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Abstract. The Net Present Value (NPV) is a well-known method to 

value an investment project. Nevertheless, this methodology exhibits a 

serious problem when the used discounting function decreases very 

rapidly, especially in (very) long-term projects, because the future 

cash-flows are not significant in the expression of the NPV. For this 

reason, this paper introduces a methodology to correct the discounting 

function used for valuing. To do this, a new operation between 

discounting functions is defined by reducing the (cumulative) 

instantaneous discount rate corresponding of the valuing discounting 

function with another appropriate discounting function. The result is a 

new discounting function which can be more adequate to value this 

class of investment projects. 
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It is well-known that traditionally the exponential discounting has 

been used in the valuation of investment projects, as discounting 

function. But the main problem that exhibits this type of discount is 

the geometrical diminishing of its corresponding factors. In effect, the 

expression ti  )1(  decreases exponentially whereby future cash-

flows, being very important, are not significant in the expression of 

the Net Present Value (NPV). This is the reason whereby our aim is to 

considerer a diminishing discount rate which would imply, at least, a 

decay of the corresponding (cumulative) instantaneous discount rate. 

On the other hand, in a previous work, Cruz and Muñoz (2005 and 

2007) introduced a new point of view of determining the social rate of 

discount and, more concretely, the discount function to be applied in 

the valuation of (very) long-term environmental and governmental 

projects. To do this, they started from the hazard rate of the system to 

which the project we are trying to value is addressed. In this way, if 

we are trying to value the construction of a public good (for example, 

a highway), the hazard rate corresponding to this construction along 

his useful life will supply us its survival probability (defined as the 

complement to the unit of the corresponding distribution function) 

which we will identify with the discounting function to be used in the 

valuation. 

Thus, the instantaneous hazard rate of an investment is identified 

with the instantaneous discount rate corresponding to the discounting 

function necessary to value the project. As a consequence, the 

discounting function will be the survival probability of the system. 

More widely, the following table establishes the correspondence 

between several concepts from Finance (see, for example, Gil, 1993) 

and from Reliability Theory (see, for example, Barlow and Proschan, 

1996). 

 

Reliability Theory Finance 

Survival probability 

(distribution tail) 
)(1)( tFtS   

Discounting 

function 
)(tA  

Instantaneous 

hazard rate )(

d/)(d
)(

tS

ttS
th   

Instantaneous 

discount rate )(

d/)(d
)(

tA

ttA
t   
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Density function 
t

tS
tf

d

)(d
)(   

Cumulative inst. 

discount rate t

tA
t

d

)(d
)(   

Conditional 

probability )(1

)(1

tF

stF




 Discounting 

factor )(

)(

tA

stA 
 

Table 1. Correspondence of concepts from Reliability Theory and 

Finance. 

 

Starting from this methodology, we can obtain a (cumulative) 

instantaneous discount rate with two important advantages. The first 

one is that this magnitude is variable and the second one is that it can 

be diminishing. In this way, we agree with Harvey’s (1986) position 

who proposes the hyperbolic or hyperbola-like discounting function 

and later (1994) defends variable discount rates.  

Harvey (1994) examines “the reasonableness for public policy 

analysis of non-constant discounting method that, unlike constant 

discounting, can accord considerable importance to outcomes in the 

distant future”. In his work, he proposes a method with positive 

discount rates that decrease and converge to zero as time converges to 

infinity. 

The organization of this paper is as follows. In Section 2, we 

introduce a new algebraic operation between the survival probabilities 

of two components in a system. Taking into account Table 1, this is 

the same as define an algebraic operation between two discounting 

functions. Section 2 introduces a novel classification of discounting 

functions in singular and regular ones. Later, Section 4 presents a 

noteworthy application of Section 2 for the valuation of (very) long-

term investment projects, avoiding the problems exhibited by a rapidly 

decreasing discounting function. Finally, Section 5 summarizes and 

concludes. 

 

 

2. Combination of survival probabilities of the components in a 

system. Combination of discounting functions 

 

Let us consider a structure composed by two independent 

components whose i-th component (i = 1, 2) has probability 
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)(1)( tFtp ii   of still being operative at time t. If )(ph is the 

structure reliability function, where ),( 21 ppp , and )(1)( tFtS   

is the probability of the structure survival past time t, then since 

 

))(()( thtS p , 

 

we obtain: 

 






























t

p

p

h

t

p

p

h

t

S

d

d

d

d

d

d 2

2

1

1

. (1) 

 

It is well-known that )(:
d

d
tf

t

S
  is the density function of the 

variable T describing the useful life of the system, and )(:
d

d
1

1 tf
t

p
  

and )(:
d

d
2

2 tf
t

p
  are the density functions of variables 1T  and 2T  

describing the useful life of components 1 and 2, respectively. 

