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Abstract  

Solving applied social, economic, psychological, health care and 
public health problems can require an understanding of facts or 
phenomena related to populations of interest.  Therefore, it can be 
useful to test whether an explanation of a phenomenon holds in a 
population.  However, different definitions for the phrase “explain 
in a population” lead to different interpretations and methods of 
testing.  In this paper, I present two definitions:  The first is based 
on the number of members in the population that conform to the 
explanation’s implications; the second is based on the total 
magnitude of explanation-consistent effects in the population.  I 
show that claims based on either definition can be tested using 
random coefficient models, but claims based on the second 
definition can also be tested using the more common, and simpler, 
population-level regression models.   Consequently, this paper 
provides an understanding of the type of explanatory claims these 
common methods can test. 
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1. Introduction 
Science provides explanations for facts, phenomena, and other 

explanations.  In applied research that draws on theories from disciplines such 
as Economics, Psychology, Sociology, and Organizational Science, among 
others, this can require testing whether a proposed explanation explains a 
given fact, phenomenon, and other explanation in a specified population.  For 
example, one might wish to test whether a proposed explanation based on 
Psychology’s Regulatory Focus Theory [1, 2] explains physician risk tolerance 
in treatment choice (the phenomenon) among primary care physicians in the 
United States (the population).  However, what is meant by the phrase explains 
in a population?  Is it that the proposed explanation accounts for the behavior 
of every member of the population?  This is a high bar: one member of the 
population for whom the explanation does not hold falsifies the claim.  Is it 
that the proposed explanation accounts for the behavior of at least one 
member?  This is equally extreme: only one member of a population for whom 
the explanation holds warrants the claim.  The claim is ambiguous.  Specific 
definitions are required if such claims are to be understood and tested.   

This paper provides definitions and identifies methods for testing 
corresponding explanatory claims.  These definitions and the identification of 
corresponding methods are new contributions that provide conceptual and 
methodological guidance for researchers who seek to test explanations in 
populations.  The methods themselves, however, are in common use: random 
coefficient models and population-level regression models.  Therefore, 
whereas a goal of this paper is to show which methods can be used to test 
specific explanatory claims, I do not present the implementation of the 
methods: there are many textbooks and articles that provide this information 
[e.g. 3, 4].  For simplicity of presentation, I only reference phenomena as the 
target of explanation rather than also facts and other explanations; however, 
any of these are applicable throughout. 

2. Defining explain 
Before providing the required definitions, I will clarify what I mean by to 

explain and by an explanation.  For this paper, to explain something is to 
provide a way of understanding it through a conceptual structure that accounts, 
at least in part, for that which is being explained [5, Ch. 9].  The conceptual 
structure is the explanation.  One might imagine there is a single explanation 
for any given phenomenon.  However, for macro-level phenomena, such as 
organization and human behaviors, there may be multiple ways of 
understanding them.  For example, a human behavioral phenomenon may have 
sociological explanations, psychological explanations, physiological 
explanations, and more.  Any one of the explanations could be referred to as 
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an explanation, and no one of them referred to as exclusively the explanation.  
Moreover, an explanation need not be complete.  There may be many causal 
factors or mechanisms that contribute to the phenomenon; however, an 
explanation might focus only on a subset. 

An explanation can be intended to provide an understanding of a 
phenomenon as it is [6, Ch. 4], a de re explanation; or, it can be intended to 
provide an understanding that, nonetheless, contains explicitly presumed 
falsehoods [7, 8], a de ficta explanation.   All terms of a de re explanation refer 
to presumed real objects, qualities, characteristics, and relationships.  
Designation as a de re explanation does not guarantee truth, nor does it imply 
the researcher believes it is true; indeed, if the researcher believed the 
explanation was in fact true, there is no need for further inquiry [9].  
Moreover, it is common to expect even a well-established theory-based 
explanation to be incorrect in some unknown way.  It is the ontological 
commitments (the presumption that explanatory terms intend to have real 
referents) of the explanation’s terms that qualify it as a de re explanation.  
However, a de ficta explanation contains at least one identified term that is 
presumed to be false.  These are often explanations that contain idealizations 
(e.g. the discrete energy levels in the Bohr model of the atom [10-12], and the 
rationality of the rational choice model in classic microeconomics [13, 14]) or 
analogies (e.g. the computer analogy or corporate analogy of information 
processing in cognitive science [15]).  Given there need only be a single 
presumed false term to warrant designation as a de ficta explanation, the 
remaining terms have substantive ontological commitments.  Such de ficta 
explanations are presumed to be partially true [7].  Although these definitions 
do not restrict explanations to those that are amenable to empirical 
investigation, this paper is written to provide guidance for empirical 
researchers.  Consequently, the focus of the discussion herein is on scientific 
explanations that have empirical implications. 

