Similarly, regarding A-,
> (A(wx)=D A-Freg(A|x). (28)

we(w:X (w)=x} A<0

Therefore, to determine E> we can consider whether

D A-Freq(A]x)|>

A>0

> A-Freq(A]x)

A<0

. (29)

However, the inequality remains true if both sides are multiplied by the
same positive constant. So, if we multiply by 1/Ny, denoting the inverse of the
population size with value X = x, then
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ZA' Freq(A|x) . ZA' Freq(A|x) | (30)
A>0 X A<0 Nx
which is
DA-F(AIX)]>D A F(A]X) (31)
A>0 A<0

for f denoting a probability mass function (however, the above logic and
derivation also applies to A as a continuous variable in which f is a density,
and the summation is replaced with an integral).

Multiplying the left side of inequality 31 by 1 written as

P(A>0]x)
P(A>0]x)
and multiplying the right side by 1 written as
P(A<0]x)
P(A<0|X)
yields
P(A>0]|x P(A<0]|x
S a- 18102 LZ00 15 A f(apg- DA g
A P(A>0[x)| |3= P(A<0][x)
Because on the left side of this inequality
A _ta1as0.%), (33)
P(A>0]x)
and on the right side of the inequality
A ¢ aja<0,x), (34)
P(A<0]|x)

the inequality can be rewritten as

> A-f(A]A>0,%)-P(A>0]x)|>

A>0

D A-f(A|A<0,%)-P(A<0]X).

A<0

(35)
Note that on the left side of inequality 35
D A-f(A|A>0,X)=E(A|A>0,X), (36)

A>0

and on the right side of the inequality
20
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D A-f(A]A<0,x)=E(A|A<0,X). (37)

A<0

By substitution into equation 35, this yields
[E(A]A>0,%)-P(A>0]x)|>|E(A|A<0,%)-P(A<0]|x). (38)
Subtracting the right side of inequality 38 from both sides yields
[E(A|A>0,%)-P(A>0[X)|-|E(A|A<0,x)-P(A<0|x)|>0.  (39)

Part A Part B

Since Part A of inequality 39 is the absolute value of a positive number
(note we are conditioning on A > 0), the absolute value function can be
dropped. Similarly, since Part B is the absolute value of a non-positive
number (note we are conditioning on A < 0), its subtraction from A is just the
addition of the non-positive number. The absolute value operation can be
dropped as well, if we add the components rather than subtract them. This
yields

E(A|A>0,x)-P(A>0|x)+E(A|A<0,x)-P(A<0|x)>0. (40)
However, the left-hand side of this inequality is the expected value of A
conditional on x. Therefore, explanation E> implies that

E(A|x)>0 VxeR,. (41)

Since A=0g/0ox and derivatives are linear operators (and assuming we can
interchange the derivative and integral operations), we have

ag(x) Xj _dE(g(¥)[x)

, 42
OX dx (42)

E(A|x):E(

and therefore, the implication of the explanation we seek to test is the direction
of the derivative of the expected value of g:

GEQEOIX g wxer, . (43)
dx
Unfortunately, whereas we are likely able to empirically evaluate E(Y | x) in
a regression analysis, we are not likely able to directly evaluate E(g | X). This
is okay, if we can we use E(Y | x) to evaluate E(g | x). When can we do this?
The requirements are identified by taking the derivative of equation 16 with
respect to x:

dE(Y |X) _(g(x6) ' oy (01X . E(E]X)
= = @1 do+[g(x0) o= (44

Part A Part B
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If the distribution of parameter ® is independent of X (which, in
econometrics, is often considered as there is no selection on the gains [29]),
then df/dx = 0 and consequently Part A of equation 44 is zero. If the error is
mean independent of X, then Part B is zero (which in econometrics, is often
considered as there is no selection on the outcome [29]). Under these
conditions we have

dE(Y|X):J'59(a>)((;9),f(9).d9_ (45)

dx

But, the right-hand side of equation 45 is the E(A | X), which is what we seek to
evaluate for our test.  Consequently, our empirical claim regarding

E(e, p,Q,R,)=True for Ez is

dE(Y | x)
dx

Given the independence assumptions required for parts A and B to equal 0
in equation 44, we can test our proposed explanation E> by evaluating the
derivative of a population-level regression function (the left-hand side of
equation 45). If an empirically identified statistically adequate regression
function can be used, an explicit functional form for g need not be specified a
priori.

eD,, VxeRy. (46)

5. Conclusion

Knowing how to test a proposed explanation in a population requires
having a definition for what is meant by explaining in a population. In this
paper | gave definitions in terms of the scope of an explanation and in terms of
the power of an explanation. | provided a general method for testing proposed
explanations using random parameters models, and | showed when population-
level regression models can be used to test proposed explanations in terms of
effective power.

Although the tests were presented in terms of the minimal definitions, the
tests can be extended to generalized definitions as described above. Using the
random parameters method, we can define our explanations in terms of the
explanation-implied region being a multiple of that for the non-implied region.
For example, the proposed explanation explains if it applies to at least 90
percent of the population (rather than at least 50 percent as used in the minimal
definitions).

I focused on defining and testing proposed explanations; however, in
practice the requirements for such a test to provide evidence must be kept in
mind. Specifically, a proposed explanation’s testable empirical implications
need to be specified such that alternative potential explanations for empirical

22



How to define and test explanations in populations

implications are accounted for or ruled out, typically by statistical or
experimental control. The extent of evidence provided by the test depends on
the confidence we have that alternative explanations for empirical findings are
indeed ruled out: the less confident we are, the less evidence is provided by the
test. This concern is addressed by calibrating our interpretation accordingly.

This paper addressed defining and testing explanations in populations.
However, it should be noted that the general definition can be the basis for
addressing estimation goals as well as testing goals. Using the random
coefficients method the proportion of a population that conforms to the
explanation’s implications or the effective power can be estimated along with
corresponding bootstrapped confidence intervals.
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In this work, we have introduced a modified method for solving second-order
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network to find the numerical solution of the two-point fuzzy boundary value
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1. Introduction

Many methods have been developed so far for solving fuzzy differential
equations (FDEs) since it is utilized widely for the purpose of modelling
problems in science and engineering. Most of the practical problems require
the solution of the FDE which satisfies fuzzy initial conditions or fuzzy
boundary conditions, therefore, the FDE must be solved. Many FDE could not
be solved exactly, thus considering their approximate solutions is becoming
more important.

The theory of FDE was first formulated by Kaleva and Seikkala. Kaleva
was formulated FDE in terms of the Hukuhara derivative (H-derivative).
Buckley and Feuring have given a very general formulation of a first order
fuzzy initial value problem. They first find the crisp solution, make it fuzzy
and then check if it satisfies the FDE.

In 1990 researchers began using the artificial neural network (ANN) for
solving ordinary differential equation (ODE) and partial differential equation
(PDE) such as: Lee and Kang in [1]; Meade and Fernandez in [2,3]; Lagaris
and Likas in [4]; Liu and Jammes in [5]; Tawfiq in [6]; Malek and Shekari in
[7]; Pattanaik and Mishra in [8]; Baymani and Kerayechian in [9]; and other
researchers.

In 2010 researchers began using ANN for solving a fuzzy differential
equation such as: Effati and Pakdaman in [10]; Mosleh and Otadi in [11];
Ezadi and Parandin in [12].

In 2012 researchers began using partially (non-fully) fuzzy artificial neural
network(FANN) for solving a fuzzy differential equation such as Mosleh and
Otadiin [13,14,15]. In (2016) Suhhiem [16] developed and used partially
FANN for solving fuzzy and non-fuzzy differential equations.

In this work, we have used fully feed forward fuzzy neural network to find
the numerical solution of the two-point fuzzy boundary value problems for the
ordinary differential equations. The fuzzy trial solution of the fuzzy boundary
value problem is written as a sum of two parts. The first part satisfies the fuzzy
boundary condition, it contains no fuzzy adjustable parameters. The second
part involves fully fuzzy feed-forward neural networks which containing fuzzy
adjustable parameters.
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2 Basic definitions

In this section, the basic notations which are used in fuzzy calculus are
introduced

Definition(1),[16]: The r - level (or r - cut ) set of a fuzzy set A labeled by
A, is the crisp set of all x in X (universal set) such that : pz(x) >r ;i.e.

A ={xeX:puz(x) 2r,ref0,1]}. (1)

Definition(2), Fuzzy Number[16]: A fuzzy number @ is completely
determined by an ordered pair of functions (g (r),u (r)), 0 <r <1, which

satisfy the following requirements:
1) u (r) is a bounded left continuous and non-decreasing function on [0,1].
2) u (r) is a bounded left continuous and non-increasing function on [0,1].
Nu@<u(@,0<r<1. @)
The crisp number (a) is simply represented by:
u(=u()=a,0<r<1.
The set of all the fuzzy numbers is denoted by E?.

Remark(1),[10]: For arbitrary G = (g ,ﬁ) , V= (X , V) and K € R, the addition
and multiplication by K For all r € [0,1] can be defined as:

1) @tv) ()=u@)+v@.

2) (w+v) =T +7 ).

3) (Kw) () =Ku @), Ku) () =KT@),if K>0.

4) (Kw) () =K (1), (Ku) () =Ku @, if K<O0. 3)

Remark(2),[16]: The distance between two arbitrary fuzzy numbers G =
(g,ﬁ) and V= (X,V) 1s given as:

D@, =[f; (w®-y @) dr+ [ (T -7 @) dr]* @

Remark(3),[16]: (E1,D) is a complete metric space.
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Definition (3) , Fuzzy Function [16] : The function F: R — E? is called a
fuzzy function.

We call every function defined in set A € E* to B € E! a fuzzy function.
Definition(4),[10]: The fuzzy function F: R — E! is said to be continuous if:
For an arbitrary t; € R and € > 0 there exists a & > 0 such that:

|t-t1] <& = D (F (t), F(t1)) < €, where D is the distance between two fuzzy
numbers.

Definition (5),[16]: Let [ be a real interval. The r-level set of the fuzzy
function y: I > E can be denoted by:

[y)]" = [yi(),y2(0], x€l,r€[0,1] o)
The Seikkala derivative y’(x) of the fuzzy function y(x) is defined by:
[y 0]" = [(y1)' (%), (y2)’ ®], x € Lr € [0,1] (6)

Definition (6),[10]: let u and v € EX. If there exist w € E* such that:

u = v+w then w is called the H-difference (Hukuhara-difference) of u and v
and it is denoted by w = u © v.

In this work, the © sign stands always for H-difference, and let us remark that
u@v+ut(-1)v.

Definition (7), Fuzzy Derivative[12]: Let F : (ab) » E! and t, €
(a,b).We say that F is H-differential (Hukuhara-differential) at x,, if there
exists an element F’(x,) € E! such that for all h> 0 (sufficiently small), 3 F
(xo Th)OF(xq), F(X¢) © F (Xq - h) and the limits (in the metric D)

. F(xg+h) ©F(xe) . F(x9) ©F(x¢—h)
lim = lim
h-0 h h—-0 h

= F'(xo) (7)

Then F'(x,) is called fuzzy derivative (H-derivative) of F at x,.

where D is the distance between two fuzzy numbers.

30



Solution of two-point fuzzy boundary value problems by fuzzy neural networks

3 Fully fuzzy neural network [6,16]

Artificial neural networks are learning machines that can learn any arbitrary
functional mapping between input and output. They are fast machines and can
be implemented in parallel, either in software or in hardware. In fact, the
computational complexity of ANN is polynomial in the number of neurons
used in the network. Parallelism also brings with it the advantages of
robustness and fault tolerance. (i.e.) ANN is a simplified mathematical model
of the human brain. It can be implemented by both electric elements and
computer software. It is a parallel distributed processor with large numbers of
connections It is an information processing system that has certain
performance characters in common with biological neural networks.

A fuzzy neural network or neuro-fuzzy system is a learning machine that
finds the parameters of a fuzzy system (i.e., fuzzy set, fuzzy rules) by
exploiting approximation techniques from neural networks. Combining fuzzy
systems with neural networks. Both neural networks and fuzzy systems have
some things in common. They can be used for solving problems (e.g. fuzzy
differential equations, fuzzy integral equations, etc ).

If all the adjustable parameters (weights and biases) are fuzzy numbers,
then the fuzzy neural network is called fully fuzzy neural network; otherwise it
is called partially fuzzy neural network.

4 Solution of FDEs by fully fuzzy neural network

To solve any fuzzy ordinary differential equation, we consider a three-
layered fully fuzzy neural network with one unit entry x, one hidden layer
consisting of m activation functions and one unit output N(x). The activation
function for the hidden units of our fully fuzzy neural network is the
hyperbolic tangent function (s(e<) = tanh()). Here the dimension of a fully
fuzzy neural network is (1 x m x 1) (figurel).
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Hidden units

Input unit Output unit
»— [N

Bias unit

Figurel: (1 x m x 1) Fully fuzzy feed-forward neural network.

For every entry x (where x > 0) the mathematical operations in the fully
fuzzy neural network can be described as:

Input unit: x = x, (3)
Hidden units :

)= [[z]., [5])] = [s ([net;],) s ([neg])] ©)
where

[neti]: =X [Wi]I; + [bi]: (10)

[net], =x [w, +[b;] (1)
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Output unit:

N = [[IN®]F, [N®IF] (12)
Where

INGOR=E, ming [y]} [4]} [ ]! []] Il ) ]l 1) a3)

INGOW=22, max{ [v] [5],. ], 5], . ], [ ], [ a9
Where

[Zj]: = S(X [Wj]f + [b]-]f) (15)
5] =s(x[w], + [b]) (16)

5 Description of the proposed method

For illustration the proposed method, we will consider the two points fuzzy
boundary value problems:

y' ) =fxyx, y®) , x€[a,b] (17)
with the fuzzy boundary conditions:

y(a) =A and y(b) = B, where A and B are fuzzy numbers in E* with r-level
sets:

]-=[A,A] and [B], =B, B] .

The fuzzy trial solution for this problem is:

e )] =1

X—a

— [Al; +c—[B]; +(x — a) (x = b) N®], (18)

This fuzzy trial solution by intention satisfies the fuzzy boundary conditions in

(17).
The error function that must be minimized for problem (17) is in the form:
& (EL+ E} (19)

where
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Bl = [ [2200] [ (s, e o, 22202)] ] (20)

U_ szt(Xi)U_ dye G)\]Y ?
Bl = | [, [ (om0, 2522 e

where {xl} _, are discrete points belonging to the interval [a, b] (training set)
and in the cost function (19), EX and E can be viewed as the squared errors
for the lower limits and the upper limits of the r — level sets, respectively.

Now, to drive the minimized error function for problem (17):

From (18) we can find:

Ve (Jk == [Alk+3== [B]¥ +(x* = (a+ b)x +ab)[N)]¥ (22)
GO == [AlY +3=2 [BIY +(x* — @+ b)x+ab)[N®IY  (23)
Then we get:

HEL = — [A]F +—— [B]} +(x® — (a+b)x + ab) ——+(2x—a —

b) [N o4
U a—

d[y::l(:(()]r - b —1a [A]P + b i a [ ]U +( x% — (a + b)X + b) N(X) +(2

b)[NGOTY (25)

Therefore, we have:

[dzzxt—z(X)] (x? — (a+Db)x + ab) ‘”LX) 12(2x—a—b) d[Nd()):)]'; .

2INGOIE 6
2 0) .

[d 21,;2()() =(x*—(a+Db)x + ab) % +2(2x—a—b) d[NCSz)]r .

