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Abstract

We introduce and study the direct product of a family of fuzzy
hyperalgebras of the same type and present some properties of it.
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1 Introduction

In this section we present some definitions and simple properties of hy-
peralgebras which will be used in the next section. In the sequel H is a
fixed nonvoid set, P ∗(H) is the family of all nonvoid subsets of H, and for a
positive integer n we denote for Hn the set of n-tuples over H (for more see
[1]).

Recall that for a positive integer n a n-ary hyperoperation β on H is a
function β : Hn → P ∗(H). We say that n is the arity of β. A subset S
of H is closed under the n-ary hyperoperation β if (x1, . . . , xn) ∈ Sn implies
that β(x1, . . . , xn) ⊆ S. A nullary hyperoperation on H is just an element of
P ∗(H); i.e. a nonvoid subset of H.
A hyperalgebra H = 〈H, (βi, | i ∈ I)〉 (which is called hyperalgebraic system
or a multialgebra ) is the set H with together a collection (βi, | i ∈ I) of
hyperoperations on H.
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A subset S of a hyperalgebra H=〈H, (βi, : i ∈ I)〉 is a subhyperalgebra of H if S
is closed under each hyperoperation βi, for all i ∈ I, that is βi(a1, ..., ani

) ⊆ S,
whenever (a1, ..., ani

) ∈ Sni . The type of H is the map from I into the set
N∗ of nonnegative integers assigning to each i ∈ I the arity of βi. Two
hyperalgebras of the same type are called similar hyperalgrbras.
For n > 0 we extend an n-ary hyperoperation β on H to an n-ary operation
β on P ∗(H) by setting for all A1, ..., An ∈ P ∗(H)

β(A1, ..., An) =
⋃
{β(a1, ..., an)|ai ∈ Ai(i = 1, ..., n)}

It is easy to see that 〈P ∗(H), (βi : i ∈ I)〉 is an algebra of the same type of
H.

Definition 1.1 Let H=〈H, (βi : i ∈ I)〉 and H=〈H, (βi : i ∈ I)〉 be two
similar hyperalgebras. A map h from H into H is called a
(i) A homomorphism if for every i ∈ I and all (a1, ..., ani

) ∈ Hni we have
that

h(βi((a1, ..., ani
)) ⊆ βi(h(a1), ..., h(ani

));
(ii) a good homomorphism if for every i ∈ I and all (a1, ..., ani

) ∈ Hni we
have that

h(βi((a1, ..., ani
)) = βi(h(a1), ..., h(ani

)).

Definition 1.2 Let H be a nonempty set. A fuzzy subset µ of H is a function

µ : H → [0, 1].

Definition 1.3 A fuzzy n-ary hyperoperation fn on S is a map fn : S ×
· · · × S −→ F ∗(S), which associated a nonzero fuzzy subset fn(a1, . . . , an)
with any n-tuple (a1, . . . , an) of elements of S. The couple (S, fn) is called
a fuzzy n-ary hypergroupoid. A fuzzy nullary hyperoperation on S is just an
element of F ∗(S); i.e. a nonzero fuzzy subset of S.

Definition 1.4 Let H be a nonempty set and for every i ∈ I, βi be a fuzzy
ni-ary hyperoperation on H, Then H=〈H, (βi : i ∈ I)〉 is called fuzzy hyper-
algebra, where (ni : i ∈ I) is type of this fuzzy hyperalgebra.

Definition 1.5 If µ1, . . . , µni
be ni nonzero fuzzy subsets of a fuzzy huperal-

gebra H=〈H, (βi : i ∈ I)〉, we define for all t ∈ H

βi(µ1, . . . , µni
)(t) =

∨
(x1,...,xni )∈Hni

(µ1(x1)
∧

. . .
∧

µni
(xni

)
∧

βi(x1, . . . , xni
)(t))

Finally, for nonempty subsets A1, . . . , Ank
of H, set A = A1 × . . . × Ani

.
Then for all t ∈ H

βk(A1, . . . , Ank
)(t) = ∨(a1,...,ank

)∈A(βk(a1, . . . , ank
)(t)).
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For nonempty subset A of H, χA denote the characteristic function of A .
Note that, if f : H1 −→ H2 is a map and a ∈ H1, then f(χa) = χf(a).