In the applied sciences, the goal of both de re and de ficta explanations is to 
guide interventions, actions, or policy.  The pursuit and use of a de re 
explanation are based on the belief that understanding the world as it is 
provides assurance that consequent interventions, actions, and policies are 
more likely to work and generalize, and the causes for their failure are more 
likely to be identified.  The de ficta explanation does not carry as great an 
assurance in these regards as it includes identified false claims.  However, the 
de ficta explanation can be simpler, easier to develop and understand, and 
easier to apply.  Both types of explanation are usefully employed. 

Explanations are often assessed in terms of explanatory power.   
Explanatory power characterizes explanations in terms of explanatory virtues 
such as generality, coherence, accuracy, and predictive ability, among others 
[8, 16].  It has been qualitatively defined in terms of the scope of questions it 
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can address [16], and it has been the basis for formal probability-based 
measures [17-20].   However, for the purposes of applied science another 
aspect of power can be useful: effective power.   

Applied researchers often focus on the ability to influence specific 
outcomes and therefore seek explanations to inform actions that can produce 
specific effects.  For example, researchers may seek to reduce systolic blood 
pressure, decrease expected expenditures, or expand social networks rather 
than seek to account for variation.  To achieve such goals, it can be important 
to assess a phenomenon’s responsiveness to an explanation, its effective 
power.  Effective power is different from accuracy and predictive power (the 
abilities to account for and predict phenomena and behavior).  Consider an 
explanation of the relationship between behavior Y and explanatory factor X 
for two individuals w and v.  Suppose the effect of the explanation on Y can be 
modeled as a simple linear function of X with a positive coefficient, in which 
variable X completely determines Y for individual w and only partially 
determines Y for individual v: 

 Yw = βw⋅Xw 
and 

 Yv = βv⋅Xv + Εv. 
The predictive power for w is greater than that for v; indeed, the predictive 
power for w is perfect, whereas it is only partial for v, due to the additional 
term Ev.  However, if βw = βv, then variable X has the same relationship with 
behavior Y for both and thereby having the same effective power: a difference 
in X corresponds to the same difference in Y for both w and v.  If βv > βw, then 
the explanation has greater effective power for v, even though it has greater 
predictive power for w.  Effective power represents the responsiveness to the 
explanation whereas accuracy and predictive power represents the extent of Y 
accounted for by the explanation.  As an analogy, consider a regression 
analysis, in the above example effective power is analogous to β and 
predictive power is analogous to the coefficient of determination (commonly 
termed R-square) or an out-of-sample prediction metric.   Like Schupbach and 
Sprenger’s [18] definition of explanatory power, effective power can be 
negative for a proposed explanation, if the response is counter to that implied 
by the explanation: for example, the case in which the β’s in the preceding 
example were in fact negative, contrary to the explanatory implication of 
positive β’s. 

We can understand a population-level de re or de ficta explanatory claim as 
a reductive explanation: an explanation that applies to a population in virtue of 
an aggregation of the explanation’s application to its members.  This is kin to 
what Strevens terms an aggregative explanation [8].  For example, where I 
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may seek to explain physician risk tolerance in treatment choice among 
primary care physicians in the United States, the proposed explanation is 
regarding its members’ relevant behaviors (the behaviors of individual 
physicians).  So, regardless of the number of members in the population, 
which can be as few as one, our definition of the phrase a potential 
explanation explains a given phenomenon in a population represents an 
aggregation of an individual-level explanation across the members of the 
population.   

As stated in the introduction, definitions that require explanation of either 
every member or only one member of a population are extreme.  Appropriate 
definitions are likely somewhere in between.  This paper focuses on two: 

Definition 1.  An explanation explains a phenomenon in a population if, and 
only if, it has positive effective power for most members of the population. 

Definition 2.  An explanation explains a phenomenon in a population if, and 
only if, its cumulative magnitudes of effective power among the members of 
the population for whom the explanation holds exceeds its cumulative 
magnitudes of effective power among the members of the population for 
whom the explanation does not hold. 

These definitions are based on minimal criteria.  In the first case, it would 
be difficult to support an explanatory claim regarding scope if the possible 
explanation only applied to a minority of population members.  In the second 
case, it would be difficult to support an explanatory claim regarding 
cumulative power if the possible explanation was associated with less 
cumulative power than the counter-explanation in a population.  However, this 
is arbitrary, and we need not take the minimal stance.  We can generalize the 
definitions to vary with a definitional parameter q: 

General Definition 1.  An explanation explains a phenomenon in a 
population if, and only if, it has effective power for at least q percent of the 
members of the population. 

General Definition 2.  An explanation explains a phenomenon in a 
population if, and only if, its cumulative magnitudes of effective power among 
the members of the population for whom the explanation holds exceeds q 
times its cumulative magnitudes of effective power among the members of the 
population for whom the explanation does not hold. 