A noteworthy case is that in which the density function of the 

structure survival is the density function of component 1 but reduced 

by the effect of the survival probability of component 2, that is to say: 

 

)(
d

)(d
)()()( 2

1
21 tp

t

tp
tptftf  . (2) 

 

In this case, 

 

  .d)()(1)(d)(1

d)(
d

)(d
1

d
d

d
1))((:)(

0 0
2112

0
2

1

0
21

 











t t

t

t

xxpxfxpxp

xxp
x

xp

x
x

S
tpptS

 

 

 

(3) 
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that is, )(d 1 tp , as an approximation of )()( 111 tphtpp  , is 

reduced by the survival probability of component 2. This new function 

21 pp   will be called the combination of survival probabilities 1p  

and 2p . 

Taking into account Table 1, we can export this concept to 

Finance. Thus, the combination 21 AA   of two discounting functions 

1A  and 2A : 

 

  











tt

t

t

xxAxxAxA

xxA
x

xA

x
x

A
tAAtA

0
21

0
12

0
2

1

0
21

d)()(1)(d)(1

d)(
d

)(d
1

d
d

d
1))((:)(



 

 

 

(4) 

 

can be interpreted as a methodology to reduce the time perception of 

an objective discounting function ( 1A ) by the effect of another 

discounting function ( 2A ). This is because the more aged the 

individuals, the less time perception. In effect, a year of future time is 

not the same for a person r years old than a person s years old, being 

sr  . In this case, the time perception is greater for the second one. 

In what follows and taking into account the aim of this paper, we 

will only refer to the combination of two discounting functions. 

 

Example 1 Let us consider the combination of two simple 

discounting functions of parameters d and d: 










2

11)(
t

dtdtA . 

 

The following proposition supplies a preliminary basic inequality. 

 

Proposition 1   )()(11)()( 211 tAtAtAtA  . 
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Proof. In effect, for the first inequality, as 1)(0 2  xA , it is 

verified that: 

 

 
tt

xxxxAx
0

1
0

21 d)(d)()(   

and so 

)(d)(1d)()(1)( 1
0

1
0

21 tAxxxxAxtA
tt

   . 

 

For the second inequality, as function 2A  is strictly decreasing, 

take into account that: 

 

  )()(1d)()(d)()( 21
0

12
0

21 tAtAxxtAxxAx
tt

   . 

 

Thus, 

  )()(11d)()(1)( 21
0

21 tAtAxxAxtA
t

   .      

 

A graphic representation of the discounting function obtained in 

Example 1 for 05.0d  and 06.0d , and a confirmation of the 

result deduced in Proposition 1, can be seen in Figure 1. 

 

Figure 1. Confirming Proposition 1
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With respect to the temporal domain, )(tD , of the new 

discounting function, two cases can occur ( )(1 tD  and )(2 tD  are the 

time discounting domains of the discounting functions 1A  and 2A , 

respectively): 

 If )()( 12 tDtD  , then )()( 2 tDtD  . 

 If )()( 21 tDtD  , then )()()( 21 tDtDtD  , because, if 

 11 ,0)( ttD  , there can exist a non-empty interval 

  )()(, 1221 tDtDtt   where 01 A  and 0
d

d 1 
t

A
. In this 

case,  211 ,)()( tttDtD  . Observe that eventually )(tD  can 

coincide with )(2 tD . 

In Example 1, 









d
tD

1
,0)(1  and 












d
tD

1
,0)(2 . Consequently, 

two cases can occur: 

 If dd  , 
dd

11



 and so )()( 12 tDtD  . Thus, 













d
tDtD

1
,0)()( 2 . 

 If dd  , 
dd 


11

 and so )()( 21 tDtD  . As 1A  is decreasing 

and 0)(2 tA  in 








dd

1
,

1
: 

 

 

1 

 

 

 

 

 

                                                                 
d

1
                                    

d 

1
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then there exists a 2t  such that 







 21 ,

1
)()( t

d
tDtD . To 

calculate 2t , we have to solve the equation: 

01
2

2

 dt
t

dd , 

which only has a solution if and only if 
2

d
d  . In this case the 

obtained solution is 
d

d

d

dd

dddd
t












211
22

, from 

where 
d

d

d

t







211

2 , which obviously lesser than 
d 

1
. On 

the other hand, writing the solution as 

dd

dddd
t






22

2

)(
, we can show that 

ddd

ddd
t

1)(
2 




 . 

