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Abstract

Weibull-exponential distribution is considered. Bayesian method of
estimation is employed in order to estimate the reliability function of
Weibull-exponential distribution by using non-informative and beta
priors. In this paper, the Bayes estimators of the reliability function have
been obtained under squared error, precautionary and entropy loss
functions.
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1. Introduction

The Weibull-exponential distribution was proposed by Oguntunde et al.
[1]. They obtained some of its basic Mathematical properties. This distribution is
useful as a life testing model and is more flexible than the exponential distribution.

The probability function f (x;@) and distribution function F(x;8) of Weibull-
exponential distribution are respectively given by

f(x;0)= a/w(l—e‘lX )a_l e**exp [—Q(elX —1)? x>0, (1)

F(x0)=1-¢ " x>0, 6>0. )
Let R(t) denote the reliability function, that is, the probability that a
system will survive a specified time t comes out to be

~6(e" —1)a

R(t)=e 't>0, 6>0. (3)
And the instantaneous failure rate or hazard rate, h(t) is given by

h(t)=aie™ (1-e ™). (4)
From equation (1) and (3), we get

et

(1—e‘“)a_l[—log R(t)][R(t)]{eﬂj ; 0<R(t)<1. (5

aix

_ _ade
(o) 2

The joint density function or likelihood function of (5) is given by

] aiiZ:‘xi n - .
f(x|R(t)) :%(H(l—e“) J[—Iog R(t)]' [R(t)]zl[e"—lj (6)

The log likelihood function is given by

136



Reliability estimation of Weibull-exponential distribution via bayesian approach

log f()_(lR(t)):Iog % +a/12n:xi+log : 1—e )
(e —l) i-1 (i_l( ) j -

+nlog| —log R(t) |+ (eml—l)a :1 (eiXa _1)a log[ R(t)]

Differentiating (7) with respect to R (t) and equating to zero, we get the maximum
likelihood estimator of R (t) as

A

R(t)=exp {—n {(e“ -1)° Zl‘,(ei —1)3H . (8)

2. Bayesian method of estimation

The Bayesian estimation procedure have been developed generally
under squared error loss function

L(ﬁ(t),R(t)j:(ﬁ(t)-R(t)T. ©)

where R(t) is an estimate of R(t). The Bayes estimator under the above loss

function, say R(t) , is the posterior mean, i.e.,

R(t), =E[R(t)]. (10)

The squared error loss function is often used also because it does not lead
extensive numerical computation but several authors (Zellner [2], Basu & Ebrahimi
[3]) have recognized the inappropriateness of using symmetric loss function.
Canfield [4] points out that the use of symmetric loss function may be inappropriate
in the estimation of reliability function. Norstrom [5] introduced an alternative
asymmetric precautionary loss function and also presented a general class of
precautionary loss function with quadratic loss function as a special case. A very
useful and simple asymmetric precautionary loss function is
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L(ﬁ(t),R(t)]z (11)

The Bayes estimator of R (t) under precautionary loss function is denoted by R (t)P
, and is obtained by solving the following equation

R(t), =[E(R(t))zf . (12)

In many practical situations, it appears to be more realistic to express the

: . Rt . : - :
loss in terms of the ratio % . In this case, Calabria and Pulcini [6] points out that

a useful asymmetric loss function is the entropy loss

L(8)[5°—plog, (5)-1],

>

where 5=ﬂ, and whose minimum occurs at ﬁ(t)zR(t) when p>0, a

(t)

positive error (R(t) > R(t)) causes more serious consequences than negative error,

Pu)

and vice-versa. For small | p| value, the function is almost symmetric when both

A

R(t)and R(t) are measured in a logarithmic scale, and approximately

L(5) %Z{Ioge R(t)-log, R(t)T .