The remaining sections focus on the minimal definitions, however the 
general testing method in Section 4.1 can be used to test these general 
definitions as well. 
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3. Defining Testable Implications 
To test claims based on the preceding definitions, we required 

corresponding operational definitions in terms of testable implications:   
Operational Definition 1.  If an explanation explains a phenomenon in a 

population, then the implications of the explanation hold for most of the 
members of the population.  And, under reasonable presumption (i.e. credible 
alternative explanations are accounted for), if the implications of the 
explanation hold for most of the members of the population, then an 
explanation explains a phenomenon in a population. 

Operational Definition 2.  If an explanation explains a phenomenon in a 
population, then the cumulative strength of the explanation’s implications 
among the members of the population for whom the explanation holds exceeds 
the cumulative strength of the counter-implications among the members of the 
population for whom the explanation does not hold. And, under reasonable 
presumption (i.e. credible alternative explanations are accounted for), if the 
cumulative strength of the explanation’s implications among the members of 
the population for whom the explanation holds exceeds the cumulative 
strength of the counter-implications among the members of the population for 
whom the explanation does not hold, then an explanation explains a 
phenomenon in a population. 

The first conditional in each operational definition allows evidence against 
each consequent (the testable implications) to provide evidence against the 
explanatory claim.  The second conditional allows evidence for each 
antecedent (the testable implications) to provide evidence for the explanatory 
claim.  The first conditionals are typically derived from the explanation.  The 
second conditionals draw more upon the weaker condition of presumption-
based reasoning [21], which is grounded in current background knowledge and 
is thereby defeasible: future changes in scientific understanding can negate the 
conditional.  A strong reasonable presumption for the second conditionals is 
achieved if there are no credible alternative explanations for the testable 
implications.   

Regarding operational definition 1, we might say, for example, that a 
Regulatory-Focus-Theory-based explanation explains physician risk tolerance 
in treatment choice among primary care physicians in the United States if a 
higher promotion focus (a term in Regulatory Focus Theory [1, 22]) leads 
physicians to have higher risk tolerance (the explanation’s implication) for 
more than half of the physicians, accounting for alternative explanations.  
Regarding operational definition 2, we might say that a Regulatory-Focus-
Theory-based explanation explains physician risk tolerance in treatment choice 
among primary care physicians in the United States if the cumulative 
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magnitudes of effect of promotion focus on risk tolerance among physicians 
for whom a higher promotion focus leads the physician to have higher risk 
tolerance exceeds the cumulative magnitudes of effect of promotion focus on 
risk tolerance among physicians for whom a higher promotion focus leads the 
physician to have lower risk tolerance (or no relationship).   

We can generalize the operational definitions, as we did with the original 
definitions, to vary with a definitional parameter q: 

General Operational Definition 1.  If an explanation explains a phenomenon 
in a population, then the implications of the explanation hold for q percent of 
the members of the population.  And, under reasonable presumption (i.e. 
credible alternative explanations are accounted for), if the implications of the 
explanation hold for q percent of the members of the population, then an 
explanation explains a phenomenon in a population 

General Operational Definition 2.  If an explanation explains a phenomenon 
in a population, then the cumulative strength of the explanation’s implications 
among the members of the population for whom the explanation holds exceeds 
q times the cumulative strength of the counter-implications among the 
members of the population for whom the explanation does not hold. And, 
under reasonable presumption (i.e. credible alternative explanations are 
accounted for), if the cumulative strength of the explanation’s implications 
among the members of the population for whom the explanation holds exceeds 
q times the cumulative strength of the counter-implications among the 
members of the population for whom the explanation does not hold, then an 
explanation explains a phenomenon in a population. 

To test claims based on the preceding definitions, we start by identifying 
the proposed explanation’s implications.  Specifically, we presume an 
explanation-implied relationships g between variables Y and X (as defined in 
the context of the phenomenon and explanation), with parameter θ : 

 ( ; )y g x θ=  , such that 
( ; )

e
g x

x
θ∂

∈
∂

  , Xx∀ ∈ . (1) 

This is to say that we have a proposed explanation e of a phenomenon that 
implies variables X and Y are related by some, perhaps unknown, function g 
such that for all values x in range X the derivative of g with respect to x (or 
the difference quotient if X is a discrete set) is in the set e .  Note that the 

implications can be more general:  The  ( ; )g x
x
θ∂

∂
 term can be a vector of 

derivatives across multiple X variables.  And, the implications for any given 
derivative can be multi-part, having different ranges for the derivative across 
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different x-values.  However, for ease of presentation this paper focuses on 
single-part implications. 

