Studies on the classical determinism predicted by A. Einstein, B. Podolsky and N. Rosen
Abstract
In this paper, we continue the study initiated in preceding works of the argument by A. Einstein, B. Podolsky and N. Rosen according to which quantum mechanics could be “completed” into a broader theory recovering classical determinism. By using the previously achieved isotopic lifting of applied mathematics into isomathematics and that of quantum mechanics into the isotopic branch of hadronic mechanics, we show that extended particles appear to progressively approach classical determinism in the interior of hadrons, nuclei and stars, and appear to recover classical determinism at the limit conditions in the interior of gravitational collapse
Keywords
Full Text:
PDFReferences
A. Einstein, B. Podolsky , and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev., vol. 47 , p. 777 (1935),
http://www.galileoprincipia.org/docs/epr-argument.pdf
N. Bohr, “Can quantum mechanical description of physical reality be considered complete?” Phys. Rev. Vol. 48, p. 696 (1935), www.informationphilosopher.com/solutions/scientists/bohr/EPRBohr.pdf
J.S. Bell: “On the Einstein Podolsky Rosen paradox” Physics Vol. 1, 195 (1964), www.santilli-foundation.org/docs/bell.pdf
J. von Neumann, Mathematische Grundlagen der Quantenmechanik, Springer, Berlin (1951).
D. Bohm, Quantum Theory, Dover, New Haven, CT (1989).
J. Baggott, Beyond Measure: Modern Physics, Philosophy, and the Meaning of Quantum Theory, Oxford University Press, Oxford (2004).
R. M. Santilli, “Isorepresentation of the Lie-isotopic SU(2) Algebra with Application to Nuclear Physics and Local Realism,” Acta Applicandae Mathematicae Vol. 50, 177 (1998), http://www.santilli-foundation.org/docs/Santilli-27.pdf
R. M. Santilli, “On a possible Lie-admissible covering of Galilei’s relativity in Newtonian mechanics for nonconservative and Galilei form-non-invariant systems,” Hadronic J. Vol. 1, 223-423(1978), http://www.santilli-foundation.org/docs/Santilli-58.pdf
R. M. Santilli, “Need of subjecting to an experimental verification the validity within a hadron of Einstein special relativity and Pauli exclusion principle,” Hadronic J. Vol. 1, 574-901 (1978),
http://www.santilli-foundation.org/docs/santilli-73.pdf
R. M. Santilli, Foundation of Theoretical Mechanics, Springer-Verlag, Heidelberg, Germany, Volume I (1978) The Inverse Problem in Newtonian Mechanics, http://www.santilli-foundation.org/docs/Santilli-209.pdf
R. M. Santilli, Foundation of Theoretical Mechanics, Springer-Verlag, Heidelberg, Germany, Vol. II (1982) Birkhoffian Generalization of Hamiltonian Mechanics,
http://www.santilli-foundation.org/docs/santilli-69.pdf
R. M. Santilli, “Initiation of the representation theory of Lieadmissible algebras of operators on bimodular Hilbert spaces,” Hadronic J. Vol. 9, pages 440-506 (1979).
R. M. Santilli, “Isonumbers and Genonumbers of Dimensions 1, 2, 4, 8, their Isoduals and Pseudoduals, and ”Hidden Numbers,” of Dimension 3, 5, 6, 7,” Algebras, Groups and Geometries Vol. 10, p. 273-295 (1993), http://www.santilli-foundation.org/docs/Santilli-34.pdf
Chun-Xuan Jiang, Foundations of Santilli Isonumber Theory, International Academic Press (2001), http://www.i-b-r.org/docs/jiang.pdf
A. S. Muktibodh and R. M. Santilli, ”Studies of the Regular and Irregular Isorepresentations of the Lie-Santilli Isotheory,” Journal of Generalized Lie Theories, in pores (2017),
http://www.santilli-foundation.org/docs/isorep-Lie-Santilli-2017.pdf
D. S. Sourlas and G. T. Tsagas, Mathematical Foundation of the Lie-Santilli Theory, Ukraine Academy of Sciences (1993),http://www.santilli-foundation.org/docs/santilli-70.pdf
R. M. Santilli, “Nonlocal-Integral Isotopies of Differential Calculus, Mechanics and Geometries,” in Isotopies of Contemporary Mathematical Structures,” Rendiconti Circolo Matematico Palermo, Suppl. Vol. 42, p. 7-82 (1996),http://www.santilli-foundation.org/docs/Santilli-37. pdf