2[N®OLY o

Then (20) and (21) can be rewritten as:
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L
= [(x;2 — (a + b)x; + ab) M +2(2x; —a—b) S N(x dINGI¥ n

[N(xl)]L fou 5 25 ALk + b—[ I+ (x?— (2t by 4

ab)[N(x)]¥ '5—a [A]]r”rﬁ [Blk+(x;2 — (a + b)x; + ab) N(Xl)]r T (2% —
a—b) [N(Xl)]b ]2 (28)
= [(x;2 — (@ + b)x; + ab) M +2(2%—a—b) ol[N(xl)]r 4

[N(xl)]U fxi, 2 [AIY + —[ V4 (x?— (a4 b ¢

b
ab) [N(Xl)]r b _1a [A]}-I‘l‘blj [ ]U+( X1 — (a + b)X1 + ab) d[N(Xl)]r
(2xi —a —b)INx)I) 17 (29)
Where

NG Z]mlmin{ [VJ]L (xi [wil. + [0,]0) [l s (s [wi] +
[i],) [vil, s (xi [wil + b)), [vi] s (s [wl, + [b]))3 G0y

NG Z]mlmax{ [V]] S(Xl [W]: + [bi]:) :[Vj]:S(Xi [Wi]f +
Dl)) [l s (xi [l + Do) (o], s (i [wil,) + [bi]))3 G0y

cﬂb‘(%—z;nlmin{[ 1 ]] ' (xi [wy], +
[bj] ) [Vj]iI [Wj]:s'(xi [Wj]i +

[])) [l Tl s (o [, +
[b]) [V]] [Wi]f (1[ ]]r + [b]]r)

T Z?l1max{[ il, [Wj]fs'(xi [Wj]f"'
) [l s G bl + [0°) [l ol G bl +
") fol” w]”s (s [l + [3]°)

(33)

d2[N(xp]¥ _

dx?
2.2, min{ [Vi]f([wj]f)zs" (Xi [w]-]f+[b]-]r
U U L L L U U U
[bi]r)'[vi]r ([wy] H?s” (Xi [wj] | +[b]-]r),[vj]r ([wy] D?s” (Xi [wi] +
[5],)3 (34)

L) '[Vj]?([wi]f)z s” (Xi [Wj],[: +
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d2[Nx)IF _
dx? -

L L, . L L L U, U
22y max{ [vj] “([w] D?s (Xi [Wi]r+[bj]r) il (ws] D% s (Xi [wi] - +
U U L, , L L U U, . U
[bj]r)’["j]r ([wi] )%s (Xi [wj] +[bj]r)'["j]r ([wi] )?s (Xi [wi] ~ +
U
5], )3 (35)
where s”and s” are the first and second derivative of the hyperbolic tangent

function. Then we substitute (28) and (29) in (19) to find the error function
that must be minimized for problem (17).

6. Numerical example

In this section, we will solve two problems about two-point fuzzy boundary
value problem. We have used (1 x 10 x 1) fully fuzzy feed-forward neural
network. The activation function of each hidden unit is the hyperbolic tangent
activation function. The analytical solutions [y,(x)]% and [y,(x)]V has been
known in advance. Therefore, we test the accuracy of the obtained solutions by
computing the deviation:

e(x, 1) = lyaI’ = [y OIFI, e (x, 1= [yaGIr — [y GOIr|

To minimize the error function, we have used BFGS quasi-Newton method
(For more details, see [16]). The computer programs which we have used in
this work are coded in MATLAB 2015.

Example (1): Consider the linear fuzzy boundary value problem:
y'(x) —y'(x)=1 . withx € [0, 0.5]
y@=[2+r, 4—r],
y(0.5)=[5+r, 7—r] . where re€]o0,]1].

The analytical solutions for this problem are:

Va@Olk= (241 — —2=) + (g )X

[VaGOIV= (4 — 1 — =) + (o De*

The trial solutions for this problem are:

[ye()lk= (1 -2x) (2+71) + 2x (4 —r)+(x? —0.5x) [N(x)]X
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[yeOV=(1-2x) (5+71) + 2x(7—-1)+ (x> = 0.5x) [NV

The fully fuzzy feed forward neural network has been trained by using a grid
of ten equidistant points in [0, 0.5].

The error function that must be minimized for this problem will be:

E= Y1 (EL + (36)
where
[(xl — 0.5x) TN 4 (g, — 1) WOIE 4 5N~
( — 0.5x;) INGDI N("') — (2%, — 0.5)[N(x)]L + 4r — 5 ]2 (37)
(xl — 0.5x) T (4, — 1) O 4 21NV —
(%2 — 0.5%,) N("') — (2%; — 0.5)[N(x)]Y + 4r — 5 ]2 (38)

numerical solutions for this problem can be found in table (1).

Table (1): Numerical result for example (1), x=1.

r [yeGOlr e(x,n [yeGOIY e(x,)

0 9.946164141 3.29137e-7 11.94616425 4.33916e-7
0.1 | 10.04616401 1.96846¢-7 11.84616411 2.93475e-7
0.2 | 10.14616481 9.95565¢e-7 11.74616478 9.70548e-7
0.3 | 10.24616458 7.63284e-7 11.64616385 3.95104e-8
0.4 | 10.34616447 6.60993e-7 11.54616387 5.67802¢e-8
0.5 | 10.44616422 4.09513e-7 11.44616389 7.56011e-8
0.6 | 10.54616396 1.47232e-7 11.34616391 9.53493e-8
0.7 | 10.64616391 9.75941e-8 11.24616382 1.15291e-8
0.8 | 10.74616385 3.39072¢-8 11.14616384 2.63433e-8
0.9 | 10.84616389 7.52383¢-8 11.04616386 5.26859¢-8
1 10.94616389 7.39070e-8 10.94616386 4.56782¢-8
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Example (2): Consider the non-linear fuzzy boundary value problem:

y(x)=- (y'(x))z .withx € [0, 2]
y(0)=[r,2—r],y(2)=[1+r,3—r]landre[0, 1].

The analytical solutions for this problem are:

a1k =In (x + =) +r — In =

e—1

[y.()]V=1n (x+ —)+2 —r —In =

e—1

The trial solutions for this problem are:
[ye(Olk = r 5 + (1+1) 2+ x (x—2) NIk

yeGOl¥= 2 = DZ2+ B —1) 2+x (x—2) [NGIY

The fully fuzzy feed forward neural network has been trained by using a grid
of ten equidistant points in [0, 2].

The error function that must be minimized for this problem will be:

E- T, (BL + EY (39)
where
b[(xi2 — 2x) TGO | (g — 4) O 4 HING]E +
((xl — 2x) O 4 (2 — 2)[NGIE +0.5)2 12 (40)
L[ (xi2 — 2x) TROE | (g, — ) INOUE 4 1NV +
((xl — 2xp) NI +<z —z>[N(xi>1r+o.5)2] (41)

Then we use (39) to update the weights and biases.

Numerical solution for this problem can be found in table (2).
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Table (2): Numerical result for example (2), x=1.

r [yeGOlr e(x,r) [yeGOl? e(x,1)
0 0.620114507 3.24734e-10 2.620114507 8.46634¢-10
0.1 |0.720114507 4.66221-10 2.520114507 9.79602¢-10
0.2 |0.820114507 2.03208e-10 2.420114507 6.85555e-10
0.3 |0.920114507 3.80684¢-10 2.320114513 6.62032¢-9
0.4 | 1.020114507 4.09557e-10 2.220114514 7.59010e-9
0.5 | 1.120114507 3.50405¢-10 2.120114508 1.74006¢-9
0.6 | 1.220114507 4.59008e-10 2.020114507 9.00817e-10
0.7 | 1.320114516 9.46681e-9 1.920114507 9.21604e-10
0.8 | 1.420114512 5.06564¢e-9 1.820114507 4.99811e-10
0.9 | 1.520114507 8.21899¢-10 1.720114514 7.15955e-9
1 1.620114514 7.88763¢-9 1.620114508 1.02988e-9

For the above two problems we have
[INx)IE = 101 min{ [V]] (Xl [WJ]]; + [bl]];) '[Vj]l;s(xi [Wi]f +
) ol s G fwil + D)) [vil, s (e [wil, + [o3])) 3
INGDIE = S22 max{ [vi]s (x [w]” + [b])) ., [vi] s (xi [w]. +
) ol s G fwil + [o]) [vil, s (e [wil, + [o3])) 3

d[N(Xi)]{f _ V10

. L L, L
ax = ymin{ [v] " [wj] s (Xi [Wi]r +

[b]) [VJ] [wil

'(Xi [Wj]iJ + [bj]f)}
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= = Zj=1max{ [Vi]: [Wj]?s'(xi [Wj]f+
[b]-]:) ’[Vj]:[Wj]f S'(Xi [WJ]I: + [bj]lrj) »[VJ]I: [Wi]:s'(xi [Wj]]; +
[b]-]:) ’[Vj]f [Wi]fsl(xi [WJ]I: + [bj]lrj)}

Zjlffmin{ [Vj]:([wj]bzs" (Xi [Wj]f““[bj]i) »[Vj]f([wj]f)z s” (Xi [Wj];I +
[bj]f)’ [Vj];J ([Wj]:)zs” (Xi [Wj]i +[bj]£)' [Vj]iJ ([WJ]E)ZS” (Xi [Wi]f +
[b]-]f)}

d2[Nx)IF _
dx? -

Yj=1 max{ [Vi]i([wj]i)zs” (Xi [Wi]];'*'[bi]];) '[Vj]];([wj]f)z s” (Xi [Wi]f +
[bj]f)’ [Vj];J ([Wj]:)zs” (Xi [Wj]i +[bj]£)' [Vj]iJ ([WJ]E)ZS” (Xi [Wi]f +
[b]-]f)}

7 Conclusion

In this work, we have introduced a modified method to find the numerical
solution of the two-point fuzzy boundary value problems for the ordinary
differential equations. This method based on the fully fuzzy neural network to
approximate the solution of the second-order fuzzy differential equations. For
future studies, one can extend this method to find a numerical solution of the
higher order fuzzy differential equations. Also, one may use this method for
solving a fuzzy partial differential equation.
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Abstract

The inclusion and exclusion (connection and disconnection) principle is
mainly known from combinatorics in solving the combinatorial problem
of calculating all permutations of a finite set or other combinatorial
problems. Finite sets and Venn diagrams are the standard methods of
teaching this principle. The paper presents an alternative approach to
teaching the inclusion and exclusion principle from the number theory
point of view, while presenting several selected application tasks and
possible principle implementation into the Matlab computing
environment.
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1 Introduction

In traditional secondary school mathematics (in combinatorics, number theory
or even in probability theory), the notion of factorial and combinatorial numbers
is introduced [1]. If n and k are two natural numbers with n > k, then we call a
combinatorial number the following notation

ny n! _nn-1)..(n—k+1)
(k)_(n—k)!k!_ 1-2 .-k

while (factorial of the number n) n!=1-2----n, where n>1, 0l =1,
1U=1

For combinatorial numbers, the basic properties apply:

D=r©=1 =1 G- W+GE)=GID)

. n n\_(m+1
The relation (k) + (k L 1) = (k 1
numbers in the plane in the shape of a triangle (a so-called Pascal’s triangle)
[2], in which combinatorial numbers can be gradually calculated using the fact

that (78) = (Z) = 1 for each n.

) is the basis for placing combinatorial

BNENE

If n is a natural number, and if @, b are arbitrary complex numbers, then the
binomial theorem can be applied by using the form:

(a+b)" = (g) a® + (Tll) a™1p + -+ (n i 1) ab™ 1! + (Z) pn

The special cases of the binomial theorem are as follows:
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a) ifa=1,b=-1:

() ()

) )+ (D=0

1

b) ifa=1b=1:

(1+1)n:(g)+(;‘)+...+(ni1)+(2):2n

Let us consider now N given objects and K properties a4, ..., ag. Let us denote
N (0) as the number of objects that do not have either of these properties, N(a;)
as the number of those that have the property a;, N(a;a;) as the number of those
that have the property a; as well as a; etc. Then

N()=N-YN(a;) + ZN(aiaj) — ZN(aiajas) 4ot
(—D*N(a,a; ...ax),

where, in the first addition, we sum up using numbers i = 1,2, ..., K, in the
second addition, using all pairs of these numbers, in the third addition, using all
threesomes of these numbers, etc. We call this relationship the inclusion and
exclusion principle [3].

The validity of the inclusion and exclusion principle can be shown from the
number theory point of view the way that if an object has no property from the
properties a;, i = 1,--+, K, so it contributes by the unit value to the left equality,
though contributing at the same time to the right side, that is, to the number N
(in the following additions it does not reappear). Let an object now have ¢
properties (t = 1). Then, it does not contribute to the left side as there is a
number of objects on the left side that do not have any of the properties. Let us
calculate the contribution of this object to the right side. In the first addition, it
appears t-times. In the second addition, it appears (;)—times because from ¢

properties it is possible to choose pairs of the properties in (;) ways. In the third
addition, it appears (;)—times, etc., so the total contribution to the right side is
as follows:

1-t+()-(O+r D)+ (D=0,

which is a special case of the binomial theorem. Thus, the total contribution of
such an object to both sides is zero and the right side is actually equal to the
number of objects that do not have any of the given properties.
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2 Selected examples of the inclusion and exclusion
principle

The first example requires some mathematical concepts to be recalled. By the
Cartesian product of sets A, B we mean set A X B = {[x,y]l:x € ANy € B},
with the symbol |A| we denote the number of elements (so-called cardinality)
of the finite set A. If |A| = a, |B| = b, the Cartesian product then contains a - b
of ordered pairs. Since the Cartesian product contains ordered pairs, A X B is
not the same set as B X A. [4]

The relation fof set 4 to set B is called a function of set 4 to set Bif Vx € A3y €
B:[x,y] € f and simultaneously if [x,y] € fA[x,z] € f, so y =2z The
symbol B4 denotes a set of all functions A — B.

If fis a function of set 4 into set B and Vxq,x, € A:xq # x5 = f(x1) # f(x3),
the function f'is called an injective function of set A4 into set B (or simply an
injection; we also say that the function f'is ordinary).

Let us now consider two finite sets 4, B, where |A| = n and |B| = m. Then the
number of all injective functions from A4 into B is m-(m—1) -
(m—n+1) = [[4(m —i). Injections from set A = {1,2,--,n} into set B,
where |B| = m, are called variations without repetition (or simply variations)
of the n-th class from m elements (of the set B). For these functions, the term

;,(m) is used in practice. It is easier to write the expression m-(m —1) -+~
m!

(m — n + 1) with the following factorial notation V,,(m) = -

Variations of the n-th class from n elements of the set B are bijective functions
A - B and their number is n-(n—1)----2+-1=mnl They are called
permutations (of set B) and denote P(n) = n!.

Let us now consider basic set 4 with the cardinality |A| = n. Combinations
(without repetition) of the k-th class (or k-combinations) from n elements are k-
element subsets of set A. We denote them as C,(n). If 4 is a finite set, with

|A| = n, then, the number of k-combinations of elements of set 4 is C;(n) =
(Tl) _ n! _ n(n-1)--(n—k+1) [5]
k)~ -k~ k(k-1)-1

Example 2.1. A group of N men is to take part in a chess tournament. Before
entering the room, they place their coats in the locker room. However, when
they are about to leave, they are unable to recognize their coats. What is the
probability that none of them will take their own coat?

Solution. Let us denote the coats 1,2, -+, N. Then the distribution of the coats on
the chess players can be made N!, since these are the permutations of the set
{1,2,---, N}. First, we determine the number N (0) of permutations, for which
there is no coat on the right player. The number of permutations that do not leave
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in place the k-element set of coats is (N — k)! The number of k-sets can be
. (N
chosen in ( k) ways.
Then, based on the inclusion and exclusion principle, there applies
—n_(N _IN _l_..._NN —N)!
N(0) =N (1)(1v 1).+(2)(N )=+ (=1) (N)(N N)!