A simple example is g specified as a linear relationship, y = α + β⋅x, such 
that the proposed explanation e implies dy/dx > 0, i.e. e = (0,∞), for all 
positive values of X, i.e. X = (0,∞).  Applying this equation to all members of 
Ω, we can say that if β is positive for most members of a population Ω, then e 
explains by definition 1.  If the sum of the magnitude of β’s across all 
members of Ω for whom β>0 exceeds the sum of the magnitudes of β’s across 
all members for whom β≤0, then e explains by definition 2. 

To formalize the concept of explain, consider the following variable ∆ 
defined for w ∈ Ω and x ∈ X : 

 ( ; ( ))( , ) g x ww x h
x

∂ Θ ∆ =  ∂ 
. (2) 

The function h provides the relevant interpretation for explain.  The two 
functions considered in this paper for h provide interpretations for explain as 
the scope of the explanation (definition 1 above) and as the power of the 
explanation (definition 2 above).  These are detailed below.   

 We can use two functions to separate the ∆’s into groups.  The first picks 
out ∆ for the explanation-implied range of values for ∂g/∂x, and the second 
picks out ∆ for the range of values outside of the explanation-implied range—
the counter-explanation range:  

 
( ; ( ))( , )  if  

( , )
0       Otherwise     

e
g x ww x

w x x+
∂ Θ∆ ∈∆ = ∂



  (3) 

and  

 
( ; ( ))( , )  if  

( , )
0       Otherwise     

e
g x ww x

w x x−
∂ Θ∆ ∉∆ = ∂



 . (4) 

The sum of the magnitudes of ∆+ across population Ω at value x reflects the 
extent of the proposed explanation’s implications in the population at x (the 
interpretation depending on h).  The sum of the magnitudes of ∆- across 
population Ω at value x reflects the extent of counter-explanation implications 
in the population at x.   

For both specifications of h discussed below, a useful formalization of 
explain is to say that the proposed explanation explains a phenomenon in a 
population if the accumulated magnitudes of ∆ is larger in the explanation-
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implied region than in the counter-explanation region for all points in a 
specified set B of x-values.  For arbitrary value x in B, this implies for both 
definitions 1 and 2 that 

 ( ) ( )
{ : ( ) } { : ( ) }

( , )  ( , )
w w X w x w w X w x

w x w x+ −

∈ = ∈ =

∆ > ∆∑ ∑ . (5) 

For the generalized definitions this is 

 ( ) ( )
{ : ( ) } { : ( ) }

( , )  ( , )
w w X w x w w X w x

w x q w x+ −

∈ = ∈ =

∆ > ⋅ ∆∑ ∑ , (6) 

where q° = q/(100 − q) for generalized definition 1, and q°= q for generalized 
definition 2.     

Denoting the statement e explains p in Ω on set B as ( , , , )E e p BΩ , the 
corresponding claims are ( , , , )E e p B TrueΩ =  and ( , , , )E e p B FalseΩ = .  The 
claim that the proposed explanation holds (i.e. ( , , , )E e p B TrueΩ = ) is 
asserted if for all points x in the set B the proposed explanation’s implication 
exceeds that for the counter-explanation implication.  The claim that the 
proposed explanation does not hold (i.e. ( , , , )E e p B FalseΩ = ) is asserted if 
there exists at least one point in B for which the counter-explanation 
implication exceeds the proposed explanation’s implication.   

It is useful to take B to be one of two sets: either a singleton {x} or the 
phenomenologically-relevant range X .  Claims ( , , , )XE e p Ω   are what we 
may consider when testing whether a proposed explanation explains, whereas 
point-wise claims ( , , ,{ })E e p xΩ are useful in understanding where in the range 
of x-values the claims ( , , , )XE e p Ω   fail, if indeed they fail, or at which points 
of X is the underlying proposed explanation is either least or most powerful.  
There are occasions, however, when ( , , , )XE e p Ω   is too strict: do we really 
want to say a proposed explanation does not explain in a population because it 
doesn’t hold at a single point x?  For example, suppose economic demand 
follows the predicted relationship with price at all prices except at $1, do we 
say the price-demand theory does not hold in the population because of this 
singular exception?  Perhaps we should account for how important it is that the 
explanation hold at $1, or account for how many people face a price of $1 for 
the good being considered.  We can address these concerns by taking a 
weighted average of x-specific effects across the range of x-values in X  
using a probability distribution for X conditional on x ∈ X .  Denoting this 
general explanatory claim as ( , , )E e p Ω , it requires the weighted sum across 
all x-values being considered and thereby can balance non-explanatory points 
of X  with other strongly explanatory points.  Its interpretation depends on 



Peter Veazie 
 

14 

 

the definition of the probability for X [23]. For example, it can be helpful to 
consider claims regarding ( , , )E e p Ω in terms of random variables defined on 
population Ω, with equal probabilities assigned to each member of Ω.  Using 
Ω as its domain, the variable X provides the value x that each member is 
facing.  The probability distribution of X therefore represents the actual 
normalized frequency of X in the population, and consequently ( , , )E e p Ω is 
based on the corresponding weighted average across this distribution.  