Definition 1.6 Let H = 〈H, (βi : i ∈ I)〉 and H′ = 〈H ′, (β′i : i ∈ I)〉 be two
fuzzy hyperalgebras with the same type, and f : H −→ H ′ be a map. We say
that f is a homomorphism of fuzzy hyperalgebras if for every i ∈ I and every
a1, . . . , ani

∈ H we have
f(βi(a1, . . . , ani

)) ≤ β′i(f(a1), . . . , f(ani
)).

Let H=〈H, (βi : i ∈ I)〉 be a fuzzy hyperalgebra then, the set of the
nonzero fuzzy subsets of H denoted by F ∗(H), can be organized as a universal
algebra with the operations;

βi(µ1, . . . , µni
)(t) =

∨
(x1,...,xni )∈Hni

(µ1(x1)
∧

. . .
∧

µni
(xni

)
∧

βi(x1, . . . , xni
)(t))

for every i ∈ I, µ1, . . . , µni
∈ F ∗(H) and t ∈ H. We denote this algebra by

F∗(H).
In [3] Gratzer presents the algebra of the term functions of a universal

algebra. If we consider an algebra B=〈B, (βi : i ∈ I)〉 we call n−ary term
functions on B (n ∈ N) those and only those functions from Bn into B, which
can be obtained by applying (i) and (ii) from bellow for finitely many times:
(i) the functions eni : Bn → B, eni (x1, . . . , xn) = xi, i = 1, . . . , n are n−ary
term functions on B;
(ii) if p1, . . . , pni

are n−ary term functions on B, then βi(p1, . . . , pni
) : Bn →

B,
βi(p1, . . . , pni

)(x1, . . . , xn) = βi(p1(x1, . . . , xn), . . . , pni
(x1, . . . , xn)) is also a

n−ary term function on B.
We can observe that (ii) organize the set of n−ary term functions over B
(P (n)(B)) as a universal algebra, denoted by B(n)(B).
If H is a fuzzy hyperalgebra then for any n ∈ N, we can construct the algebra
of n−ary term functions on F∗(H), denoted by B(n)(F∗(H)) = 〈P (n)(F ∗(H)), (βi :
i ∈ I)〉.

2 On the Direct Product of Fuzzy Hyperal-

gebras

Proposition 2.1 Let H=〈H, (βi : i ∈ I)〉 and B=〈B, (βi : i ∈ I)〉 are fuzzy
hyperalgebras of the same type, h : H → B a fuzzy homomorphism and
p ∈ P (n)(F∗(H)). Then for all a1, . . . , an ∈ H we have h(p(χa1 , . . . , χan)) ⊆
p(h(χa1), . . . , h(χan)).
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Proof. The prove is by induction over the steps of construction of a
term.2

Remark 2.1 If h : H → B be fuzzy good homomorphism then
h(p(χa1 , . . . , χan)) = p(h(χa1), . . . , h(χan)).

Remark 2.2 We can easily construct the category of the fuzzy hyperalgebras
of the same type, where the morphisms are considered to be the fuzzy ho-
momorphisms and the composition of two morphisms is the usual mapping
composition and we will denote it by FHA

Definition 2.1 Let q, p ∈ P (n)(F∗(H)). The n−ary (strong) identity p = q
is said to be satisfied on a fuzzy hyperalgebra H if

p(χa1 , . . . , χan) = q(χa1 , . . . , χan)
for all a1, . . . , an ∈ H. We can also consider that a weak identity p ∩ q 6= ∅
is said to be satisfied on a fuzzy hyperalgebra H if

p(χa1 , . . . , χan) ∧ q(χa1 , . . . , χan) > 0
for all a1, . . . , an ∈ H.

Definition 2.2 Let ((Hk, (β
k
i : i ∈ I)), k ∈ K) be an indexed family of fuzzy

hyperalgebras with the same type. The direct product
∏

k∈K Hk is a fuzzy hy-
peralgebra with univers Πk∈KHk and for every i ∈ I and (a1

k)k∈K , . . . , (a
ni
k )k∈K ∈

Πk∈KHk :

β
Q
i ((a1

k)k∈K , . . . , (a
ni
k )k∈K)(tk)k∈K =

∧
k∈K

βki (a1
k, . . . , a

ni
k )(tk)

Theorem 2.1 The fuzzy hyperalgebra
∏

k∈K Hk constructed this way, to-
gether with the canonical projections, is the product of the fuzzy hyperalgebras
(Hk, k ∈ K) in the category FHA.