N(0) = 2(-1)’6 (’l‘{’) (N = k)!
Next, we get =
- (—1)F
Kl

N
N!
N(0) = ;(—1)"m(1v —k)! =N!

k=0

All permutations of N elements is N/, hence the likelihood that no chess player
is wearing his coat when leaving the tournament is

Example 2.2. A tennis centre has a certain number of players and 4 groups A,
B, C, D. Each player trains in at least one group, while some players train in
multiple groups at once according to the table.

A, 26 AC........... 18 ABC........... 5
B 17 AD........... 3 ABD........... 0
Coree 58 BC........... 9 ACD........... 2
D.ceeies 19 BD........... 0 BCD........... 0
AB........... 7 CD........... 5 ABCD........ 0

We will show how many players have a tennis centre.

Solution. Let us denote M, as the set of all players in group A, M, as the set of
all players in group B, M; as the set of all players in group C and M, as the set
of all players in group D. Then, set N = M; UM, U M; U M, is a set of all
players in the centre.
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Based on the inclusion and exclusion principle, there applies:

0=|MUM, UM; UM,|—(26+17+59+19)+(7+18+3+9+5)
—-(5+2)+0

From which |[M;UM,UM;UM,|=26+17+59+4+19—-7—-18—-3 —
9 — 5+ 54 2 = 85. As aresult, the tennis centre has 85 players.

Example 2.3. Let n > 1 be a natural number. In number theory, the symbol
¢ (n) denotes the number of natural numbers smaller than » and relatively prime
s n, where @(n) is called Euler’s function [3]. Let n = p;* ... p.© be a canonical
decomposition of the number n. We will show that the following relation

applies:
pn) = n(l—%)(l —%) (1 —%)

Solution. Once more, we will use the inclusion and exclusion principle. Let n =
pf 1pg 2 ...p,fk is a canonical decomposition of the number n. The natural
numbers that are relatively prime with the number »n are those that are not
divisible by either of the prime numbers pq,p,, ..., Px. So, let a; mean the
property that “the number m is divisible by the prime number p;,i = 1, ..., k*.
The number of numbers that are smaller or equal to the number » and
are divisible by the number p; is N(a;) = 3. It is an integer since p; In. Next,
i

n

pipj

and other members of the notation.

we get N(aiaj) =
Then:

n n n n
<p(n)=n—Z—+z —z + ot (D ——
pi piD;j PiP;Ps P1D2 - Pk

This expression can be simplified to the form:

o133

Several other interesting tasks and applications of the inclusion and exclusion
principle can be found e.g. in the resources [6], [7].

48



The Inclusion and Exclusion Principle in View of Number Theory

3 Implementation of the inclusion and exclusion
principle in the Matlab computing environment

When solving various practical tasks with pupils, it is possible and appropriate
to use some computing environment, e¢.g. Matlab. We will now solve a simple
task of divisibility.

Example 3.1. We will show how many numbers there are up to 1000 that are
not divisible by three, five, or seven.

Solution. Before proceeding to the solution of the task, we will use divisibility
relations to determine the number of all natural numbers smaller than 1000, each
of which can be divided simultaneously by three, five, and seven.

First, we will generally show that if 3|a, 5|a, then 3 -5 = 15]a, being valid if
3la, so a = 3b, if 5|a, so a = 5c. The left sides are equal, so the right sides
must be equal, too. Then

3b = 5c
Since (3,5) =1 = 3|c = ¢ = 3d. Then a = 5¢ = 15d = 15|a.

Now, we will show that if 15|a, 7|a, then 15-7 = 105]a is valid if 15]a, so
a = 15e,if 7|a, so a = 7f. Since a = a, it holds true that

15e =7f

From the relation (15,7) =1 = 15|f= f = 15g. Then a = 7f = 105g =
105|a.

) . .. 1000 55 )
We will do the division Tos = 9+ Tos and we see that there exist 9 numbers

with the required property.

Let us get back to our basic task. There, we have N = 1000. Let a; be the
property that “the number # is divisible by three*, property a, stand for “the
number 7 is divisible by five®, property a; stand for “the number # is divisible
by seven®. At the same time, N(0) is the number of searched numbers not
divisible by any of the numbers 3, 5, 7.

Every third natural number is divisible by three since 1000 = 3-333 + 1. We
have the number N(a;) = 333, that is 333 numbers up to 1000 are divisible by
three. By similar consideration, we determine N(a,) = 200, N(a3) = 142.
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Based on the previous considerations, we determine the number N(a,a,). It
holds true that if a number is divisible by three and five, it is also divisible by
its product, i.e. by the number 15 (inasmuch as the numbers 3 and 5 are relatively
prime). Hence, N(a,a,) equals the number of numbers up to 1000 divisible by
15 and N(a;a,) = 66. Similarly, we determine N(a,a3;) = 28 and N(a,a3) =
47. For the number N (a;a,as) it is valid that it will be equal to the number of
numbers up to 1000 that are divisible by the product 3-5-7 = 105, hence
N(a,a,as) =9.

Then, based on the inclusion and exclusion principle, we have in total
N(0) = 1000 — (333 + 200 + 142) + (66 + 28 + 47) — 9 = 457
Now we implement the given task into the Matlab computing environment to

verify the result. First we create the function “count the divisors”,
which is the application of the inclusion and exclusion principle:

function cnt = count the divisors (N, a, b, c)

cnt 3 = floor(N / a); S%counts of numbers
divisible by a

cnt 5 = floor(N /  b); $counts of numbers
divisible by b

cnt 7 = floor(N / «¢c); gcounts of numbers

divisible by c

cnt 3 5 = floor(N / (a * b)); %Scounts of numbers
divisible by a and b

cnt 5 7 = floor(N / (b * c¢)); %counts of numbers
divisible by b and c

cnt 3 7 = floor(N / (a * c)); %counts of numbers
divisible by a and c

cnt 3 57 = floor(N / (a * b * c)); %counts of

numbers divisible by a, b and c

%and now inclusion-exclusion principle applied
cnt = N - (cnt 3 + ¢cnt 5 + ¢cnt 7) + (cnt 3 5 +
cnt 5 74+ cnt 3 7) - cnt 3 5 7;

We will call the function from the command line:

>> N = 1000;
>> count the divisors (N, 3, 5, 7)
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ans =
457

When creating functions or scripts solving various problems based on the
inclusion and exclusion principle, it is possible to use various set operations
(functions) built directly in Matlab without the need to create one’s own
structures. [8]

4 Conclusion

The principle of inclusion and exclusion is a “set problem* that falls within the
field of discrete mathematics with different applications in combinatorics.
However, this principle also plays a significant role in number theory when
defining the so-called Euler’s function or Fermat’s theorem, or in clarifying and
exploring the fundamental problems of number theory, such as expressing the
distribution of prime numbers among natural numbers on the numerical axis and
many other questions still open today.

The paper offered something different than just a set view of the inclusion and
exclusion principle and its definition using number theory knowledge and the
properties of combinatorial numbers. Our work is a guideline for solving
selected practical tasks in which the involvement of the principle might not be
expected at first sight. We also showed the possible application of ICT and the
Matlab computing environment in solving computational problems in the field
of number theory, which can be concurrently involved in mathematics teaching.
In conclusion, the inclusion and exclusion principle has much more application
than we allege in our short contribution and can be used to solve more difficult
tasks, e.g. in algebra to solve specific systems of equations or to solve various
problems in combination with the Dirichlet principle. Some research shows that
the ability to solve problems also depends on the substitution thinking, which
makes possible to use mathematical knowledge effectively in various areas of
number theory [9].
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1. Premise

Usually, when we talk about the therapeutic treatment of serious pathologies
it is difficult to consider the contribution of mathematics and statistics to the
success of the interventions. Most often it is thought that positive results
correspond to the abilities and knowledge of the luminaries of surgery and
medicine. This article aims to provide additional information: to demonstrate
that applied mathematics (in particular statistics) offers indispensable tools for
a rational approach to these therapies. The method we used in the development
of this therapeutic process is essentially deterministic, although some passages
implicitly provide a probabilistic reference; in particular, when the least squares
principle is applied for the research of the theoretical model of interpolation.
The basic hypothesis is that the deviations of the experimental values from the
theoretical values of the model have a Normal distribution.

2. Mathematics as a measure of the world

The field in which Mathematics moves has become vast. Usually, it is
divided into two major sectors: the pure and that applied mathematics. The first
sector has a purely speculative nature and is concerned with a rigorous
arrangement of the basic principles of the discipline; the second, instead, relates
to the applications of mathematical methods to Natural Sciences, Medicine,
Engineering and Economics. It is in this second sector that interesting
applications can be found that can help man solve several technical-scientific
problems. It is necessary, however, to warn this is only an exemplifying
division. Actually, mathematics is a unitary whole and it is difficult to know
where its theoretical part ends and its experimental soul begins and vice versa.
Often, problems arise in an application environment that requires in-depth
theoretical analysis. So, it is necessary to refer to an experience, to a useful
operational path.

A wider approach, not only descriptive, to natural phenomena requires a
considerable knowledge of the mathematics that allows:

- Their measurement (Analysis, Probability Calculus, Statistics);

- The study of their possible forms (Analysis, Geometry, Statistics);

- The coherent arrangement of the rules followed (Logic, Algebra).

All scientific methodologies require compliance with these three points.

3. Problem analysis

Biology is one of the sciences that is proving to be very ductile to use
mathematical techniques for a rational response to problems. It enables, with
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genetics good practices and good procedures to improve the lives of human
beings. The mathematical fields that can be applied to Biology range from
Combinatorial Calculus to Probability Calculus, to Geometry, to Statistics and
they offer a vast set of procedures.

The problem | am presenting is, certainly, of undoubted effect. It is an
efficient and effective treatment to counteract, and eventually block, the
progress of a particular type of tumor: the glioblastoma. It is a nodular tumor
that lurks in the brain tissues and soon leads to the death of the host (the patient).
We start from an experimental model of the tumor nodule, which, growing in
the laboratory, gives us a lot of biological and kinetic measures of its growth
(Figure 1). In particular, we can determine the growth time, the number of the
cells for each instant of time and the critical limit of their growth beyond which
there is nothing left to do (for example, for the compression of the tissues or for
metastasis). In the dynamics of the tumor, we also consider the necrosis of many
of its cells for the lack of food and of oxygen. It is also necessary to know the
clinical picture of the patient and his immune response.

After that, we analyze the mathematical models able to guarantee a rigorous
control of the behavior of this type of tumor.

4. The choice of mathematical models

On the basis of what we previously analyzed, the process requires the
selection of mathematical models, as the first approach, in order to
quantitatively describe the natural growth of the tumor mass over time and to
find a mathematical model that allows to give to the patient a therapy that
increases his life expectancy compared to the natural one, starting from the
observation of the neoplasm.

The mathematical models able to control the growth of biological
populations are studied by that part of mathematics that is known as population
dynamics [8]. When dealing with a problem of growth of biological populations,
we take on known and tested standard models. Usually, any changes to be made
to the models are arranged during the work, keeping the standard model used as
fixed as possible. One of the most well-known growth models is that of Verhulst
[8]. In our case, however, the Verhulst equation does not adapt well to describe
the growth dynamics of the glioblastoma tumor cells. It has been observed, from
previous studies, that the most suitable model to describe this growth is given
by the differential equation of B. Gompertz.
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Figure 1. Photomicrograph of an experimental tumor nodule (tumor spheroid).
The reference bar is 400 um long. The central area of the nodule, darker and
denser, is mainly formed by dead cells because of the poor availability of oxygen
and the accumulation of toxic substances produced by the cells themselves with
their metabolism, due to problems related to the diffusion of these molecules in
the tissue. This area is generally referred to as the necrotic heart. Photo courtesy
of Dr Roberto Chignola, Department of Biotechnology, University of Verona.

5. Gompertz model and tumor growth

This model can be expressed as a system of differential equations

PO o) x© 1
dkp(®) _ )
=B kp(®)
or as a differential equation that includes both equations (2).
-1
T =5 ox©-1og () @

Model (2) derives from (1), as can be demonstrated.

We now present the parameters and variables of models (1) and (2). X (t) is
the number of tumor cells at time t; K is the carrying capacity of the environment
in which the tumor cells live and is equal to K = Max (X (t)): it represents the
critical limit beyond which a tumor mass cannot go (otherwise would kill the
host); X (t)/K is the occupancy rate of the environment; kp (t) is the time-
dependent growth rate of the tumor cell population; g is a parameter that
dampens the genetic growth of the population of individuals considered.
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The differential equation (2) admits an integral curve in a closed form. It is
given by:
X(t) =K-e €t

As shown, (3) depends on the parameters K, 3, C.

The tumor has a mass whose volume is estimated on an experimental basis
as follows:

3)

Vol(t) = % T T'03 , To = % Amin " Amax » (4)

where Vol (t) is the volume of the tumor mass at time t, r, is the geometric mean
of the two rays dmin/2 and dmax/2, where dmin and dmax are the minimum and the
maximum of the diameters of the spheroid. Once the volume is known, taking
into account that a tumor cell has a known size (usually estimated in 107°cm?),
one can determine the number of cells in the nodule in the following way:

X(t) = VOl(t)/VOIcellula' (4b|5)

X (t) of (4bis) is a very large value and therefore not very useful for
calculations. Since the volume of a cell is known and is constant, the size of the
population of tumor cells is conveniently replaced by the volume of the tumor
mass Vol (t). Starting from this substitution, X (t) becomes Vol (t) and,
considering the multiplicative constant (1 / Voleeuia), is also the population
NnUMerousness.

It is now necessary to estimate the parameters of the model (3).

6. Discretization and parameter estimation

The inevitable step to estimate the parameters of the model (2) or (3) with
the least squares method is the discretization of the model. In practice, it consists
to replacing the derivative with the incremental ratio and with the application of
the finite difference operator first. Let Ax, = X,., — X,, from (2) we obtain:

2 g, Log [()i)] , (5)

At K

where At = 1. With easy algebraic steps, we get to:

X}Zl = 1+8-Log (XE) . 6)
Equation (6) can be set in the following way:

Y, =A+B-Log(X,), )

where ¥, = X,,. /X, , A=1+p8-Log(K) , B=—-.
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Equation (7) is a linear model in the parameters. Thus we can apply the least
squares method to estimate parameters A and B based on the experimental data
in our possession. We obtain:

S(4,B) = zjzl(yj —7) = zjzl(yj —A-B-Log(Xy)’. @)

Passing to the partial derivatives with respect to A and to B, setting them

equal to zero and solving the system, we have:
n n
n > Log(x) (A) >
j=1 . _ j=1
n n 2 - n *
Z, Log(X;) Z _ [Log(X))] B Z _ Y -Log(X))
Jj=1 Jj=1 j=1

In this case, it is not necessary to proceed to the calculation of the second
derivatives since the Hessian is a positive semidefinite matrix and therefore the
solutions of the system (9) give precisely the minimum of S(A, B) [9].

Once we have found the values for A and B, p and K are easily obtained. It is
then calculated X,. For the calculation of the constant C in (3), the initial
condition is taken into account: at time t = 0 we have X(0) = K -e~¢, and
hence we get C = LogK — LogX(0).