Figure 1 presents an example in which the explanation implies negative 
derivatives of g with respect to x, i.e. ( ,0)e = −∞  for all values of x in X , 
but for which the actual g is as shown.  It is clear, regarding the point-wise 
explanations, that the claim ( , , ,{ })E e p x TrueΩ =  holds true only for x less 
than x*, but ( , , ,{ })E e p x FalseΩ =  for all x greater than x*.  Consequently, 
due to the existing values of X for which the explanatory implications do not 
hold (i.e. for x > x*), the overall claim is therefore ( , , , )XE e p FalseΩ = .   
On the other hand, for f(x) denoting the density of X based on ( | )XP x x∈ , 
the general claim weighted by this probability is ( , , )E e p TrueΩ =  as there is 
little  probability associated with x-values in the contra-explanatory range of 
derivatives.   
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As mentioned above, two specifications for h are considered here.  The 

first, for definition 1, specifies h as a constant function with value 1:  

 ( , ) 1w x∆ = , for all w and x. (7) 

This leads to  

 
( ; ( ))1  if  

( , )
0       Otherwise     

e
g x w

w x x+
∂ Θ ∈∆ = ∂



  (8) 

and 

 
( ; ( ))1  if  

( , )
0       Otherwise     

e
g x w

w x x−
∂ Θ ∉∆ = ∂



 . (9) 

By this definition, the sum of the absolute values of ∆+ is the number of people 
whose X and Y relationship follows the proposed explanation’s prediction at 
specified x-values.  The sum of absolute value of ∆- is the number of people 
whose X and Y relationship do not follow the proposed explanation’s 
prediction.  A proposed explanation explains at x, by equation 5, if more 
people in the population follow the prediction than do not when X = x. 

The second specification, which is used for definition 2, is to define h as the 
identity function, and therefore ∆ is 

 ( ; ( ))( , ) g x ww x
x

∂ Θ
∆ =

∂
. (10) 

This leads to 

 
( ; ( )) ( ; ( ))  if  

( , )
0       Otherwise     

e
g x w g x w D

w x x x+
∂ Θ ∂ Θ ∈∆ = ∂ ∂



 (11) 

and 

 
( ; ( )) ( ; ( ))  if  

( , )
0       Otherwise     

e
g x w g x w D

w x x x−
∂ Θ ∂ Θ ∉∆ = ∂ ∂



. (12)  

The corresponding definition for explain compares the accumulated 
magnitudes of ∆ between the explanation-implied region and the counter-
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explanation region, which reflects the cumulative effective power of the 
explanation in the population. 

The difference between these two corresponding specifications for h is that 
the first claim, E1, focuses on the scope (the number or proportion of the 
population consistent with the explanation), whereas the second claim, E2, 
focuses on the cumulative power of the explanation.  It is possible for an 
explanation to apply to a minority of people in the population, but it does so 
with greater strength in the magnitude of ∆ among this minority than is the 
magnitude of ∆ for the majority, who are not in the implied region.  In this 
case the explanation would be considered as explaining in terms of E2, which 
uses the identity function for h, but not in terms of E1, which uses the constant 
function for h.  On the other hand, in the case where a majority has only a tiny 
magnitude of ∆ in the implied region but a minority has a large magnitude of ∆ 
in the non-implied region, the explanation would be considered as explaining 
in terms of E1 but not in terms of E2.  This is analogous to considering the 
importance of whether a treatment has a larger total positive effect among 
those that benefit relative to the total negative affect among those who do not 
benefit (E2), or whether the treatment simply positively affects a greater 
proportion of people regardless of how small the effect (E1). Which definition 
is appropriate depends on the research goal.  

These definitions are population-specific.  Consequently, it is possible for a 
proposed explanation to explain in one population but not another.  Moreover, 
it is possible to not explain in a population but to explain in one of its 
subpopulations, and vice versa.  Consider a population Ω made up of two 
subpopulations Ω1 and Ω2: it is possible for ( , , , )XE e p FalseΩ = , and 
yet ( , , , )X1E e p TrueΩ = .  This is often the advantage of doing subgroup 
analysis, to determine if a proposed explanation holds better in one group than 
another.  Indeed, the primary scientific aim of a study may be to identify for 
which population the proposed explanation holds. 

 

4. Testing explanations 
4.1 General tests using random coefficient models 
How do we empirically test a hypothesis of the form ( , , , )XE e p TrueΩ =  

or ( , , , )XE e p FalseΩ = ?  A general approach is conceptually 
straightforward, albeit empirically challenging.  This approach is based on the 
idea that if we can estimate the distribution of ∆, we can estimate the 
conditions for ( , , , )XE e p TrueΩ = and ( , , , )XE e p FalseΩ = .  To estimate 
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the distribution of ∆, assuming our data generating process can support it, we 
can use a random coefficient model [3]. 