 

Definition 1 Let 1A  and 2A  be two discounting functions. The 

ordinary product of both functions, denoted by 21 AA  , is defined in 

the following way: 

 

)()())(( 2121 tAtAtAA  . 

 

Observe that this algebraic operation reflects the “multiplicative” 

superposition of the effects due to both discounting functions over a 

certain temporal interval. 

  

Definition 2 Let 1A  and 2A  be two discounting functions. The 

reduced sum of both functions, denoted by 21 AA  , is defined in the 

following way: 
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1)()())(( 2121  tAtAtAA . 

 

Once defined these algebraic operations, we can enunciate the 

following 

 

Proposition 2 212121 )()( AAAAAA  . 

 

Proof. In effect, by calculating the integral 
t

xxAx
0

21 d)()(  by parts, 

we have: 

 

 
tt

xxxAtAtAxxAx
0

2121
0

21 d)()(1)()(d)()(  , 

 

from where we can easily deduce the required equality.      

 

The following theorem relates the convexity of discounting 

functions A  and 1A . 

 

Theorem 1 If 1A  is convex, then 21 AAA   is also convex, 

independently of the convexity or concavity of 2A . 

 

Proof. From Equation (4), )(
d

)(d

d

)(d
2

1 tA
t

tA

t

tS
 . Differentiating 

again with respect to x: 

 

t

tA

t

tA
tA

t

tA

t

tS

d

)(d

d

)(d
)(

d

)(d

d

)(d 21
22

1

2

2

2

 . 

 

As 1p  is convex, 0
d

)(d
2

1

2


t

tA
. Moreover, as 

t

tA

d

)(d 1  and  
t

tA

d

)(d 2  

are negative, and obviously 0)(2 tA , then S is convex.      
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Example 2 Let us consider the combination of the simple 

discounting function of parameters d and the hyperbolic discounting 

of parameter i: 

 

)1ln(1)( tidtA  . 

 

A graphic representation of the discounting function obtained in 

Example 2 for 05.0d  and 06.0i , and a confirmation of the result 

deduced in Theorem 1, can be seen in Figure 2. 

 

Figure 2. Confirming Theorem 1
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Obviously, the operation  does not verify the commutative 

property, but we can easily show the following proposition. Observe 

that there exists an “exchange by quotient” between the cumulative 

instantaneous discount rates of the two combinations of discounting 

functions towards the instantaneous discount rates corresponding to 

components 1 and 2. 

 

Proposition 2 The following equality holds: 

 

)(

)(

))((d

))((d

2

1

12

21

t

t

tAA

tAA









. 
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Proof. It is obvious taking into account that 

)(
d

)(d

d

))((d
2

121 tA
t

tA

t

tAA



, )(

d

)(d

d

))((d
1

212 tA
t

tA

t

tAA



, 

)(

d/)(d
)(

1

1
1

tA

ttA
t  and 

)(

d/)(d
)(

2

2
2

tA

ttA
t  .      

 

We can check the result obtained in Proposition 2 with the 

following example. 

 

Example 3 Combination of two exponential discounting functions 

of parameters i and i ( ii  ): 

  t
iii

t

tA 
 )1)(1()1ln(

d

)(d
 and   t

iii
t

tA 



)1)(1()1ln(

d

)(d
. 

Therefore, we can obviously check that: 

 

)(

)(

)1ln(

)1ln(

))((d

))((d

2

1

12

21

t

t

i

i

tAA

tAA














. 

 

Proposition 3 The operation  does not verify the commutative 

property except for equal elements. Moreover, it is cancellative on the 

left and on the right. 

 

Proof. In effect, if ))(())(( 1221 tAAtAA  , then 

)(
d

)(d
)(

d

)(d
1

2
2

1 tA
t

tA
tA

t

tA
  and, consequently, 

)(
)(

1

d

)(d

)(

1

d

)(d
)( 2

2

2

1

1
1 t

tAt

tA

tAt

tA
t   . Thus )()( 21 tAtA  . 

On the other hand, if ))(())(( 3121 tAAtAA  , by definition, 

)(
d

)(d
)(

d

)(d
3

1
2

1 tA
t

tA
tA

t

tA
  and then )()( 32 tAtA  . Finally, if 
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))(())(( 3231 tpptpp  , by definition, 

)(
d

)(d
)(

d

)(d
3

2
3

1 tA
t

tA
tA

t

tA
  and then )()( 21 tAtA  .      