©)

7. Processing

To verify the validity of the method presented above, one uses the experi-
mental measurements daily obtained with glioblastoma tumor nodules grown in
laboratory (spheroids). The measures are relative to the variations of nodular
size, taken for 77 days. We start, therefore, from the set W of the experimental
data, where the first term of each pair represents the discrete time expressed in
days of each observation and the second the volume of the tumor mass expres-
sed in mm?:

W= {{0, 3.57}, {1, 7.37}, {2, 10.9025},{3, 14.435} {4, 21.5} {5, 28.6},

{6, 37.14}, {7, 41.98}, {8, 52.89}, {9, 57.805},{10, 62.72},{11, 72.55},

{12, 88}, {13, 105.6}, {14, 96.5}, {15, 105.6} {16, 116.05},{17, 126.5},

{18, 147.4}, {19, 147.4}, {20, 185.2} {21, 172},{22, 199}.{23, 199},

{24, 199}, {25, 199}, {26, 213.6}, {27, 199} {28, 199},{29, 199},{30, 199},
{31, 199}, {32, 199}, {33, 213.6}, {34, 199} {35, 213.6}, {36, 206.5},

{37, 199.4}, {38, 193}, {39, 185.2}, {40, 199}, {41, 199}, {42, 213.6},
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{43, 213.6}, {44, 213.6}, {45, 213.6}, {46, 213.6}, {47, 185.2}, {48, 213.6},
{49, 199}, {50, 213.6}, {51, 209.95}, {52, 206.3}, {53, 199}, {54, 199},

{55, 213.6}, {56, 199}, {57, 199}, {58, 199}, {59, 199}, {60, 199},

{61, 213.6}, {62, 185.2}, {63, 185.2}, {64, 185.2}, {65, 185.2}, {66, 185.2},
{67,213.6}, {68, 213.6}, {69, 199}, {70, 213.6}, {71, 203.2}, {72, 192.8}, {73,
172}, {74, 199}, {75, 185.2},{76, 199}, {77, 199}}.

From (9) we get: A = 1.93967, 8 = 0.18076, K =~ 180.991 mm?, Xo = 3.57
mm?, C = 3.92588.
It, therefore, turns out to be

X(¢) = 180.991 - ¢=3.92588:¢ 7018076 (10)

It is not linear and therefore the goodness of fit is measured by the following
fit index (which is a particular coefficient of variation):

1 ) ?:1(XJ_XJ')2
ERYTE) N — : an

where X;j are the second terms of the data pairs W, X; are the theoretical results
of the application of (10), M is the average of the theoretical values X; and n is
the sample size.

In our case the value is I, = 0.147582.

The value of I, seems acceptable; moreover, given the difficulty of data
collection, we can be satisfied with this approach even if, according to the
international standard, a value lower than 0.1 should be recommended [10].

We now present the graph of the theoretical model and the distribution of
experimental data around it (Figure 2).

X(t)
250 -

200 - ou-n--o'o.- © "o oo o'.uoo

150 “

100 | b4

50 -

t (days)

0 26 4‘0 6‘0
Figure 2. On the t-axis there is time in days, on the ordinates there is the volume
of tumor.

Calculating the second derivative of (10) and placing it equal to zero, we

obtain the inflection point [7]. It is equal to (7.56578 days, 66.5829 mm?). We
have thus finished studying the Gompertz model applied to our experimental
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data. Let us now turn to the study of the optimal therapy to be applied to the
nodule to control its growth.

8. The radiobiological treatment of tumor

The goal of radiological treatment of the cancer is to reduce its mass by
killing its cells, without simultaneously damaging healthy cells. Radiotherapies
aim to achieve this goal. This treatment, however, is rather dangerous since, in
the irradiation of the tumor mass, healthy tissue cells are unfortunately also
affected. In short, the following problem must be addressed: how much mini-
mum radiant dose should be given to the patient to maximize the number of
cancer cells killed with minimal damage to healthy cells? To answer this
question, we need to address some preliminary aspects on the subject.

We have shown that the Gompertz model is valid in the interpretation of the
dynamics of the tumor mass of an experimental nodule of glioblastoma. At this
point we apply the model also to evaluate the dynamic behavior of the same
tumor in a patient.

Before tackling the preliminaries, we consider that X, = K - e ¢ and we put
it in (3), obtaining the following formula (algebraic steps are simple and are
omitted):

X(t) = X,-e B (12)

where a,/f = C, the parameter a, assumes the meaning of instantaneous
spheroid growth rate at time t = 0 and S is a generic factor that deaden the
tumour growth. From (12) it is confirmed that

. ﬂ.(l_e—ﬁ‘t) %o
Max[X(t)] = tl_l)ELnOOXO-eﬁ =X,-ef =K. (13)
Equation (13) represents a constraint on the growth of the spheroid. On the
basis of a consolidated case series, it is believed that the maximum volume of
the tumour borne by a patient can reach 25 cm?, after which the effects are
devastating and lead to the death of the guest in a short time. Then from (13) we
have:

Log(K) = Log(Xo) + % ,

Yo_p (K)~L 25 em? ~ 23.94 14
g~ %9\x,) = %9\ 10-9cmz ) = 7" (14)

where X, in this case corresponds to the volume in cm? of a tumor cell at the
beginning of the process; that is X, = Vol enuia-
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9. Some notions of radiobiology

Often only possible therapy in the treatment of tumors is the radiotherapy,
especially when the tumor involves important tissues of the human body or is
located in places of difficult surgical access. From a clinical point of view,
radiotherapy is an indispensable treatment even when it is considered necessary
to intervene with more invasive therapies such as surgery and chemotherapy.
Currently, biomedical research is further progressing with promising studies on
the interaction between tumor cells and subatomic particles obtained with
appropriate accelerators. At the moment encouraging results have been
achieved, but the journey is still long. The treatment of tumor masses with
radiation has the purpose of inducing massive molecular damage to the diseased
cells so as to lead them to death. The decisive problem is to avoid as far as
possible damage to healthy cells when one intervenes on sick cells. The damage
induced by radiotherapy treatment depends on the intensity of the radiant dose.
There are international indications that establish the effects of any radiation
therapy. The radiant dose is expressed in Gray (Gy), which corresponds to the
energy of 1 joule absorbed by 1 kg of biological tissue. Moreover, this basic unit
must be multiplied by a suitable parameter that allows to take into account the
effect on biological tissues of different nature of this radiant dose (RBE =
Relative Biological Effectiveness). Finally, the product between Gy and RBE
gives the equivalent biological dose to be administered, which is measured in
Sievert (Sv). It should be considered that for radiations of clinical interest,
radiation y [4], we consider RBE = 1 and Gy = Sv. Table 1 highlights from a
descriptive point of view the effects on human beings of exposure to radiant
doses of different degrees of intensity [5].

Dose (Sv) Effects
(0.05-0.2] | No symptoms, but risk of DNA mutations
(0.2-0.5] | Temporary drop in red blood cells

(0.5-1] Drop in immune system cells and risk of infection

1-2] Immunodepression, nausea and vomiting. Mortality of 10% at 30
days from exposure
(2-3] Severe immunodepression, nausea and vomiting 1-6 hours after

exposure. Latency phase of 7-14 days after which symptoms appear
such as hair loss. Mortality of 35% at 30 days from exposure
(3-14] Bleeding of the mouth and urinary tract. Mortality of 50% at 30
days from exposure

(4-6] Mortality of 60% at 30 days from exposure. Female infertility. The
convalescence lasts from a few months to a year

(6 -10] Complete injury of the bone marrow (the organ that produces red
blood cells and all cells of the immune system). Symptoms appear
between 15 and 30 minutes after exposure and mortality is 100% at
14 days after exposure
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(10 - 50] Immediate nausea, bleeding from the gastrointestinal tract and
diarrhea, coma and death within 7 days. No medical intervention is
possible

(50 — 80] Immediate coma. Death occurs in a few hours due to the collapse

of the nervous system
>80 Exposure to these doses occurred in two circumstances.
Both subjects died within 49 hours of the accident

Table 1: Effects of radiation on human beings

10. The modeling of therapy

At this point, we must find a therapeutic process that allows us to stop the
growth of the tumor or, even better, to reduce its mass to extinction. The model
should take into account the disposition of the cells within the tumor mass, their
microenvironment and the toxic effects induced on the healthy tissues of the
surrounding cells and any other factor that may inform about the dynamics of
the tumor. Studies conducted so far in various research institutes around the
world have led to confirm, as an acceptable model to be considered in the
treatment of tumors with radiant dose, the following one:

SE(D) = e~4D-bD? (15)

where SF is the survival rate, a and b are two arbitrary parameters and D is the
radiant dose. We must estimate the parameters a and b of the model as a function
of the experimental data. Even in this case we linearize the model and apply the
least squares method.

Dose (Gy) SF Dose (Gy) SF
0.0000 1.0000 5.5036 0.19609
0.53957 0.87780 6.0072 0.18372
1.0072 0.84048 6.5108 0.14785
1.5468 0.73778 7.0144 0.11642
2.0144 0.78746 7.5180 0.097850
2.5180 0.62009 7.9856 0.073780
3.0216 0.55627 8.4892 0.058100
3.5252 0.46753 8.9928 0.043800
3.9928 0.36816 9.4964 0.036020
4.5324 0.33752 10.000 0.033750
5.0360 0.26007 10.504 0.026010

Table n. 2: Numerical data relating to the graph in figure 3, further on
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11. Assumptions for the radiotherapy

When we face the problem of finding the relationship between a dynamic
model of natural growth of a tumor and its radio-therapeutic treatment, collateral
effects inevitably arise that create states other than those we would have liked
to encounter. The complete modeling of a radiotherapy treatment requires the
consideration of numerous variables that influence the interaction between
tumor cells and radiant doses. For this reason, as a first approximation, we put
some valid hypotheses to simplify the method. The choice of the hypotheses
useful for the simplification of an effective model for the treatment of a tumor
is in any case indispensable every time the control of the final results is desired.
If we consider the analysis of the problem from a mathematical point of view, it
is necessary to think about the implication of having to replace differential
equations, defined in the continuous, with equivalent equations defined in the
discrete. At this point we present the list of the necessary hypotheses to get on
with the analysis of the process.

Assumption 1: The Gompertz model is a good representation of the growth
dynamic of a tumor mass, starting from a first degenerated cell up to
asymptotically reaching a volume of 25 cm®. Thus, it is possible to simulate
tumor growth using the equations (1), (2) and (3).

Assumption 2: A solid tumor, in general, consists of proliferating cells P,
quiescent cells Q and dead cells U. The number of total cells N at time t is
therefore given by

N(® =P® + Q) + U(1). (16)

Table 3 and Figure 5 refer only to proliferating cells since ionizing radiations
are much less effective if directed against quiescent cells.

Assumption 3: In a solid tumor, on an experimental basis, it is possible to
state that the number of quiescent and dead cells becomes significant with
respect to the total of cells at the inflection point of the Gompertz curve (3) and
(12).

Assumption 4: Radiation therapy has instantaneous effects, causing the
immediate death of the cancer cells. These effects should at least be faster than
the growth of tumor cells. This avoids a detailed kinetic analysis of the toxicity
of radiation.

Assumption 5: After undergoing radiotherapy treatment, the tumor grows
with the same dynamic modalities that preceded the treatment. It is a common
convention in scientific treatises; however, there are also different points of view
on this matter [6].

Assumption 6: The maximum dose in a single treatment is 3 Gy. You can
also perform multiple treatments if and only if they are repeated at 24-hour
intervals. It is not possible, however, to exceed 65 Gy. This assumption is
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indicated by the radiotherapeutic protocols followed in the therapy of some
tumors. The 3 Gy dose allows healthy tissues affected by radiation to recover
from damage.

Assumption 7: We assume the existence of two critical thresholds in the
treatment phase: 1) if after treatment a tumor falls below 1 mm?3, then we
consider a therapy to be successful; 2) if, on the other hand, the volume increases
beyond the dimension corresponding to the inflection point of the Gompertz
curve, the therapy must be considered as failed. In practice, nothing justifies this
assumption from a clinical or biological point of view and yet we accept it as
work hypothesis.

Based on these hypotheses, we can proceed with the estimation of the model
parameters (15) and with the application of the programmed therapy.

12. Procedure for a rational therapy

The method we will use for the treatment of glioblastoma, meets the
following two objectives:
1) Check if there is a relationship between the effectiveness of the radiotherapy
treatment used and the rate of tumor growth.
2) In case of an affirmative answer to the first objective, find a specific treatment
protocol that allows to optimize the relationship between the benefits of the
therapy and the costs due to the induction of toxic effects; in concrete terms, it
is necessary to find the minimum amount of radiation to be used with the
maximum destructive effect of cancer cells.

We start with the estimation of the parameters of the model (15) using the
well-known method of least squares and, also in this case, evaluating the
goodness of fit with index 12 (11). The model (15) must be linearized:

Log[SF(D)]=—-a-D — b - D? (17)

and applying the least squares method we have:

2

S(a,b) = Z; (Log (SF(D,-)) — Log (ﬁ:(pj)))
N Z;(Log (SF(DJ)) +a-D+b-D? )

Calculating the partial derivatives of S(a, b) with refer to aand to b, we obtain
the system

2

64



Mathematics and radiotherapy of tumors

(5, ) o5, )=
i(Zn Df) ca+ (leDf) ‘b= —Z;Djz *Log[SF(D;)]

j=1

(18)

Considering the data in Table 2 and solving (18) with refer to a and b we
obtain:

a = 0.124275; b = 0.0264028.
The model adapted to the data in table 2 is, therefore:

§I\~"(D) ~ —0.124275D-0.0264028 D? (19)

Using the coefficient of variation:

P 2
- Jzyzl(SF(D,-) - SF(D)))
M (ET:(D)) n

and taking into account both the data in table 2, and the theoretical values
calculated with (19), we get the goodness of fit: I, s = 0.0998765. This value

shows that our approach is good. Figure 3 presents both the trend of
experimental data and the interpolated model.

(20)

| 2,SF =

D=Dose(Gy)

Figure 3: the graph shows the link between the radiant dose and the fraction of
surviving individuals (19). The points represent, in Cartesian coordinates, the
data of table 2. We put on the D-axis the radiant dose, on the ordinate axis the
survival rate SF(D).

13. Research of the inflection point

At this point, it is necessary to start the therapy taking into account what has
resulted from these preliminary procedures. We consider again the model (10)
and figure 3. Furthermore, on the basis of the assumption 3, the most effective
radiotherapy treatment is the one which begins at the inflection point of the
Gompertz curve.
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We consider the model (12):

o %0.(1_g-Bt
2(t) =Xy e D (21)
and taking into account that a cancer cell has a volume of 10~° cm?® and that
B = 0.016 we have:

X(t) = 1079 - g239421 (1-e700168) (22)

Calculating the second derivative of X(t) and setting it equal to zero we get
the inflection point (198.477 days, 9.19654 cm®) [7]. We note that this result is
different from that obtained using the model (10). Here, in fact, the parameters
of the Gompertz model are changed, which are now imposed not by the
experimental data of the single experimental nodule (which in our case led to
the model (10)), but by a different operating standard that requires both a start
from a single tumor cell, whose volume is fixed at 10 ° cm?, and from a critical
maximum limit of tumor expansion equal to K = 25 cm?®. Figure 4 presents the
function with the flex point.

At this point the radiant doses should be applied at intervals that allow the
patient's average life to be maximized. The first simulation (Fig. 4) considers a
single-dose therapy to hit the tumor mass with a single dose of radiation (from
1 to 3 Gy with intervals of 0.4). Starting at the time of the cancer diagnosis
observation, when the tumor mass can vary from a minimum of 0.0050 cm? to
a maximum marked by the flex point, we have to measure the effect of the
therapy on the cancer using the delay time of its growth. This time corresponds
to the one that the tumor mass needs, after having been treated with
radiotherapy, to return to the mass it had before the treatment was carried out.
Methods and procedures are reported in [2]. In the last two graphs we report two
other simulations in which, with respect to the protocol for the search for an
optimal result, two different outcomes are observed. In figure 5, the result is not
satisfactory; instead, in figure 6 the protocol gives a favorable outcome and the
mass of the glioblastoma is reduced below the desired minimum threshold.