Suppose we define random variables (or random vectors) Y, X, Θ, and  on 
the population Ω, representing a population model such that 

 ( ) ( ( ); ( )) ( )Y w g X w w w= Θ + , for w ∈ Ω. (13) 

If we have a data generating process with N observations, i ∈ {1, …N}, we 
can consider the mixture model for the regression of Y on X: 

 ( | ) ( | , ) ( | )i i i i i i iE Y x E Y x dF xθ θ= ⋅∫ . (14) 

Substituting equation 13 for Yi on the right-hand side of equation 14, yields  

 ( | ) ( , ) ( | ) ( | , ) ( | )i i i i i i i i i i iE Y x g x dF x E x dF xθ θ θ θ= ⋅ + ⋅∫ ∫  , (15) 

which is the expected value of g plus the expected value of  , each 
conditioned on X = x: 

 ( | ) ( , ) ( | ) ( | )i i i i i i i iE Y x g x dF x E xθ θ= ⋅ +∫  . (16) 

Under the assumption that the expected value of the error terms is 0 for all 
values of X, the regression is 

 ( | ) ( , ) ( | )i i i i i iE Y x g x dF xθ θ= ⋅∫ . (17) 

The derivative of g and the estimated distribution for F can be used to obtain a 
distribution for ∆ and thereby estimate the conditions for the explanation to 
hold.  Notice, however, from equation 17 the function g must be the expected 
value of Y conditional on values of X and Θ, i.e. equation 14.  Consequently, if 
a statistically adequate model [24] for ( | , )i i iE Y x θ  can be empirically 
determined, an explicit a priori specification for g is not required, only 
hypotheses regarding implications (e.g. derivatives or difference quotients) are 
required a priori. 

Estimation can be achieved using a mixture model, or random parameters 
model, if the study design and context allow for estimation of such a model.  It 
is best to use a non-parametric estimator for F(θ | x) since results in this case 
are likely to be very sensitive to the distribution (we are integrating under 
different regions of the distribution, rather than merely estimating parameters 
of the distribution).   For example, we may consider using Fox et al’s non-
parametric estimator for the distribution of random effects [25, 26].   

Suppose we can assume the error term is independent of X and that we have 
a relationship such that 
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 ( , ) i ix
i ig x e θθ ⋅= , (18) 

which has the derivative 

 ( , )
i ixi i

i
dg x e

dx
θθ θ ⋅= ⋅ . (19) 

The expected value of Y conditional on X is 

 ( )( | ) ( | )i ix
i i i iE Y x e dF xθ θ⋅= ⋅∫ . (20) 

With an estimator for F, denoted as F̂ , we can estimate, using numeric 
integration, the population proportion of those whose derivative falls in the 
explanation-implied range for any x, 

 ˆˆ ( ) ( 0) ( | )xp x I e dF xθθ θ⋅= ⋅ > ⋅∫ , (21) 

in which ( )I ⋅  is an indicator function returning 1 if its argument is true, 0 
otherwise.  Equation 21 can be used to test E1. 

For the general E1, based on the population distribution for X and 
representative sampling, we would average estimates from equation 21 for 
each observation in the data to obtain  

 
1

1ˆ ˆ ( )
n

i
i

p p x
n =

= ∑ . (22) 

In this case, because xe θ⋅ is always positive, the sign of the derivative is 
determined by the sign of θ.  Therefore, we can estimate p̂  based solely on an 
indicator of θ  > 0: 

 ˆˆ ( ) ( 0) ( | )p x I dF xθ θ= > ⋅∫ . (23) 

If we can assume the distribution F is independent of x, i.e. ( | ) ( )F x Fθ θ=  
for all x, then p̂  is not a function of x, and ˆ ( )p x  is the same for all x; 
therefore 

 ˆ ˆˆ ( 0) ( ) 1 (0)p I dF Fθ θ= > ⋅ = −∫ . (24) 

In this case we can base our test on ˆ1 (0)F− .  Using a bootstrap distribution 
for p̂  (for either equation 23 or equation 24), if a legitimate bootstrap method 
applies [27], we can test whether E1 is the case using the p-
value ˆ( | 0.5)P p p p≥ =  if p̂ ≥ 0.5, and p-value ˆ( | 0.5)P p p p≤ =  if p̂ ≤ 0.5 
[28]. 

For testing E2 at specific x-values we calculate 
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 ( ) ( ) ˆ( ) ( 0) ( 0) ( )x xc x I e I e dFθ θθ θ θ θ θ⋅ ⋅ = > ⋅ ⋅ − ≤ ⋅ ⋅ ⋅ ∫ . (25) 

For testing the general E2 we average c(x) across the data.  Again, we can use 
the bootstrap distribution for F to obtain p-values ˆ( | 0)P c c c≥ = or 

ˆ( | 0)P c c c≤ = . 