S. Georgiev, Foundation of the IsoDifferential Calculus, Volume I, to VI, r(2014 on ). Nova Academic Publishers.
R. M. Santilli, Elements of Hadronic Mechanics, Ukraine Academy of Sciences, Kiev, Volume I (1995), Mathematical Foundations, href=”http://www.santilli-foundation.org/docs/Santilli-300.pdf
R. M. Santilli, Elements of Hadronic Mechanics, Ukraine Academy of Sciences, Kiev, Volume II (1995), Theoretical Foundations, http://www.santilli-foundation.org/docs/Santilli-301.pdf
R. M. Santilli, Elements of Hadronic Mechanics, Ukraine Academy of Sciences, Kiev, Volume III (2016), Experimental verifications, http://www.santilli-foundation.org/docs/elements-hadronic-mechanics-iii.compressed.pdf
R. M. Santilli, Hadronic Mathematics, Mechanics and Chemistry, Volumes I to V, International Academic Press, (2008), http://www.i-b-r.org/Hadronic-Mechanics.htm
Raul M. Falcon Ganfornina and Juan Nunez Valdes, Fundamentos de la Isdotopia de Santilli, International Academic Press (2001),
http://www.i-b-r.org/docs/spanish.pdf
English translations Algebras, Groups and Geometries Vol. 32, pages135-308 (2015), http://www.i-b-r.org/docs/Aversa-translation.pdf
I. Gandzha and J. Kadeisvili, New Sciences for a New Era: Mathematical, Physical and Chemical Discoveries of Ruggero Maria Santilli, Kathmandu
University, Sankata Printing Press, Nepal (2011), http://www.santilli-foundation.org/docs/RMS.pdf
H. C. Myung and R. M. Santilli, “Modular-isotopic Hilbert space formulation of the exterior strong problem,” Hadronic Journal Vol. 5, p. 1277-1366 (1982),
http://www.santilli-foundation.org/docs/Santilli-201.pdf
R. M. Santilli, Foundations of Hadronic Chemistry, with Applications to New Clean Energies and Fuels, Kluwer Academic Publishers (2001), http://www.santilli-foundation.org/docs/Santilli-113.pdf
Russian translation by A. K. Aringazin http://i-b-r.org/docs/Santilli-Hadronic-Chemistry.pdf
R. M. Santilli and D. D. Shillady,, “A new isochemical model of the hydrogen molecule,” Intern. J. Hydrogen Energy Vol. 24, pages 943-956 (1999), http://www.santilli-foundation.org/docs/Santilli-135.pdf
R. M. Santilli and D. D. Shillady, “A new isochemical model of the water molecule,” Intern. J. Hydrogen Energy Vol. 25, 173-183 (2000),
http://www.santilli-foundation.org/docs/Santilli-39.pdf
R. M. Santilli, “Invariant Lie-isotopic and Lie-admissible formulation of quantum deformations,” Found. Phys. Vol. 27, p. 1159- 1177 (1997) ,
http://www.santilli-foundation.org/docs/Santilli-06.pdf
R. M. santilli, “Studies on Einstein-Podolsky-Rosen argument that “quantum mechanics is not a complete theory,” I: Basic formalism,”
IBR preprint RMS-7-19 (2019), to appear.
R. M. Santilli,“Studies on Einstein-Podolsky-Rosen argument that “quantum mechanics is not a complete theory,” II: Apparent proof of the EPR argument.” IBR preprint RMS-9-19 (2019), to appear.
Thomas Vougiouklis Hypermathematics, “Hv-Structures, Hypernumbers, Hypermatrices and Lie-Santilli Addmissibility,” American Journal of Modern Physics, Vol. 4, No. 5, 2015, pp. 38-
11 Special Issue I;Foundations of Hadronic Mathematics Dedicatedto the 80th Birthday of Prof. R. M. Santilli, http://www.santilli-foundation.org/docs/10.11648.j.ajmp.s.2015040501.15.pdf
Bijan Davvaz and Thomas Vougiouklis, A Walk Through Weak Hyperstructures, Hv-Structures, World Scientific (2018)
Löve,M.ProbabilityTheory, inGraduateTextsinMathematics, Volume 45, 4th edition, Springer-Verlag (1977).
R. M. Santilli, “Isotopic quantization of gravity and its universal isopoincaré symmetry” in the Proceedings of The Seventh Marcel Grossmann Meeting in Gravitation, SLAC 1992, R. T. Jantzen, G. M. Keiser and R. Ruffini, Editors, World Scientific Publishers pages 500-505(1994), http://www.santilli-foundation.org/docs/Santilli-120.pdf
R. M. Santilli, “Unification of gravitation and electroweak interactions” in the Proceedings of the Eight Marcel Grossmann Meeting in Grav-
itation, Israel 1997, T. Piran and R. Ruffini, Editors, World Scientific, pages 473-475 (1999),
http://www.santilli-foundation.org/docs/Santilli-137.pdf
Jeremy Dunning-Davies, Exploding a Myth, ”Conventional Wisdom” or Scientific Truth? Horwood Publishing (2007).
R. M. Santilli, “Isominkowskian Geometry for the Gravitational
Treatment of Matter and its Isodual for Antimatter,” Intern. J. Modern Phys. D Vol. 7, 351 (1998), http://www.santilli-foundation.org/docs/Santilli-35.pdf
R. M. Santilli, “Relativistic hadronic mechanics: nonunitary, axiompreserving completion of relativistic quantum mechanics,” Found. Phys. Vol. 27, 625-729 (1997),
http://www.santilli-foundation.org/docs/Santilli-15.pdf
R. M. Santilli, “Nonlinear, Nonlocal and Noncanonical Isotopies of the Poincaré Symmetry,” Moscow Phys. Soc. Vol. 3, 255 (1993), http://www.santilli-foundation.org/docs/Santilli-40.pdf
R. M. Santilli, “Rudiments of IsoGravitation for Matter and its IsoDual for AntiMatter,” American Journal of Modern Physics Vol. 4, No. 5, 2015, pp. 59, http://www.santilli-foundation.org/docs/10.11648.j.ajmp.s.2015040501.18.pdf
R. M. Santilli, “Isominkowskian reformulation of Einstein’s gravitation and its compatibility with 20th century sciences,” IBR preprint 19-GR-07 (2019), to appear.
R.M. Santilli, . Isodual Theory of Antimatter with Applications to Antigravity, Grand Unification and Cosmology, Springer (2006).http://www.santilli-foundation.org/docs/santilli-79.pdf
DOI: http://dx.doi.org/10.23755/rm.v37i0.477
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Ruggero Maria Santilli
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.