X()

25+

20+

L L L L L L t (days)
100 200 300 400 500 600 700

Figure 4. Gompertz curve (22) related to the investigated tumor. The inflection
point is (198.477 days, 9.19654 cm?®). On the t-axis there is the time in days and
on the ordinate axis the tumor volume in cm®,
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Each cusp corresponds to the flex point of the various curves that sequentially
describe the progression of tumor growth after each treatment.
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En Route for the Calculus of Variations
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Abstract

Optimal control deals with the problem of finding a control law for a given
system such that a certain optimality criterion is achieved. An optimal control is
an extension of the calculus of variations. It is a mathematical optimization
method for deriving control policies. The calculus of variations is concerned
with the extrema of functionals. The different approaches tried out in its solution
may be considered, in a more or less direct way, as the starting point for new
theories. While the true “mathematical” demonstration involves what we now
call the calculus of variations, a theory for which Euler and then Lagrange
established the foundations, the solution which Johann Bernoulli originally
produced, obtained with the help analogy with the law of refraction on optics,
was empirical. A similar analogy between optics and mechanics reappears when
Hamilton applied the principle of least action in mechanics which Maupertuis
justified in the first instance, on the basis of the laws of optics.
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1 Introduction

Our intention here is to write the history of the brachistrone and its
remarkable consequences. In the contemporary socio-cultural context, the
question would essentially be formulated in the following text: what shape
should we make slides in children’s playgrounds so that the time of descent
should be minimized? The considerable importance of this question is well
understood when we consider how children behave, and they want to obtain the
best performance, but the question is also important in a more general way, and
a great number of scholars have attempted to solve this problem.

Unfortunately the problem appears to be particularly tricky, and it depends
upon a number of parameters, including the variable value of the friction
between the clothes of the child and the surface of the slide. We shall not attempt
to solve that particular problem here, but content ourselves with theory of the
idealized problem, simplifying the situation sufficiently in order to be able to
find a solution. In fact we shall replace the child by a perfectly smooth marble,
and we assume that it rolls down a smooth surface, thus assuming that friction
forces are negligible with respect to gravity.

Now, we are simply confronted with the problem of brachistrone as Johann
Bernoulli expressed it in the Acta Eruditorum published in Leipzig in June 1696
([1], vol. 1, p. 161): Datis in plano vertacali duobus punctis A & B, assignare
Mobili M viam AMB, per quam gravitate sua descenden, & moveri incipiens a
puncto A, brevissimo tempore perveniat ad alterum punctum B.

The expression brevissimo tempore is the latin translation of the greek term
brachistochrone (brachys is brief, brachisto is quickest, chronos is time and
brachistochrone is the shortes time). In a modern style: Given two points 4 and
B in a vertical plane, what is the curve traced out by a point subject only to the
force gravity, starting from rest at 4, such that it arrives at B in the shortest time?

Common sense suggests that this curve is necessarily situated in the vertical
plane containing the points 4 and B. Common sense also leads us to think that
the quickest route is the shortest, and is given by the line segment joining the
points A and B. But this is not the case. We know, for example that a longer
journey on a motorway be faster than going a shorter distance on an ordinary
road. Here, in order to try to solve the problem of brachistochrome, it is
necessary to consider all the curves joining points 4 and B and compare all the
corresponding times of travel. Taking everything into account, even under these
restrictions, the problem turns out to be a subtle one. The brachistochrone
problem, a priori a simple game for mathematicians, turns out in the end to be a
considerable problem.
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2 Falling bodies, reflection and refraction

In 1638, well before the problem had been explicitly stated, Galileo gave
his solution to the brachistochrone problem in the course of the Third Day of
his [5]. It is here that he studied uniform acceleration — Galileo called it
“natural acceleration” — comparing it with uniform motion, and showed that a
body falling in space traverses a distance proportional to the square of the time
of descent (Theorem II in [4]). With regard to bodies moving on inclined
planes he deduced ([5]):

Theorem V. The times of descent along planes of different length, slope and
height bear to one another a ratio which is equal to the product of the ratio of
the lengths by square root of inverse ratio of their heights.

We interpret the proportionality to be: a body travels a distance L and

descends a height H in time ¢ such that:
. k-L

vH

Galileo then proves the following neat result ([5]):

Theorem VI. If from the highest or lowest point in a vertical circle there be
drawn any inclined planes meeting the circumference, the times of descent along
these chords are each equal to the other.

At the end of the Third Day, Galileo shows that it is also possible to improve
on this descent ([5]):

Theorem XXII. If from the lowest point of a vertical circle, a chord is drawn
subtending an arc not greater than a quadrant, and if from the two ends of this
chord two other chords be drawn to any point on the arc, the time of descent
along the two later chords will be shorter than along the first, and shorter also,
by the same amount, than along the lower of these two latter chords.

This result is false, since arguing the case from two to three segments is based
on a faulty intuition from arguing from one to two segments. The
brachistrochrone problem is considerably more subtle than the one of the
research into optimum inclination of planes, which is a simple problem of the
extremum for a function of single variable.

The demonstration by Johann Bernoulli [1] also derives from an intuitive
approach. This approach, an analogy with the law of refraction, leads to the
curve solution which one cannot find a priori, without an arsenal of sufficiently
sophisticated techniques. Let us begin by recalling the first laws of Optics,
which are in fact consequences of the principles of optimization.

Experience tells us that light travels in straight lines. This phenomenon is
stated as a principle: light chooses the shortest path. This formulation led to a
real theoretical advance since it allowed Hero of Alexandria in the first century
AD to explain the law of reflection, namely, the equality of the angles of
incidence and reflection. In the case of reflection, the speed remains constant. It
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is not so for refraction, where the speed of light < varies as a function of the

index n of the medium traversed. However, the principle stated above could
have been stated in the following form as the Fermat’s Principle: light chooses
the fastest route, which in a homogenous medium where its speed is constant, is
equivalent to the previous principle.

So, to go from 4 to B, passing from a medium of index n, to medium of
index n,, the trajectory of the light will not be the line segment 4B, but broken
line AIB such that the trajectory A4/B will have the shortest time of all trajectories
from 4 to B. Using the initial conditions we calculate that the angle of incidence
i and the angle of refraction r are related to the respective speeds by the formula:

sin it sinr
v; - vy’ (1)
or using the indicesn, andn, we have the sine formula

n;*sini =n, *sinr.

This formula, discovered by the Dutch scientist Snell in 1621, received its
correct interpretation with Fermat. In a letter of the 1% of January 1662 to M De
la Chambre, Fermat explains ([4], vol. 11, pp. 457-463): As i said in my previous
letter, M. Descartes has never demonstrated his principle; because not only do
the comparisons hardly serve as a foundation for the demonstrations, but he
uses them in the opposite sense and supposes that the passage of light is more
easy in dense bodies than in rare bodies, which is clearly false. I will not say
anything to you about the shortcomings of the demonstration itself ...

Fermat puts his principle to work, and proves the sine formula using his
method ‘de maximis et minimis’ ([4]). Another example of a non-homogeneous
medium where the shortest trajectory is not the quickest occurs in mechanics,
where the effect of gravity is in the vertical direction. And this is the context for
Johann Bernoulli brachistochrone problem. Johann Bernoulli in the Acta
Eruditorum of May 1697 ([1], vol. 1, pp. 187-193). His method typically
corresponds to what we now call a discretisation of the problem. He imagines
space carved into small lamina, sufficiently fine so that within each one it is
possible to imagine that the speed is constant. Within each strip the trajectory
becomes the shortest route, and necessarily a segment. The complete trajectory
appears as a sequence of segments. But how we move from one strip to another?
We must always optimize the time of travel. As in refraction of light, this is done
by using Fermat’s principle. Thus, if v, is the speed in a given band and v, in

the band immediately below, the angle i is the angle made with the vertical by
segment of the trajectory in the first band, an the angle » in the neighboring band,
then they are connected by the rule of sines (1). If we now imagine that the
horizontal strips become progressively thinner, and their number increases
indefinitely, the line of segments tends towards a curve. The tangents at each
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point of this curve approach the sequence of segments. The angle # which the

tangent makes with the vertical is then connected to the speed v by the relation:
sinu

= const.

v
Here, the speed v of a particle is known,; it is result of the action of gravity
and, as we know from Galileo, it is a function of the distance fallen y, according

to the formula
v =,/2gy.

And so the rule of sines leads to the equation:
sinu

NES

In particular, for y = 0, the tangent is vertical.

That is a characteristic equation of a well-known curve of the time, the
cycloid.

We have just seen that the solution to the curve is a cycloid. But how can we
construct such a curve, starting from a point 4, an arriving exactly at a point B?
Newton gave a simple solution in a letter to Montague on the 30" of January
1697 (see [10], p. 223). In addition to Newton’s contribution to the solution of
the problem of the brachistochrone, we must also mention Leibniz, and in a
lesser role, the Marquis de 1’Hospital, and most of all, Jacob Bernoulli, the older
brother of Johann ([1], vol. 1, p. 194-204): ... my elder brother made up the
fourth of these, that the three great nations, Germany, England, France, have
given us each one of their own to unite with myself in such a beautiful search,
all finding the same truth.

The method used by Jacob Bernoulli is laborious, but quite general. Also,
Jacob, in wanting to show the singular character of Johann’s method, extended
the problem by posing new questions. Indeed, Johann’s method, founded on an
analogy, does not work except in a particular case, and cannot be used for more
general problems of this type. In particular, Jacob Bernoulli put the following
question to his brother” given a vertical line which of all the cycloids having the
same starting point and the same horizontal base, is the one which will allow a
heavy body passing along it to arrive at the vertical line the soonest? Such
statement reminds us of Calileo’s first version, which was about finding the
inclined plane through a given point which gave the shortest time to reach a
given vertical. Johann Bernoulli ([1], vol. 1, p. 206-213) replied and showed that
the cycloid in question is the one which meets the given line horizontally. More
generally, the cycloid which allows us to achieve the swiftest possible descent
to a given oblique line is the one which meets the line at right angles. This
cycloid which, as we have just said, is a brachistochrone curve, was also known
to Huygens fro 1659 as the tautochrone curve: bodies which fall in an inverted
cycloid arrive at the bottom at the same time, no matter from what height they
are released. This property was perhaps closer to that observed by Galileo: the

= const.

73



Jan Coufal and Jifi Tobisek

equality of the times for the distance on the chords of the same circle. Among
the other problems posed by Jacob Bernoulli to Johann are those which are
called isoperimetric problems, which together with brachistochrone problem are
prototypes of optimization problems. These scientific exchanges between the
two brothers were carried out in the form of letters. Here is a sample of Johann’s
response to same criticisms by Jacob ([1], vol. 1, p. 194-204): So there it is, his
imagination, stronger and more vivid than those claiming to be sorcerers who
believe they have found themselves bodily present at a Sabbath, has seduced
him; he is carried along by a torrent of vain conjectures, in a word, he is longer
ready to give reign to reason ... The resolution of these problems is then the
object — reason or excuse? — for a long dispute between the two brothers; a
dispute which developed into a major row, but which gave birth to new area in
mathematics, the Calculus of Variations.

3 The Calculus of Variations

When we look for boundary values of a function f of a variable x, i.e. when
we look for values of the variable x for which the value f(x) is a maximum or
minimum, we look for the points where the graph of f has a horizontal tangent,
or we say we look for the values where f'(x) = 0. In the case of a function fof
two variables x and y, we have to consider the points where the tangent plane is
horizontal to the surface which has the equation z = f(x, y). Alternatively we
could say we seek the number pairs [ x, y | for which

of of

Or we can say we are looking for the points where the function f has a
stationary value. In the case of a finite number of variables, the difficulties seem
surmountable, and the approach to the problem may be effected with the aid of
the differential calculus of Newton and Leibniz. Here the object which changes
is not a number or a point, but a curve, a function, and the corresponding
quantity to maximize or minimize is a number depending on this curve or on
this function. It is necessary to conceive an extension of the differential calculus.
The new theory which was created is called the calculus of variations, the
variations being those of the function. But, in 1696, this theory had not been
formulated and our problem becomes a priori somewhat subtle. A problem in
the calculus of variations can be presented generally in the following fashion:
we try to find a curve, being the graphical representation of a function y of x,
which minimizes or maximizes a certain quantity among all the curves
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constrained by certain conditions®. The quantity whose extreme value has to be

found™ is expressed generally in the form of an integral:
b

I(y) = f F(x,y,y") dx

a
where y represented the unknown function, y’ its derivative, x variable and F a
particular function.

Among the typical problems of the calculus of variations, besides the
isoperimetric problems above are investigations of the geodesic lines on surface,
i.e. the curves of minimum length joining two points of a surface. Also, the
investigation of the shapes of the surfaces of revolution which offer the least
resistance to movement, a problem which Newton tackled in 1687 in the
Principia. The statement of the brachistochrone problem in 1696 could be
considered as the definitive origin of the calculus of variations, for it is the
problem which generated general methods of investigation which were
gradually developed in a competitive context.

Johann Bernoulli himself posed the problem of geodetics to Euler. Euler re-
worked the ideas of Jacob Bernoulli, simplified them, and finally was the first
to formulate the general methods which allowed them to be applied to the
principal problems of the calculus variation. He developed these ideas
systematically in 1744 in [3]. In a way like Jacob Bernoulli, Euler tackles the
problem as a problem of limits in an investigation of the ordinary extremum.
Euler derived the differential equation:

or oy _afor )
3y vy <ay' (x.y.y)> =0 )

dx

which satisfies each solution y. It is only a necessary condition and the method
does not establish the existence of a solution. The equation (2), today called the
Euler-Lagrange equation, is a second order differential equation in y:

2 2 2

y,ax (xlyFy ) _ay,ay (x’y'y ) _aylz

LR (57,5 = 0
ay xl y; y a xl yr y - .

In 1760, Lagrange greatly simplified matters by introducing the differential
symbol 9, specifically for the calculus of variations, corresponding to a variation
of the complete function. He makes the point of it in the introduction to [6]: For
as little as we know the principles of the differential calculus, we know the
method for determining the largest and smallest ordinates of curves; but there
are questions of maxima and minima at a higher level which, although
depending on the same method, are not able to be applied so easily. They are

$ For brachistochrone problem — the curve joining two points 4 and B.
** Here — the time of the journey.
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those where it is needed to find the curves themselves, in which a given integral
expression becomes a maximum or minimum with respect to all the other curves.
... Now here is a method which only requires a straightforward use of the
principles of the differential and integral calculus; but above all I must give
warning that while this method requires that the same quantities vary in two
different ways, in order not to mix up these variations, I have introduced into
my calculations a new symbol o. In this way, 0Z expressed a difference of Z
which is not the same as dZ, but which, however, will be formed by the same
rules; such that where we have for any equation dZ=m dx, we can equally have
0Z=m 0x, and likewise for other cases.

A century later, Mach was able to write in [7]: In this way, by analogy,
Johann Bernoulli accidentally found a solution to the problem. Jacob Bernoulli
developed a geometric method for the solution of analogous problems In one
stroke, Euler generalized the problem and the geometrical method, Lagrange
finally freed it completely from the consideration of diagrams, and provided an
analytical method.

4 The Principle of Least Action

We shall make a digression, the purpose of which will soon become clear
Maupertuis stated his Principle of Least Action in 1744 in [8]. He explains and
justifies his principle from the law of refraction: In thinking deeply upon this
matter, I reflected that light, as it passes from one medium to another, yet not
taking the shortest path, which is a straight line, might just as well not take the
shortest time. Actually, why should there be a preference here for time over
space? Light cannot go at the same time by the shortest path and by the
quickest route, so why does it go by one route rather than another? In fact, it
does not take either of these; it takes a route that has the greater real
advantage: the path taken is the one where the quantity of action is the least.