4.2 Testing E2 using population-level regression models 

The preceding method, which uses random coefficient models and numeric 
integration, is complicated—particularly for E2, which represents definition 2.  
We can greatly simplify our method for testing E2, if the explanation’s 
implications are regarding positive vs non-positive (or negative vs non-
negative) derivatives.  In this case, with an additional statistical assumption, 
we can use population-level regression models to test the explanation.  The 
argument is as follows:  As above, we say that e explains phenomenon p at x if 
inequality 5 holds.  Under the definition for E2, in the case of e being either 
positive, negative, non-positive or non-negative, the absolute values can be 
moved outside of the summations, 

 ( ) ( )
( : ( ) } ( : ( ) }

( , ) ( , )
w w X w x w w X w x

w x w x+ −

∈ = ∈ =

∆ > ∆∑ ∑ . (26) 

Consider e = (0,∞), i.e. the explanation implies positive derivatives.  In 
this case, for the left-hand side of inequality 26 the summation of the ∆+ across 
the population with X = x is the same as the summation of the product of each 
∆-value and its frequency for ∆-values greater than 0:  

 ( )
( : ( ) }

( , ) ( | )
w w X w x 0

w x Freq x+

∈ = ∆>

∆ = ∆ ⋅ ∆∑ ∑ . (27) 

Similarly, regarding ∆−, 

 ( )
( : ( ) }

( , ) ( | )
w w X w x 0

w x Freq x−

∈ = ∆≤

∆ = ∆ ⋅ ∆∑ ∑ . (28) 

Therefore, to determine E2 we can consider whether 

 ( | ) ( | )
0 0

Freq x Freq x
∆> ∆≤

∆ ⋅ ∆ > ∆ ⋅ ∆∑ ∑ . (29) 

However, the inequality remains true if both sides are multiplied by the 
same positive constant.  So, if we multiply by 1/Nx, denoting the inverse of the 
population size with value X = x, then 
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 ( | ) ( | )
0 0x x

Freq x Freq x
N N∆> ∆≤

∆ ∆
∆ ⋅ > ∆ ⋅∑ ∑ , (30) 

which is 

 ( | ) ( | )
0 0

f x f x
∆> ∆≤

∆ ⋅ ∆ > ∆ ⋅ ∆∑ ∑  (31) 

for f denoting a probability mass function (however, the above logic and 
derivation also applies to ∆ as a continuous variable in which f is a density, 
and the summation is replaced with an integral). 

Multiplying the left side of inequality 31 by 1 written as  

 ( 0 | )
( 0 | )

P x
P x
∆ >
∆ >

 , 

and multiplying the right side by 1 written as 

 ( 0 | )
( 0 | )

P x
P x
∆ ≤
∆ ≤

, 

yields  

 
( | ) ( | )( | ) ( | )
( | ) ( | )0 0

P 0 x P 0 xf x f x
P 0 x P 0 x∆> ∆≤

∆ > ∆ ≤
∆ ⋅ ∆ ⋅ > ∆ ⋅ ∆ ⋅

∆ > ∆ ≤∑ ∑ . (32) 

Because on the left side of this inequality 

 
( | ) ( | , )

( | )
f x f 0 x

P 0 x
∆

= ∆ ∆ >
∆ >

, (33) 

and on the right side of the inequality 

 
( | ) ( | , )

( | )
f x f 0 x

P 0 x
∆

= ∆ ∆ ≤
∆ ≤

, (34) 

the inequality can be rewritten as 

      ( | , ) ( | ) ( | , ) ( | )
0 0

f 0 x P 0 x f 0 x P 0 x
∆> ∆≤

∆ ⋅ ∆ ∆ > ⋅ ∆ > > ∆ ⋅ ∆ ∆ ≤ ⋅ ∆ ≤∑ ∑ .

 (35) 
Note that on the left side of inequality 35 

 ( | , ) ( | , )
0

f 0 x E 0 x
∆>

∆ ⋅ ∆ ∆ > = ∆ ∆ >∑ , (36) 

and on the right side of the inequality 
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 ( | , ) ( | , )
0

f 0 x E 0 x
∆≤

∆ ⋅ ∆ ∆ ≤ = ∆ ∆ ≤∑ . (37) 

By substitution into equation 35, this yields 

 ( | , ) ( | ) ( | , ) ( | )E 0 x P 0 x E 0 x P 0 x∆ ∆ > ⋅ ∆ > > ∆ ∆ ≤ ⋅ ∆ ≤ . (38) 

Subtracting the right side of inequality 38 from both sides yields 

 
Part A Part B

( | , ) ( | ) ( | , ) ( | )E 0 x P 0 x E 0 x P 0 x 0∆ ∆ > ⋅ ∆ > − ∆ ∆ ≤ ⋅ ∆ ≤ > . (39) 