 

 

3. Singular and regular discounting functions 

 

Definition 3 (Maravall, 1970) A discounting function )(tA  is said 

to be singular if 0)(lim 


tA
t

 or there exists a real number 0t  such that 

0)( 0 tA . Otherwise, )(tA  is said to be regular. 

 

Example 4 The discounting function is 
tj

ti
tA






1

1
)( , where 

ji  , is singular because, obviously, 
j

i
tA

t



)(lim . Obviously, 

hyperbolic discounting is regular. 

 

A singular discounting function is a peculiar discounting function 

which has a horizontal asymptote at ly  , where l can be interpreted 

as the mass of probability at infinity of the corresponding distribution 

function. Representing this function in the extended real numbers: 

 

 

1 

 

 

 

 

 l 

 

 

  0                                                                                                           

 

and so its corresponding distribution function: 
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   1 – l  

 

 

 

 

           0                                                                                                  

 

Definition 3 provides a classification of discounting functions: 

 

1. Singular discounting functions with bounded domain: 

 0,0)( ttD   and 0)( 0 tA . More specifically, 1)(0 0  tA  

2. Regular discounting functions with bounded domain: 

 0,0)( ttD   and 0)( 0 tA . 

3. Singular discounting functions:   ,0)(tD  and 

0)(lim 


tA
t

. More specifically, 1)(lim0 


tA
t

. 

4. Regular discounting functions:   ,0)(tD  and 

0)(lim 


tA
t

. 

 

It is possible to provide some results on all possible combinations 

of different class of discounting functions. For instance, it can be 

shown that the combination of two singular discounting functions with 

bounded domain is also singular with bounded domain (see Example 

1) and that the combination of a singular and a regular discounting 

function with bounded domain is singular with bounded domain. 

Finally, next examples show the result of combining of some well-

known discounting function. 

 

Example 5 Combination of a hyperbolic discounting function of 

parameter i and a simple discounting of parameter d: 
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






















it
it

i

d

iti
tA

1

1
)1ln(1

1

1
1

1
1)(

2
. 

 

Example 6 Combination of two hyperbolic discounting functions 

of parameters i and j: 

 























itji

i

jt

it

ji

j
tA

j

i

1

1
1

)1(

)1(
ln

)(
1)(

2
 (singular). 

 

Example 7 Combination of a simple discounting function of 

parameter d and an exponential discounting function of parameter k: 

 

 kte
k

d
tA  11)(  (singular). 

 

Example 8 Combination of an exponential discounting function of 

parameter k and a simple discounting function of parameter d: 

 

 ktkt e
k

d
edttA   1)1()(  (singular). 

 

 

4. The combination of discounting functions in the valuation of 

governmental projects 

 

Consider the case in which a government must decide if a (very) 

long-term investment project is feasible. It is well-known that, to 

valuate this project, the most important discounting function to be 

used in the net present value (NPV) formula is the exponential one 
titA  )1()(1 , being i the technical interest rate: 

 





n

k

k kACFANPV
1

1 )( , 
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where: 

 

 NPV  is the net present value of the project; 

 A  is the initial payment of the project; 

 n  is the useful life of the project; 

 kCF  is the k-th cash-flow corresponding to the project. 

 

Assume that the survival probability of the system or the 

perception time of the population is described by the discounting 

function )(2 tA . In this case, it could be convenient to reinforce the 

first discounting function with the aim of preserve the future cash-

flows. Thus, the formula to be employed would be: 

 





n

k

k kAACFANPV
1

21 ))(( , 

 

leading to smaller discount rates, more appropriate to value the 

aforementioned governmental projects. 

 

 

5. Conclusion 

 

In (very) long-term project appraisal (for example, governmental 

and environmental projects), the exponential discounting function has 

been traditionally used to update the future cash-flows at the present 

moment. Despite its generalized use, exponential discounting presents 

an obvious problem: the geometric diminishing of the actualization 

factors “almost annihilates” the most distant cash-flows. Therefore, it 

is necessary to increase the discounting function with the aim of 

reaching a higher presence of the further cash-flows. 

 

To do this, there are several procedures. The methodology used in 

this paper is based on the idea of a diminishing perception of future 

time. Indeed, empirical researches show that for most people the 
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larger the age of the person, the shorter the time periods. Thus, the 

“perceived” discounted amounts must be lesser and this fact must be 

reflected in the mathematical expression of the “true” discounting 

function. In this work, the reduction in the discounted values can be 

reached with another discounting function through the so-called 

combination of discounting functions. 
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