Now I must explain what I mean by the quantity of action. When a body is
moved from one place to another, a certain action is needed.: this action depends
neither on the speed of the body and the distance travelled; but it depends on
the speed nor the distance taken separately. The quantity of action is moreover
greater when the speed of the body is greater and when the path travelled is
greater; it is proportional to the sum of the distance multiplied respectively by
the speed travelled over each space. ... It is quantity of action which is the true
expenditure of Nature, and which she uses as sparingly as possible in the motion
of light. Let there be two different media, separated by a surface represented by
the line CD, such that the speed of light in the medium above is m. and the speed
in the medium below is n.

Let a ray of light, starting from point A, reach a point B: to find the point R
where the ray changes course, we look for the point where if the ray bends the
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quantity of action is the least: and I have m-AR =n-RB which must be a
minimum. ...

That is to say, the sine of the angle of incidence to the sine of the angle of
refraction is in inverse proportion to the speed with the light traverses each
medium.

All the phenomena of refraction now agree with the central principle that
Nature, in the production of its effects, always tends towards the most simple
means. So this principle follows, that when light passes from one medium to
another the sine of the angle of refraction to the sine of the angle of incidence
is in inverse ratio to the speed with which the light traverses each medium.

And so for Maupertuis, light is propagated so as to minimize AR - v, = RB - v,
and not the quantity Z -2 For these conclusions to agree with the

U1 v2
experimental results of the time, and so that his principle would lead to the sine
law. It is true that at that time no one knew how to measure the speed of light
and no one could find a way of deciding between the different theories. The
experimental proof that light travels faster in air than in water was not
established until 1850 Foucault.

In 1746, Maupertuis extended his principle from optics to mechanics ([9]):
When a body is carried from one place to another, the action is greater when
the mass is heavier, when the speed is faster, when the distance over which it is
carried is longer. ... Whenever a change in Nature takes place, the quantity of
action necessary for this change is the smallest possible.

With this general principle, Maupertuis established a kind of union between
philosophy, physics and mathematics: Nature works in such a way as to
minimize its action; the idea of causality is abandoned in favor of the idea
achieving an aim, characterized by a harmony between the physical world and
rational thought.

5 Conclusion

It would be right to conclude by revisiting our initial problem of the slides
in the playground. We are circumspect, and content ourselves with noticing that
in the course of this wander through diverse disciplines, the theme of
minimization or maximization briefly the problem of optimalization is ever
present, and should not be underestimated during these unhappy times.
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distinguishing index of co-normal product
of two graphs
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Abstract

The distinguishing number (index) D(G) (D'(G)) of a graph G is
the least integer d such that GG has an vertex labeling (edge labeling)
with d labels that is preserved only by a trivial automorphism. The
co-normal product G x H of two graphs GG and H is the graph with
vertex set V(G) x V(H) and edge set {{(z1,z2), (Y1, v2) Hz111 €
E(G) or zoy, € E(H)}. In this paper we study the distinguishing
number and the distinguishing index of the co-normal product of two
graphs. We prove that for every £k > 3, the k-th co-normal power
of a connected graph G with no false twin vertex and no dominating
vertex, has the distinguishing number and the distinguishing index
equal two.
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1 Introduction and definitions

Let G = (V, E) be a simple graph of order n > 2. We use the the following
notations: The set of vertices adjacent in G to a vertex of a vertex subset W C V
is the open neighborhood N (W) of W. Also N(W) U W is called a closed
neighborhood of W and denoted by N[W|. A subgraph of a graph G is a graph
H such that V(H) C V(G) and E(H) C E(G). f V(H) = V(G), we call
H a spanning subgraph of GG. Any spanning subgraph of G can be obtained by
deleting some of the edges from GG. Two distinct vertices u and v are called true
twins if N[v] = N[u] and false twins if N(v) = N(u). Two vertices are called
twins if they are true or false twins. The number | N (v)| is called the degree of v
in G, denoted as deg(v) or deg(v). A vertex having degree |V (G)| — 1 is called
a dominating vertex of G. Also, Aut(G) denotes the automorphism group of G,
and graphs with |Aut(G)| = 1 are called rigid graphs.

A labeling of G, ¢ : V' — {1,2,...,r}, is said to be r-distinguishing, if no
non-trivial automorphism of GG preserves all of the vertex labels. The point of the
labels on the vertices is to destroy the symmetries of the graph, that is, to make the
automorphism group of the labeled graph trivial. Formally, ¢ is r-distinguishing
if for every non-trivial o € Aut(G), there exists « in V' such that ¢(z) # ¢(o(x)).
The distinguishing number of a graph G is defined by

D(G) = min{r| G has a labeling that is r-distinguishing}.

This number has defined in [1]. Similar to this definition, the distinguishing
index D'(G) of G has defined in [8] which is the least integer d such that G has
an edge colouring with d colours that is preserved only by a trivial automorphism.
If a graph has no nontrivial automorphisms, its distinguishing number is 1. In
other words, D(G) = 1 for the asymmetric graphs. The other extreme, D(G) =
|V (G)|, occurs if and only if GG is a complete graph. The distinguishing index of
some examples of graphs was exhibited in [8]. For instance, D(P,) = D'(P,) = 2
for every n > 3, and D(C,,) = D'(C,) = 3 forn = 3,4,5, D(C,,) = D'(C,) =
2 for n > 6, where P, denotes a path graph on n vertices and C,, denotes a
cycle graph on n vertices. A graph and its complement, always have the same
automorphism group while their graph structure usually differs, hence D(G) =
D(G) for every simple graph G.

Product graph of two graphs G and H is a new graph having the vertex set
V(G) x V(H) and the adjacency of vertices is defined under some rule using
the adjacency and the nonadjacency relations of G and H. The distinguishing
number and the distinguishing index of some graph products has been studied in
literature (see [2, 6, 7]). The Cartesian product of graphs G and H is a graph,
denoted by GOH, whose vertex set is V(G) x V(H). Two vertices (g, h) and
(¢', 1) are adjacent if either g = ¢’ and hh' € E(H), or g¢' € E(G) and h = I'.
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In 1962, Ore [10] introduced a product graph, with the name Cartesian sum of
graphs. Hammack et al. [4], named it co-normal product graph. The co-normal
product of G and H is the graph denoted by G x H, and is defined as follows:

V(G H) ={(g.h)lg € V(G) and h € V(H)},
E(Gx H) = {{(z1,22), (Y1, y2) a1y € B(G) or 22y, € E(H)}.

We need knowledge of the structure of the automorphism group of the Carte-
sian product, which was determined by Imrich [5], and independently by Miller
[9].

Theorem 1.1. [5, 9] Suppose 1 is an automorphism of a connected graph G with
prime factor decomposition G = G10G.0 ... OG,. Then there is a permutation
7 of the set {1,2,...,r} and there are isomorphisms 1); : Gru — Gi @ =
1,...,r, such that

77Z)(x17 T, ... 7x7”) = <¢1(xﬂ(l))7¢2<xﬂ(2))7 cee 777/}7‘(1'#(7“)))-

Imrich and KlavzZar in [7], and Gorzkowska et.al. in [3] showed that the dis-
tinguishing number and the distinguishing index of the square and higher powers
of a connected graph G # K, K3 with respect to the Cartesian product is 2.

The relationship between the automorphism group of co-normal product of
two non isomorphic, non rigid connected graphs with no false twin and no domi-
nating vertex is the same as that in the case of the Cartesian product.

Theorem 1.2. [12] For any two non isomorphic, non rigid graphs G and H,
Aut(G* H) = Aut(G) x Aut(H) if and only if both G and H have no false twins
and dominating vertices.

Theorem 1.3. [12] For any two rigid isomorphic graphs G and H, Aut(Gx H) =
S.

Theorem 1.4. [12]The graph G x H is rigid if and only if G 22 H and both G and
H are rigid graphs.

In the next section, we study the distinguishing number of the co-normal prod-
uct of two graphs. In section 3, we show that the distinguishing index of the co-
normal product of two simple connected non isomorphic, non rigid graphs with
no false twin and no dominating vertex cannot be more than the distinguishing
index of their Cartesian product. As a consequence, we prove that all powers of a
connected graph GG with no false twin and no dominating vertex distinguished by
exactly two edge labels with respect to the co-normal product.
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2 Distinguishing number of co-normal product of
two graphs

We begin this section with a general upper bound for the co-normal product
of two simple connected graphs. We need the following theorem.

Theorem 2.1. [12] Let G and H be two graphs and \ : V(G x H) — V(G x H)
be a mapping.

(i) If A = (o, B) defined as (g, h) = (a(g), 5(h)), where a € Aut(G) and
p € Aut(H), then \ is an automorphism on G * H.

(ii) If G is isomorphic to H and \ = («, () defined as \(g, h) = (B(h), a(g)),
where « is an isomorphism on G to H and 3 is an isomorphism on H to G,
then X is an automorphism on G * H.

Theorem 2.2. If G and H are two simple connected graphs, then
maX{D(GDH),D(G),D(H)} < D(GxH) < min{D(G)\V(H)], \V(G)]D(H)}.

Proof. We first show that max{D(G), D(H)} < D(G*H). By contradiction,
we assume that D(G +x H) < max{D(G), D(H)}. Without loss of generality we
suppose that max{D(G), D(H)} = D(G). Let C'be a (D(G* H))-distinguishing
labeling of G x H. Then the set of vertices {(g,h*) : ¢ € V(G)}, where
h* € V(H) have been labeled with less than D(G) labels. Hence we can define
the labeling C" with C’(g) := C(g, h*) for all g € V(G). Since D(G x H) <
D(G), so (' is not a distinguishing labeling of (G, and so there exists a nonidentity
automorphism « of G preserving the labeling C”. Thus there exists a nonidentity
automorphism A of Gx H with A(g, h) := («(g),h) forg € V(G)and h € V(H),
such that )\ preserves the distinguishing labeling C', which is a contradiction. Now
we show that D(GOH) < D(G x H), and so we prove the left inequality. By
Theorems 1.1 and 2.1, we can obtain that Aut(GOH) C Aut(G ~ H), and since
V(GOH) =V (G * H),wehave D(GOH) < D(G x H).

Now we show that D(G x H) < min{D(G)|V(H)|,|V(G)|D(H)}. For
this purpose, we define two distinguishing labelings of G x H with D(G)|V (H)|
and |V (G)|D(H) labels, respectively. Let C' be a D(G)-distinguishing label-
ing of G and ¢’ be a D(H)-distinguishing labeling of H. We suppose that
V(G) =A{q,...,gnyand V(H) = {hy,..., hy}, and define the two following
distinguishing labelings L, and L, of G x H with D(G)|V (H)| and |V (G)|D(H)
labels.

h
iy
~~
L
S
~—
I

(i =1)D(G) + C(g),
(j = 1)D(H) + C'(hi).

b(
N
~
8
S
~—

I
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We only prove that the labeling L, is a distinguishing labeling, and by a similar
argument, it can be concluded that L is a distinguishing labeling of G x H. If f
is an automorphism of G = H preserving the labeling L;, then f maps the set
H; = {(g;,hi) : g; € V(G)} toitself, setwise, for all i = 1,...,m. Since the
restriction of f to H; can be considered as an automorphism of GG preserving the
distinguishing labeling C, so for every 1 < ¢ < m, the restriction of f to H; is the
identity automorphism. Hence f is the identity automorphism of G x H. O

The bounds of Theorem 2.2 are sharp. For the right inequality it is sufficient to
consider the complete graphs as the graphs G and H. In fact, if G = K,, and H =
K,,, then G x H = K,,,,. For the left inequality we consider the non isomorphic
rigid graphs as the graphs G and H. Then by Theorem 1.4, we conclude that
G * H and GOH are a rigid graph and hence max{D(GOH), D(G), D(H)} =
D(G * H).

With respect to Theorems 1.1 and 1.2, we have that the automorphism group
of a co-normal product of connected non isomorphic, non rigid graphs with no
false twin and no dominating vertex, is the same as automorphism group of the
Cartesian product of them, so the following theorem follows immediately:

Theorem 2.3. If G and H are two simple connected, non isomorphic, non rigid
graphs with no false twin and no dominating vertex, then D(Gx H) = D(GOH).

Since the path graph P, (n > 4), and the cycle graph C,,, (m > 5) are con-
nected, graphs with no false twin and no dominating vertex, then by Theorem 2.3
we have D(P,  P;) = D(P, * Cy,) = D(C,, x C,) = 2 for any ¢,n > 3, where
q # nand m,p > 5, where m # p. (see [7] for the distinguishing number of
Cartesian product of these graphs).

To prove the next result, we need the following lemmas.

Lemma 2.1. [13] For any two distinct vertices (v;, u;) and (v,,us) in G % H,
N((05 1)) = N((vy, ) if and only if

(i) v; = v, in G and N (u;j) = N(u,) in H, or
(ii) u; = us in H and N(v;) = N(v,) in G, or
(iii) N(v;) = N(v,) in G and N(u;) = N(us).

Lemma 2.2. [13] A vertex (v;, u;) is a dominating vertex in G « H if and only if
v; and u; are dominating vertices in G and H, respectively.

Theorem 2.4. [12] For a rigid graph G and a non rigid graph H, |Aut(Gx H)| =
|Aut(H)| if and only if G has no dominating vertex and H has no false twin.
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Now we are ready to state and prove the main result of this section.

Theorem 2.5. Let G be a connected graph with no false twin and no dominating
vertex, and xG* the k-th power of G with respect to the co-normal product. Then
D(xG*) = 2 for k > 3. In particular, if G is a rigid graph, then for k > 2,
D(xG*) = 2.

Proof. By Lemmas 2.1 and 2.2, we can conclude that G * GG has no false twin
and no dominating vertex. We consider the two following cases:

Case 1) Let G be a non rigid graph. If H := G x G, then D(xG?) = 2 by
Theorem 2.3. Now by induction on £, we have the result.

Case 2) Let G be a rigid graph. In this case, |[Aut(G x G)| = 2, by Theorem
1.3,and so D(G * G) = 2. If H := G x G, then |Aut(G x H)| = |Aut(H)|, by
Theorem 2.4. Hence |Aut(xG?)| = 2. By induction on k and using Theorem 2.4,
we obtain D(xG*) = 2 for k > 2, where G is a rigid graph. O

3 Distinguishing index of co-normal product of two
graphs

In this section we investigate the distinguishing index of co-normal product of
graphs. Pil$niak in [11] showed that the distinguishing index of traceable graphs,
graphs with a Hamiltonian path, of order equal or greater than seven is at most
two.

Theorem 3.1. [11] If G is a traceable graph of order n > 7, then D'(G) < 2.

We say that a graph G is almost spanned by a subgraph H if G — v, the graph
obtained from GG by removal of a vertex v and all edges incident to v, is spanned
by H for some v € V(G). The following two observations will play a crucial role
in this section.

Lemma 3.1. [11] If a graph G is spanned or almost spanned by a subgraph H,
then D'(G) < D'(H) + 1.

Lemma 3.2. Let G be a graph and H be a spanning subgraph of G. If Aut(G) is
a subgroup of Aut(H), then D'(G) < D'(H).

Proof. Let to call the edges of G which are the edges of H, H-edges, and the
others non-H -edges, then since Aut(G) C Aut(H), we can conclude that each
automorphism of G maps H-edges to H-edges and non- H -edges to non- H-edges.
So assigning each distinguishing edge labeling of H to G and assigning non-H -
edges a repeated label we make a distinguishing edge labeling of G. [
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Since for two distinct simple non isomorphic, non rigid connected graphs,
with no false twin and no dominating vertex we have Aut(Gx H) = Aut(GOH),
so a direct consequence of Lemmas 3.1 and 3.2 is as follows:

Theorem 3.2. (i) If G and H are two simple connected graphs, then D'(G %
H) < D'(GOH) + 1.

