Class of Semihyperrings from Partitions of a Set

A. Asokkumar


In this paper we show that a partition {P α : α ∈ Λ} of a non-empty set S, where Λ is an ordered set with the least element α 0 and P α 0 is a singleton set, induces a hyperaddition + such that (S,+) is a commutative hypermonoid. Also by using a collection of subsets of S, induced by the partition of the set S, we define hypermultiplication on S so that (S,+,·) is a semihyperring.


hypermonoid, semihyperring, ∗-collection

Full Text:



A. Asokkumar, Hyperlattice formed by the idempotents of a hyperring, Tamkang J. Math., 38(3) (2007), 209{215.

A. Asokkumar, M. Velrajan,Characterizations of regular hyperrings, Italian Journal of Pure and Applied Mathematics - N. 22(2007), 115{ 124.

J. Chvalina, S. Hoskova, Abelization of proximal Hv-rings using graphs of good homomorphisms and diagonals of direct squares of hyperstruc-tures, Proc. 8th International Congress on Algebraic Hyperstructures and Applications, Samothraki, Greece (2002), Edited T. Vougiouklis, Spanidis Press, Greece, (2003).

P. Corsini, Hypergroupes reguliers et hypermodules, Ann. Univ. Ferrara, Sc. Mat. Ser VII, v. XX, 1975.

P. Corsini, Prolegomena of hypergroup theory, Second edition, Aviani editor, 1993.

P. Corsini, V. Leoreanu, Applications of Hyperstructure Theory, Kluwer Academic Publishers, Advances in Math., 2003, vol. 5.

B. Davvaz, Isomorphism theorems of hyperrings, Indian J. pure appl. math., 35 (3), 321{331, March 2004.

M. De Salvo, Iperanelli ed ipercorpi, Ann.Sci.Univ.Clermount II, Ser. Math. Fasc., 22 (1985), 89{107.

S. Hoskova, Abelization of quasi-hypergroups, Hv-rings and transposition hv-groups as a categorial re ection, Global Journal of Pure and Applied Mathematics, Vol. 3(2), (2007), 105{112.

M. Krasner, A class of hyperrings and hyper elds, Int. J. Math and Math. Sci., 2 (1983), 307{312.

F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandenaves, Stockholm, (1934), 45{49.

G. G.Massouros, The hyperringoid, Multi.Val.logic., Vol 3 (1998), 217{ 234.

J. Mittas, Hypergroupes canoniques, Mathematica Balkanica t. 2 (1972), 165{179.

A. Rahnamai Barghi, A class of hyperrings, Journal of Discrete Mathe-matical Sciences & Cryptography, 6(2003), 227{233.

R. Rota, Strongly distributive multiplicative hyperrings, J. Geom. 39 (1990), 130{138.

D. Stratigopoulos, Certaines classes d'hypercorpes et hyperanneaux, Atti Convegno su ipergruppi, altri strutture multivoche e applicazioni, Editor Corsini, Udine, 1985.

M. Velrajan, A.Asokkumar, Construction of inclusive distributive hyper-rings, Algebra and its Applications, Editors: Afzal Beg, Mohd. Ashraf, Narosa Publishing House, New Delhi, India (2011), 167{176.

T. Vougiouklis, Hyperstructures and their representations, Hadronic Press, Inc., 115, Palm Harber, USA (1994).


  • There are currently no refbacks.

Copyright (c) 2013 A. Asokkumar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Ratio Mathematica - Journal of Mathematics, Statistics, and Applications. ISSN 1592-7415; e-ISSN 2282-8214.