Also, the loss function L(§) has been used in Dey et al. [7] and Dey and Liu [8],
in the original form having p =1. Thus L(5) can be written as

L(5)=b[s-log,(5)-1]; b>0. (13)

The Bayes estimator of R(t) under entropy loss function is denoted by éE and is
obtained as

136



Reliability estimation of Weibull-exponential distribution via bayesian approach

R(t), = [E {%t)ﬂl . (14)

For the situation where we have no prior information about R(t) , we
may use non-informative prior distribution

hﬁe(ﬂ):W; 0<R(t)<L. (15)

The most widely used prior distribution for R(t) is a beta distribution with
parameters «,f >0, given by

h, (R(t)) = ﬁ[R(t)]a_l [1-R(t)]; 0<R(t)<L. (16)

3. Bayes estimators of r(tyunder h(R(t))

Under h, (R(t)) , the posterior distribution is defined by
(RG] T EIROI(RO) -
[ (IR (RO)ER()

0

Substituting the values of h (R(t)) and f (x| R(t)) from equations (15) and (6) in
(17), we get
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O ey

[R(t) ]Z(“J [-log R(t ]

j n[e”_llj [-log R(t) ] dR(t
0

or, f(R(t)]x)= [

dR(t)

ZLEMEN [R(t) ]Z(e Sk [ogR(t)]™

(18)

Theorem 1. Assuming the squared error loss function, the Bayes estimate of R(t)

, is of the form

-Nn

n(e’lt —1)a
ey

i=1

I%(t)S =1+

Proof. From equation (10), on using (18),

R(t), =E[R(1)]
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-] r(n) |

(i(‘:ﬁi;‘}a] 1 D(eMig

= 0 ![R(t)].zi[e“l] -log R(t) | "dR(t)
n (eM_q a)’

(Z[J ] r(n)

()

]

i=1

or, fe(t)S =1+

Theorem 2. Assuming the precautionary loss function, the Bayes estimate of R(t)
, is of the form

2(e” —1)a

S 1)

i=1

R(t),=| 1+ (20)

Proof. From equation (12), on using (18),
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Theorem 3. Assuming the entropy loss function, the Bayes estimate of R(t), is of

the form
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-1

or, FAQ(t)E: -

4. Bayes estimators of r(t)yunder n,(r(t))
Under h, (R(t)) , the posterior distribution is defined by
f(R(t)ll():l f()—(lR(t))hZ(R(t)) (22)
1 (<IRO)m(RO)R()

0

Substituting the values of h,(R(t)) and f(x|R(t)) from equations (16) and (6)
in (22), we get

oy (e e
[R(t)].i[_f]a B(;,,B)[R(t)] T1-r(M)]™

dR(t)

O —_—
—_
D
B3
|
[HEN
~—
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_R(t)_é[eeﬂl-ﬂ “og R [1-R(D)]"

j[R(t)]ﬂe:Xija THog R(t)]'[1-R(t)]" " dR(t)

o (R0 ROB " LogR(OT [1-ROT 2

)r(n+1)[ko( o) {ﬂk lJV [Z(ee—_ll]}MKJ]

Theorem 4. Assuming the squared error loss function, the Bayes estimate of R (t)
, 1s of the form

. R L [UECE ey N

sl q[/(g(zz_;w“ |

Proof. From equation (10), on using (23),

='lfR(t) [R(t)][i[e“lﬂ T-HogR(t)]'[1-R(t)]"" R (1)

ol (o g o]
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1

iR Log RET -

dR()

el i

RIS

or, FAQ(t)

a n+17
J+a+1+ k]

n+l
+a+k} ]

S EE

Theorem 5. Assuming the precautionary loss function, the Bayes estimate of R(t)

, is of the form

s gl e |

R (), =

Proof. From equation (12), on using (23),
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N[

j[R(t)][i[f;ﬂ ]*“*1[-|og R()]'[1-R(t)]" " dR(t)

ool ]

St (7o (352 e
T

Theorem 6. Assuming the entropy loss function, the Bayes estimate of R(t), is of
the form

n+l

or, I:Ae(t)P =

o 20 1][/ [2(21?;ijkr ‘

R(t), = (26)

(g o]

‘m

k

Il
o

Proof. From equation (14), on using (23),
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5. Conclusion

We have obtained a number of Bayes estimators of reliability function R(t) of

Weibull-exponential distribution. In equations (19), (20), and (21), we have
obtained the Bayes estimators by using non-informative prior and in equations (24),
(25), and (26), under beta prior. From the above said equation, it is clear that the

Bayes estimators of R(t) depend upon the parameters of the prior distribution. In
this case the risk function and corresponding Bayes risks do not exist.
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