(ii) If G and H are two simple connected non isomorphic, non rigid graphs with
no false twin and no dominating vertex, then D'(G x H) < D'(GOH).

Theorem 3.3. Let G be a connected graph with no false twin and no dominating
vertex, and xG* the k-th power of G with respect to the co-normal product. Then
for k > 3, D'(xG*) = 2. In particular, if G is a rigid graph, then for k > 2,
D'(xG*) = 2.

Proof. By Lemmas 2.1 and 2.2, we can conclude that G * GG has no false twin
and no dominating vertex. We consider the two following cases:

Case 1) Let G be a non rigid graph. If H = G x G, then D(xG?) = 2 by
Theorem 3.2(ii). Now by an induction on %, we have the result.

Case 2) Let G be arigid graph. In this case, |[Aut(G * G)| = 2, by Theorem
1.3,and so D(G xG) = 2. If H := G * G, then |Aut(G x H)| = |Aut(H)|, by
Theorem 2.4. Hence |[Aut(xG®)| = 2. By an induction on & and using Theorem
2.4, we obtain D(*Gk) = 2 for k > 2, where G is a rigid graph. O]

Theorem 3.4. Let G be a connected graph of order n > 2. Then D' (G * K,;,) = 2
for every m > 2, except D'( Ky x K3) = 3.

Proof. Since |[Aut(G * K,,,)| > 2, s0 D'(G > K,,) = 2. With respect to
the degree of vertices G' x K,,, we conclude that G x K, is a traceable graph. We
consider the two following cases:

Case 1) Suppose that n > 2. If m > 3, or m = 2, and n > 4, then the order of
G * K,, is at least 7, and so the result follows from Theorem 3.1. If m = 2, n = 3,
then G = P; or K3. In each case, it is easy to see that D'(G *x K,,,) = 2.

Case 2) Suppose that n = 2. Then G = Kj, and so G x K,,, = Ks,,. Thus
D'(Gx K,,) =2form > 3,and D'(Ky x Ky) = D'(K,) = 3.0

By the value of the distinguishing index of Cartesian product of paths and
cycles graphs in [3] and Theorem 3.2, we can obtain this value for the co-normal
product of them as the two following corollaries.

Corolary 3.1. (i) The co-normal product P,,* P, of two paths of orders m > 2
and n > 2 has the distinguishing index equal to two, except D' ( PyxPy) = 3.

(i) The co-normal product C,, x C,, of two cycles of orders m > 3 andn > 3
has the distinguishing index equal to two.
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(iii) The co-normal product P, x C,, of orders m > 2 and n > 3 has the distin-
guishing index equal to two.

Proof.

(1) If n,m > 4, then the result follows from Theorem 3.2 (ii). If n = 2 or
m = 2, then we have the result by Theorem 3.4. For the remaining cases,
with respect to the degree of vertices in P, x P,,, we obtain easily the dis-
tinguishing index.

(i) If n,m > 5, then the result follows from Theorem 3.2 (ii). If n = 3 or
m = 3, then we have the result by Theorem 3.4. For the remaining cases
we use of Hamiltonicity of C,, x C,, and Theorem 3.1.

(iii) If n > 5 and m > 4, then the result follows from Theorem 3.2 (ii). If n = 3
or m = 2, then we have the result by Theorem 3.4. The remaining cases
are C,, x P3 and Cy x P,,. In the first case and with respect to the degree of
vertices in C), x P3, we obtain easily the distinguishing index. In the latter
case, we use of Hamiltonicity of Cy x P, and Theorem 3.1. O
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1. Introduction

It seems difficult, apparently, to imagine that the difference between the
lengths of the legs of a right triangle may have some connection with the ratio
of complex numbers, or vice-versa, that a ratio of complex numbers may be
obtained from the difference of the legs of a right triangle, but this theorem, that
we will call, precisely, Theorem of the complex exponentials, shows that it is
possible.

Let’s start with some historical and mathematical considerations, from which
our research is inspired. In ancient Greece, the right triangles were basically
solved by the first and second theorem of Euclide (IV-III century B.C.) and by
the theorem of Pythagoras (about 575-495 B.C.). This happened because the
Greek trigonometry, that was only applied to the study of astronomy, was based
on the measurement of the ropes of a circle (subtended by a certain angle), rather
than on that of sines and cosines. The functions sine and cosine, developed by
the Indians in the IV-V century A.C., have been imported in the Arab world
around the VIII century A.C., and then, to the West world, a few centuries later.
From this moment, the triangles started to be solved by the relations that bind
the lengths of the sides of the triangle with the values of the trigonometric
functions of its angles. In particular, two fundamental trigonometric theorems
were introduced, through which it has been possible to solve any problem
related to the elements of a triangle: the theorem of sines and the theorem of
Carnot. The first one states that in any triangle the ratio between one side and
the sine of the opposite angle is always constant and equal to the diameter of
the circle circumscribed to the given triangle; the second one states that in any
triangle the square of one side is equal to the sum of the squares of the other
two, plus their product to the cosine of the angle included. From the theorem of
sines, applied to the right triangles, it descends the theorem according to which
in a right triangle a leg is equal to the product of the hypotenuse for the sine of
the angle opposite to the leg. Finally, we arrive at the XVIII century A.C.,
where, in another branch of mathematics completely different from the above
one, is developed, in all its entirety, the theory of complex numbers of the form
x+iy, with x and y real numbers and i = -1 the imaginary unit. In particular,
the studies of Abraham de Moivre (1667-1754) and Leonhard Euler (1707-
1783) provided to the complex numbers a definitive and systematic structure
from which descended the complex trigonometric functions and the complex
exponential functions. De Moivre left us the famous formula (1739) that
calculates the power of a complex number expressed in the form trigonometric
(cos a + sin a)"= cos(ma) + i sin(ma), while Euler left us the equally famous
formula (1748) that binds the trigonometric functions sine and cosine to the
complex exponential function e™ = cos w + i sin w.
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Our theorem is inspired by a very specific motivation: considering that the
sides of a right triangle may be expressed by a trigonometric function, and this
one by a complex variable, we wanted to discover if the same sides may have a
relationship with the elements of the complex analysis and, in case of positive
response, in which way and form. With this purpose, we discovered two
important results: the first one is that the ratio between the difference of the legs
of a right triangle and the difference of their projections on the hypotenuse,
multiplied by the cosine of half-difference of two angles opposite to the legs, is
always constant; the second one is that this constant is given by the ratio between
complex exponentials, or their powers, where the most important constants of
the all mathematics are appearing: the constant of Napier e (or of Euler),
introduced by John Napier on 1618 and used systematically by Euler (1736) for
its exponentials; the imaginary unit i, officially introduced by Friedrich Gauss
(1777-1855) in an essay of 1832; the constant of Archimedes (287-212 B.C.) ,
calculated with approximation by the greek mathematician in the III century
B.C. and definitively calculated, with 35 decimal digits, by Ludolf van Ceulen
on 1610. Both the above important results are set forth and proved in the
following theorem.

2. The theorem of the complex exponentials

Statement: In a right triangle CAB (rectangle in A), where a is the
hypotenuse, ¢ and b the legs, m and n the projections of the respective legs ¢
and b on the hypotenuse, y and P the angles respectively opposed to ¢ and b, it
results:

-b _ im/a
c COs y 8 _ °

m-n 2 e2lmyglm/2

where e=2,71....is the Napier’s constant, 7=3,14.....is the pi and i=y—1 is
the imaginary unit.

Proof. Let us consider the right triangle CAB of Figure 1, rectangle in A
(0=90°), having hypotenuse a, height h, minor leg b and major leg ¢, n and m
the respective projections of b and ¢ on the hypotenuse a, y the angle opposed
to ¢ and P the angle opposed to b.
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Figure 1

With reference to the right triangle of Figure 1, we know that the first Euclid’s
theorem asserts:

c*=a-m
1
b? =a-n 1
from which, subtracting member to member, it derives:
c? —b?=a(m—n) )
namely:
(c+b)-(c—b)=a-(m—n) 3)
Taking into account that it is: c=a siny and b=a sinf}, from (3) it derives:
c—b B a
m-—n a(siny + sinf) “4)

Simplifying and applying the formulas Prosthaphaeresis to the denominator
of second member (4), from (4) it’s obtained:
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c—b 1

m=n ZSinY;BCOSYE B )

But we know that y + B = 90°, so in the denominator of (5) it’s 2 sin

%B = /2, therefore from (5) it derives:

c—b 1 ©
m—n \J'ECOSYEB
namely:
c—b y—-B 1
m-n > 2 _\j_j (7

We know, from complex number’s theory, that the trigonometric form of the
complex number 1+i is:

1+i= x,fz_(cosg +isin E) (8)

For the formula of Euler it’s:
cos E +i sin% = eim/4 9)
Replacing (9) in (8), we obtain:
1+i=+/2 - el™/4 (10)

namely:
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1 eiﬂ,i’dr
vz 1+i (10
Let us remind now that it is:
1=e?i™ and i=el™/2 (12)
Replacing (12) in (11), we obtain:
1 ei‘:lT,i‘d»
V2 edint e/ (13)

Finally, replacing the second member of (7) with the second member of (13),
we obtain:

c—b y-B eim/4

And the theorem is thus proven.

Conclusions

We have shown a theorem born from the motivation to investigate and solve
a problem: to link a geometric result of III century B.C., although it reworked
by the trigonometric functions of XVI century, to the last theories of complex
numbers of XVIII century, apparently irreconcilables with the Euclidean
geometry. We think to have got two relevant teachings: on the one hand we have
bound the elements of a right triangle (legs and angles) to a constant of complex
analysis, given by the combination of three most important constants of
mathematics; on the other hand we have notably pointed out a precise
methodological procedure of the proof, based strictly on the deductive method,
where, starting from a general axiom alleging geometric structure of the right
triangles, we reached, through a series of rigorous logical concatenations, a
particular result alleging new structure of complex analysis.

We finally think that from this article we also can draw another useful
teaching: to discover this theorem allowed us to investigate on three completely
different (among their) branches of mathematics (Euclidean geometry,
trigonometric functions, complex analysis), born and developed in different
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ages, transmitted by several men separated by time and by different languages,
cultures and religions, who, although not knowing themselves with each other,
have always improved the ideas of their predecessors and transmitted it to the
future generations. They have been united only by their love for mathematics,
in addition to the desire to contribute to its development. We think that we all
must pick up an example from this act of faith, that only mathematics, between
all sciences, is able to provide.

References

[1] Alberto Daunisi (2014). L’Ultimo Teorema di Fermat, Storia
Matematica, BookSprint Edizioni, Salerno-Italy.

[2] Howard Levi (1960). Foundations of geometry and trigonometry,
Prentice-Hall, Inc. Englewood Cliffs, New Jersey.

[3] Joseph Bak and Donald Newman (1997). Complex Analysis, Springer-
Verlag New York Inc.

[4] Morris Kline (1998). Calculus, Dover Publications, Inc. Mineola, New
York.

[5] Barry Mazur (2004). Imaging numbers, Picador (Farrar, Straus and
Giroux), New York.

95



96



Ratio Mathematica Volume 36, 2019, pp. 97-108

Creation of the concept of zero-point
method in teaching mathematics

Tomas Lengyelfalusy”
Dalibor Gonda'

Abstract

Pupils learn different calculating algorithms. The effective use of
learned algorithms requires creativity in their application to
solving diverse tasks. To achieve this goal, it is necessary to create
a concept of the calculating algorithm for pupils. The present
paper describes a method of creating a zero-point method. The
teaching of this method is divided into two stages. In the first
stage, the student masters the basic algorithm and becomes
familiar with the main ideas of this method, while in the second
stage astudent learns how to apply this method with some
modifications in other types of tasks. In our article, we present the
application of a zero-point method in solving quadratic
inequalities.
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1 Introduction

Recently the education at primary and secondary schools has undergone
several reforms. One of the essential features of these reforms has been a
reduction of the curriculum of individual subjects and reducing the number of
lessons, especially science lessons. The main aim of reducing the curriculum
and thus reducing the demands was monitoring the improvements in
educational achievements of our students [1]. But PISA 2015 test results say
otherwise. Slovak students achieved in 2015, on average, significantly worse
results than the OECD average. It is worthy of reflection that our students
achieve the best results-the results almost on an average of the best students
in the OECD. Another feature of this educational reform is teaching a
"playful" way. Pupils should acquire new knowledge and skills not by
memorizing and practising, but above all by the playful way. PISA testing in
2015 showed that, in terms of pupils' attitudes to learning, our students
declare significantly lower endurance to solve complex problems, lower
openness to solve tasks and less belief in their own abilities. It can also
negatively be reflected on their results in mathematics. Compared to 2003,
many of Slovak students' attitudes to learning significantly deteriorated. 2015
PISA test results are in substantial agreement with the results of the external
part of the school leaving examination (maturita). All Slovak students have to
pass maturita from Slovak language and literature and a foreign language.
Only those students have to pass maturita from mathematics, who choose
math as a maturita subject. Nevertheless, over the past three years, the
average percentage of school maturita exam in mathematics is always worse
than the average percentage of school maturita exam in compulsory subjects.
We think that the ideas of school reforms are correct, but it turns out that it is
not right to use the same methods to achieve the goals for all subjects.

Mathematics affects almost every area of human life. In the education of
our youth, who should be, according to the reference of John Paul II., our
hope for the future. Math is challenging in its own way but at the same time
can also be beautiful. We think it is necessary to seek such forms and
methods of teaching mathematics [2], that we make the beauty of math
available to students [3]. In the following lines, we will outline one possible
way of teaching mathematics.

2 Two stages of mathematical education

Mathematical education can be divided into two stages. The first, basic
stage is the acquisition of basic calculating algorithms. These calculating
algorithms are acquired by students, who practice them on the appropriate
number of tasks. We can talk about math "drill", without which it is
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impossible to be a successful solver of mathematical problems. The
information-receptive didactic method with a combination of the reproductive
method is mainly used in this stage. It is very important that the student
acquires the necessary skill of how to use them by repeated use of basic
calculating algorithms. The teacher, by the right choice of tasks, ensures that
pupils acquire these calculating algorithms at least at the level of
understanding, not only at the level of memorization. The second, application
stage is the application of the acquired algorithms in different areas of
mathematics and other disciplines or in practical everyday life. At this stage,
the mathematical "drill" is replaced by mathematical thinking. Based on the
assignment a student considers what math knowledge and skills he can use to
solve the task. Unlike the first stage, he must learn that the first step of task
solution is not to count but to think. Based on a detailed consideration and
possible task mathematization the student chooses a suitable calculating
algorithm. At this stage, the teacher becomes a moderator of solution and
uses a heuristic didactic method. At this stage, in terms of the taxonomy of
educational objectives, the level of acquirement of calculating algorithms will
be increased for the minimum to the application level. If the teaching is
correct, we can say, that at this stage, the students do not learn new
calculating algorithms. At this stage, students gain new, mainly theoretical
knowledge of mathematics, and also learn how to apply already gained
calculating algorithms in a new context. The above-described stages are
illustrated on the example of the method of zero points.

3 Method of zero points

Solving of the most mathematical problems includes solving of various
equations and inequalities, or their systems. The tasks, where it is necessary
to solve equations, inequalities and their systems belong to the declaratory
mathematical tasks [4].