Since Part A of inequality 39 is the absolute value of a positive number 
(note we are conditioning on ∆ > 0), the absolute value function can be 
dropped.  Similarly, since Part B is the absolute value of a non-positive 
number (note we are conditioning on ∆ ≤ 0), its subtraction from A is just the 
addition of the non-positive number.  The absolute value operation can be 
dropped as well, if we add the components rather than subtract them.  This 
yields  

 ( | , ) ( | ) ( | , ) ( | )E 0 x P 0 x E 0 x P 0 x 0∆ ∆ > ⋅ ∆ > + ∆ ∆ ≤ ⋅ ∆ ≤ > . (40) 

However, the left-hand side of this inequality is the expected value of ∆ 
conditional on x.  Therefore, explanation E2 implies that 

 ( | )    XE x 0 x∆ > ∀ ∈ . (41) 

Since /g x∆ = ∂ ∂  and derivatives are linear operators (and assuming we can 
interchange the derivative and integral operations), we have  

 
( ) ( ( ) | )( | ) g x dE g x xE x E x
x dx

 ∂ 
∆ = = ∂ 

, (42) 

and therefore, the implication of the explanation we seek to test is the direction 
of the derivative of the expected value of g: 

 ( ( ) | )   X
dE g x x 0 x

dx
> ∀ ∈ . (43) 

Unfortunately, whereas we are likely able to empirically evaluate E(Y | x) in 
a regression analysis, we are not likely able to directly evaluate E(g | x).  This 
is okay, if we can we use E(Y | x) to evaluate E(g | x).  When can we do this?  
The requirements are identified by taking the derivative of equation 16 with 
respect to x:  

    
Part A Part B

( | ) ( ; ) ( | ) ( | )( | ) ( ; )dE Y x g x f x E xf x d g x d
dx x x x

θ θθ θ θ θ∂ ∂ ∂
= ⋅ ⋅ + ⋅ ⋅ +

∂ ∂ ∂∫ ∫
 .(44) 



Peter Veazie 
 

22 

 

If the distribution of parameter Θ is independent of X (which, in 
econometrics, is often considered as there is no selection on the gains [29]), 
then df/dx = 0 and consequently Part A of equation 44 is zero.  If the error is 
mean independent of X, then Part B is zero (which in econometrics, is often 
considered as there is no selection on the outcome [29]).  Under these 
conditions we have 

 
( | ) ( ; ) ( )dE Y x g x f d
dx x

θ θ θ∂
= ⋅ ⋅

∂∫ . (45) 

But, the right-hand side of equation 45 is the E(∆ | x), which is what we seek to 
evaluate for our test.  Consequently, our empirical claim regarding 

( , , , )XE e p TrueΩ =  for E2 is 

 
( | ) ,   e X

dE Y x x
dx

∈ ∀ ∈ . (46) 

Given the independence assumptions required for parts A and B to equal 0 
in equation 44, we can test our proposed explanation E2 by evaluating the 
derivative of a population-level regression function (the left-hand side of 
equation 45).   If an empirically identified statistically adequate regression 
function can be used, an explicit functional form for g need not be specified a 
priori. 

5. Conclusion 
Knowing how to test a proposed explanation in a population requires 

having a definition for what is meant by explaining in a population. In this 
paper I gave definitions in terms of the scope of an explanation and in terms of 
the power of an explanation.  I provided a general method for testing proposed 
explanations using random parameters models, and I showed when population-
level regression models can be used to test proposed explanations in terms of 
effective power.  

Although the tests were presented in terms of the minimal definitions, the 
tests can be extended to generalized definitions as described above.  Using the 
random parameters method, we can define our explanations in terms of the 
explanation-implied region being a multiple of that for the non-implied region.  
For example, the proposed explanation explains if it applies to at least 90 
percent of the population (rather than at least 50 percent as used in the minimal 
definitions). 

I focused on defining and testing proposed explanations; however, in 
practice the requirements for such a test to provide evidence must be kept in 
mind.  Specifically, a proposed explanation’s testable empirical implications 
need to be specified such that alternative potential explanations for empirical 
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implications are accounted for or ruled out, typically by statistical or 
experimental control.  The extent of evidence provided by the test depends on 
the confidence we have that alternative explanations for empirical findings are 
indeed ruled out: the less confident we are, the less evidence is provided by the 
test.  This concern is addressed by calibrating our interpretation accordingly. 

This paper addressed defining and testing explanations in populations.  
However, it should be noted that the general definition can be the basis for 
addressing estimation goals as well as testing goals.  Using the random 
coefficients method the proportion of a population that conforms to the 
explanation’s implications or the effective power can be estimated along with 
corresponding bootstrapped confidence intervals.  
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