Declaratory mathematical tasks are historically the oldest mathematical
tasks. When solving these tasks the mathematical concepts and methods.
Those are the tasks that require finding, calculating, constructing etc. of all
mathematical objects of a particular type, having the desired properties. In
each declaratory task, we can define as the frame of considerations some non-
empty set M of mathematical objects, which is a carrier of a particular
structure. Using the terms belonging to this structure, it is then possible to
express the desired properties of those objects of the set M that we are
looking for. To characterize the elements of the set M we use propositional
form V (x) which verity domains then create subsets of the set M. In each
determinative task there is a subset K of set M, which elements have the
characteristics required by task assignment. The task and the objective of the
investigator are to determine the set P by naming of its elements or to operate
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with already known subsets of the set M. We can solve the mathematical
declaratory task with the direct and indirect methods.

The direct method of solving means a process by which we determine the
set of solutions K so that we work exclusively with sets that belong to the
chain of sets inclusions

dc..cKc..cM,

where M is a non-empty set of mathematical objects, among which
elements we are looking for the solving of the task. Indirect methods consist
in the fact that instead of solving the task that is defined we solve the other
task or other tasks (using some direct method) and the results are used to
obtain the results of the original task. One of the indirect methods is to switch
to subtasks on the same set. We divide the set M to individual subsets and we
investigate the specific location of each original task. We will obtain partial
solutions to the original task on each of these subsets. The overall result for
the task will be obtained by the unification of partial results. Method of zero
points can be included precisely into that category of indirect methods (in
some literature this method is also called the method of intervals).

The essential feature of the method of zero points is the attempt to divide
tasks into several "sub-tasks", solving them on the corresponding subsets -
intervals. To deal with this method it is necessary to learn the algorithms of
expression modifying, polynomial factorization to the product of the root
factors and solving various types of equations [5].

4 Teaching the method of zero points

The teaching of this method is recommended to be realized in three levels.

Level I: Acquisition of the method

The students meet the method of zero points for the first time when they
solve inequalities with an unknown in the denominator. Its basic steps are
learned through leading example.

Example 1: On the set R solve the inequality 2;%13 <1

Solution: Most students have the following knowledge on solving the
inequalities: Inequalities are solved using the same equivalent adjustment as
the equations. If the inequality is multiplied or divided by a negative number,
the sign of inequality is changed to the opposite. On the basis of this
knowledge the first step of solving is an attempt to remove a fraction of the
assigned inequality, that is, they multiply the inequality by the expression (x-
1). Already in the introduction of the model example, students learn another
difference between solving the equations and inequalities. Inequalities, unlike
equations, cannot be multiplied by the expression of which I cannot clearly
decide whether it is positive or negative. If we want students to use the
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proposed adjustment, it is first necessary to determine for which values of the
variable the expression (x —1) is positive and for which negative.
Consequently, it is necessary to divide the solving of the inequalities to, in
this case, two parts - when the expression (x — 1) is positive and the sign of
inequality does not change after multiplication, and when the expression
(x — 1) is negative and the sign of inequality changes to opposite one after
multiplication. Basically, the assigned inequality should be tackled twice. We
recommend concentrating on the issue of "multiplying inequalities" and pay
sufficient attention, because it is needed to change students fixed “definition”
of solving the inequalities. The method of zero points does not require
multiple solving of the same inequalities and therefore it, is considered to be
mora effective method. It can be divided into the following steps:

1. Annulling the right side of the equation:
2x + 3
x—1

-1<0

2. Simplifying the expression on the left side of the inequality:
x+4
x—1

<0 (D)

After these adjustments, we draw the students’ attention to the
intermediate target of our solutions. We compare the fraction to zero.

. . : 4
Therefore, we only need to determine the sign of the expression i—: Our

partial objective is to determine for what value of x it is positive and for what
value negative.

3. Determining the zero points:

Zero points are the values of variable x for which numerator and
denominator separately on the left side of the inequality takes the zero value.
Zero points can be determined based on solving the equation x + 4 =
0; x —1 = 0. Zero points are NB: -4; 1.

4. Adjusted numerical axis:

We come to the core of the method. First, we explain the function of zero
points. Zero points divided real numbers, in this case, into the three sets -

intervals. For each interval is true: The expression i—j is positive or negative
in the whole interval, in other words, it does not change the resulting sign.
The adjacent intervals the expression i—j has different resulting signs. Based

on the above it is sufficient, if we want to determine the final sign, to
substitute any number belonging to this interval to the expression. If we
know the final sign in one of the intervals, we automatically recognize the
resulting sign in all intervals as signs alternate. Using that knowledge, we can
create a customized numerical axis (Fig. 1):
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I
i =
=+

0
|
[
_.-'l_
Figure 1.
There are numbers under the axis to be substituted for variable x in the

expression; above the axis are values of the expression after substitution. That
is, if we substitute any number from the interval (-4, 1) the resulting sign of

. 4 . . . . .
the expression z_; is negative, after the substituting x = —4, the resulting

value of the expression is zero. Symbol @ means that for the value x = 1 the
expression is not defined.

The adjusted numerical axis can be created as follows. First, on the
numerical axis (from the bottom), we mark zero points. (Students often
automatically show zero even if it is not the zero point on the numerical axis.
There should be only zero points on the numerical axis).

We substitute any number different from zero points to the expression
on the left side of the inequality. If the zero point is not zero, we substitute
number zero to the variable. After substituting the number zero to the

. . x+4 . .
variable x, the expression — has the value of - 4. Then we write a minus

sign above the numerical axis in the part corresponding to the interval, from
which we substituted the number zero. The signs in the other intervals will be
completed without calculations, whilst complying with the principle of
alternating signs. We complete 0 above the zero point “of the numerator* and
the sign @ above the zero point "of the denominator".

5 Determination of results

. . . x+4 . .
Those values of variable x for which the expression ——; acquire negative

values will be the solution to the inequality (1). Based on the adjusted
numbering axis, the search solution to the assigned inequality is the interval
from -4 to 1. Finally, we determine the "brackets" of the final interval. Zero
point, above which is symbol @, cannot be the solution, therefore it will be at
zero point "of the denominator" always round bracket. If there is the symbol
0 above the zero point, it means, that after its substituting, the resulting value
of the expression is zero. However, we are looking for negative values of the
expression and therefore the number -4 has a round bracket. The ultimate
solution is x€ (-4.1).
After solving the model example we recommend to discuss with students
how the solution would change if we solve the inequality
23 5 1 and the inequality 2o
x—1 x-1
Students should be aware, that in both cases, the first four steps will be
identical with the model example. In the fifth step, based on the same

2x+3
x+>1 X €

considerations, the solution of the inequality would be o)
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2x+3 )
. <1 1S

(—o0;—4) U (1;0). The solution of inethe quality
x €(—4;1)

Level 2: Understanding of the method

The main idea behind the method of zero points can be considered
a comparison of the fraction with zero. A student knows that if a numerator
and a denominator have the same final sign, so the fraction is positive if they
have different sign fraction is negative. The correct application of this idea
leads to an understanding of the method of zero points and also to a more
efficient using of this method. The correct application of the main idea it is
essential to understand the "functioning" of zero points. The zero point for
this expression, in principle, divides the set of real numbers (NA) into three
subsets. On one of the subsets, it acquires only positive values, on another
one just negative. The third subset is only composed of zero point and the
expression of the set acquires a value of 0. For example, the expression x — 5
has a zero point 5. Then, the expression acquires negative values on the set
M; = (—0;5), on the set M, = (5; o) it acquires positive values and on the
set M = {5} it takes the value 0. Thus, we can simplistically say, that there is
a different sign of the expression from the various sides of the zero point. If
the expression is in productive form, the zero points of individual members of
the product create the zero points of all expression.
(x=9)(x+1)?
(x—4)(x+5)

Example 2: On the set R solve the inequality >0

Solution: Zero points -5; -1; 4; 9.

At first, we draw attention to the expression (x + 1)2. This expression
acquires for all x € R non-negative values. Therefore, it has no influence to
(x—9)(x+1)?
(x—4)(x+5)
(x + 1)? can be described as "unnecessary" zero point and it will not be
showed on the adjusted numbering axis. (If we showed it there, the theory of
alternation marks would not apply.)

To obtain the solution of the inequality we only need to know the final
(x=9)(x+1)?
(x—4)(x+5)
x = 0, it is not necessary to know the numerical value. At the same time, we
know that it is not necessary to substitute to the expression (x + 1)%. By
applying the above mentioned ideas after substituting x = 0 we obtain "a

signed" value of the expression: e

the final sign of the expression The zero point of the expression

sign of the expression . Therefore. after substituting, for example

We set the adjusted numberihg axis (Fig. 2):
- 0 +

B 0
| |
| |
4 9

o —1
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Figure 2.

The solution of the assigned inequality based on the adjusted numbering
line and the sign of inequality is x € (—5;4) U (9; o). To obtain the final
solution, we must once again pay attention to "needless" zero point. We know
that for = —1, the expression acquires the resulting value zero on the left
side. Therefore, the number —1 does not belong to the solution of our set of
ithe nequality. The ultimate solution of the inequality x € (—5;—1) U
(—1;4) U (9; ).

Level 3: Application of the method

After mastering the basic algorithm and understanding the method of zero
points we recommend to focus on the teaching of its application in other
types of examples, such as those in which students can penetrate into its
mysteries. The closest type of tasks is inequalities in the productive form. The
student already knows that there are the same rules for comparison zero to the
product as for the comparison of the quotient to zero. Therefore, in solving
qualities in productive form, the method of zero points can be used
identically as in solving the inequalities in productive form. Quadratic
inequality can be seen as inequality in the productive form. In example 3 we
show a sample solution.

Example 3: On the set R solve the inequality x? + 3x — 4 > 0.

Solution: Quadratic trinomial on the left side of the inequality must be
adjusted to the product of the root factors, and therefore we obtain the
inequality in the form of productive form

x—1D(x+4)=0

Zero points are -4; 1. The quadratic trinomial, after substitution x = 0,
acquires negative value. In fact, zero is not necessary to be substituted,
because for x = 0 is the final "a signed" value of quadratic trinomial, identical
to the sign in front of the absolute member. We set the adjusted numbering
axis (Fig. 3):

+ 0 - 0+
| |
| I
4 1
Figure 3.

Based on the sign of inequality, in assigned inequality, we search for
which values of unknown x the expression x? + 3x — 4 acquires positive or
zero values. Therefore, the solution is inequality is

x € (—o0; —4) U (1; ).

If the quadratic equation corresponding to the assigned inequality has less
than two real roots, the method of zero points is modified. At this
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modification, we primarily rely on understanding the "functioning" of zero
points.

Example 4: On the set R solve the inequality x? — 4x + 4 > 0.
Solution: The inequality should be adjusted to productive form

(x —2)(x—2) = 0.

The left side of inequality will not be left in this form, because the students
would incorrectly use the principle of alternation marks around the zero
points. The expression on the left side of the inequality will be written in
simplified form, and we receive the inequality

(x—2)2=0

Zero point is 2. Since the expression (x —2)? is for all x € R non-
negative, number 2 is “unnecessary” zero point. Number 2 is the only zero
point and so it is not needed to set the adjusted numbering axis. The solution
of the inequality is x € R and it was discovered when we were considering
the zero point.

After solving example 4 we suggest a discussion on solving
inequalities:

x> —4x+4>0, x> —4x+4<0, x> —4x+4<0.

Note: A common mistake at solving the inequality (x — 2)? > 0 is the
extract of the root of both sides of the inequality, after which students have
the wrong inequality x — 2 > 0. The following consideration can bring them
to the fact, that the inequality is incorrect. Both sides of the inequality were
non-negative before extracting the root and the left side can also takes
negative values. If we want, even after extracting, both sides being non-

negative, we must put the left side of inequality to an absolute Value(\/a_ =
|a]). After correct extracting, we get the inequality with absolute value which
can also be solved by the method of zero points.

Example 5: On the set R solve the inequality x + 2x + 6 < 0.

Solution: On the set R it is not possible to modify the quadratic trinomial
to the product, as the appropriate quadratic equation

x> +2x+6=0

have no real roots. Based on the understanding of the function of zero
points we know, that expression x% + 2x + 6 has for all x € R a signed
value. It is identical with the sign in front of the absolute term. So the
expression on the left side of the inequality is for all real numbers positive.
The solution of the inequality is x = {}. Even after solving this inequality we
recommend the discussion about solutions for different variants of the sign of
inequality.
If we want to see if the students understand the method, they must be
able to apply the basic ideas of the method to solving the task. In other words,
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we understand the method of solving if it developed our mathematical
thinking. The following example can be solved by applying the basic ideas of
the method of zero points.

Example 6: For which parameter values a € R is each x € R the solution
of inequality

Solution: The expression x* — 8x + 20 has no zero points and according
to the sign in front of the absolute member we know, that it acquires positive
values for all x € R. If all real numbers should be the solution of the
assigned inequality, the expression in the denominator of the inequality
fraction must be negative for all x € R. Using the basic ideas of the method
of zero points, we consider the following. We need the expression ax? +
2(a+ 1)x + 9a + 4 "still" negative, and that does not change the final sign,
and therefore we cannot have the zero points. That is, the quadratic equation

ax?+2(a+1Dx+9%a+4=0

has no solution. Thus, discriminant has to be negative. This way we get
the inequality
x% —8x + 20

<0
ax?+2(a+1)x+9a+4

The solution to this inequality that we solve using the method of zero

points is a € (—00; —%) U (1; ). Now, we secure the final sign will be

negative. We know from the method of zero points, that by substituting zero
to quadratic trinomial, the final sign is identical with a sign in front of the
absolute term. The denominator in the assigned inequality is a quadratic

trinomial with parameter. For a; € (—00; - %) U (1;00) has the constant sign

for all x € R. If the absolute member is negative, the resulting sign of
trinomial will be negative. Therefore we solve the inequality

9a +4 <0.

. . 4 . . .
Its solution is a, € (—00; — 3). Based on the previous considerations, the

parameter a must meet both conditions. The ultimate solution is a € a; N

or= (-2,
Conclusion

The basis for the success of a student in solving mathematical tasks is
acquiring the calculating algorithms [6], [7]. To achieve this goal it is
necessary to solve, especially alone, the sufficient number of tasks, more or
less, of the same type. We believe that the mastery of basic calculating
algorithms is necessary but not sufficient condition for student success in
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dealing with the tasks. It is not enough just to learn the calculating algorithm,
it is necessary, after its acquisition, also think about its individual elements.
This is the way when the basic ideas, used in the algorithm, occur. The
discovering these main ideas of calculating algorithm lead to understanding,
as well as acquiring the algorithm at a higher level. The understanding causes
the method to be is a powerful tool in students dealing with tasks. It affects
his mathematical thinking. The method of zero points is a method that should
be understood and not only learned. If a student enters its secrets, it becomes
flexible and he will be able to use it in different types of tasks and, as
appropriate, be adapted. By understanding the method will become effective
tool in the hands of the investigator. The students know that the method of
zero points is mainly used to solve inequalities. If the students know the
method, it heads their initial ideas, when solving inequality, to adjust the
inequality to a productive or quotient form. This fact can be used in teaching
solutions to quadratic inequalities. Using the method of zero points the
student does not learn new calculating algorithm, but he learns how to apply
already acquired knowledge and skills. We think that one of the possible
ways to increase the efficiency in mathematical learning is the emphasis on
understanding the calculating algorithms and their subsequent application in
various areas of mathematics. While we make sure that we choose those
tasks, where the main ideas can be applied. This way helps us to create the
thought linking of mathematics as a whole and mathematics with other
disciplines, e.g. those involving computers into the pedagogical process [§],
in the mind of the students. Basically, there is no need to reduce the amount
of subject matter, just to organize the mathematical knowledge better in the
mind of the students.
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