Proof. For any fuzzy hyperalgebra (B, (βBi : i ∈ I)) and for any family
of fuzzy hyperalgebra homomorphisms (αk : B → Hk|k ∈ K) there is only
one homomorphism α : B → Πk∈KHk such that αk = πKk ◦ α for any k ∈ K.
Indeed, there exists only one mapping α such that the diagram is commuta-
tive.

-

6

B

Hk

�

αk

Πk∈KHk

πK
k

α
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This mapping is defined by α(b) = (αk(b))k∈K . Now we have to do is to
verify that α is fuzzy hyperalgebra homomorphism. If we consider i ∈ I
and b1, . . . , bni

∈ B, (tk)k∈K ∈ Πk∈KHk then if r ∈ α−1((tk)k∈K) we have
α(r) = (tk)k∈K and α(r) = (αk(r))k∈K , hence ∀k ∈ K; tk = αk(r), it means
that ∀k ∈ K; r ∈ α−1

k (tk), therefore ∀k ∈ K;α−1((tk)k∈K) ⊆ α−1
k (tk). We

have

α(βBi (b1, . . . , bni
))(tk)k∈K =

∨
r∈α−1((tk)k∈K)

(βBi (b1, . . . , bni
))(r)

≤
∨

s∈α−1
k (tk))

βBi (b1, . . . , bni
))(s) = αk(β

B
i (b1, . . . , bni

))(tk)

then

α(βBi (b1, . . . , bni
))(tk)k∈K ≤

∧
k∈K

αk(β
B
i (b1, . . . , bni

))(tk)

≤
∧
k∈K

βki (αk(b1), . . . , αk(bni
))(tk) = β

Q
i (α(b1), . . . , α(bni

))(tk)k∈K .

Which finishes the proof.2

Proposition 2.2 For every n ∈ N, p ∈ P (n)(F∗(H)) and (a1
k)k∈K , . . . , (a

n
k)k∈K,

we have

p(χ(a1
k)k∈K

, . . . , χ(an
k )k∈K)(tk)k∈K =

∧
k∈K

p(χa1
k
, . . . , χan

k
)(tk)

Proof. We will use the steps of construction of a term.

i. If p = ejn(j = 1, 2, . . . , n) then

p(χ(a1
k)

k∈K
, . . . , χ(an

k )
k∈K

)(tk)k∈K = ejn(χ(a1
k)

k∈K
, . . . , χ(an

k )
k∈K

)(tk)k∈K

= χ(aj
k)

k∈K
(tk)k∈K

=
∧
k∈K

ejn(χa1
k
, . . . , χan

k
)(tk)

=
∧
k∈K

p(χa1
k
, . . . , χan

k
)(tk)

ii. Suppose that the statement has been proved for p1, . . . , pni
and that

p = βi(p1, . . . , pni
). Then we have

p(χ(a1
k)k∈K

, . . . , χ(an
k )k∈K)(tk)k∈K = βi(p1, . . . , pni

)(χ(a1
k)k∈K

, . . . , χ(an
k )k∈K)(tk)k∈K

= βi(p1(χ(a1
k)k∈K

, . . . , χ(an
k )k∈K), . . . , pni

(χ(a1
k)k∈K

, . . . , χ(an
k )k∈K))(tk)k∈K

=
∨

(s1k)k∈K ,...,(s
ni
k )k∈K

[p1(χ(a1
k)k∈K

, . . . , χ(an
k )k∈K)(s1

k)k∈K∧. . .∧pni
(χ(a1

k)k∈K
, . . . , χ(an

k )k∈K)

(sni
k )k∈K ∧ βi((s1

k)k∈K , . . . , (s
ni
k )k∈K)(tk)k∈K ]
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=
∨

(s1k)k∈K ,...,(s
ni
k )k∈K

[
∧
k∈K

p1(χa1
k
, . . . , χan

k
)(s1

k)∧ . . .∧
∧
k∈K

pni
(χa1

k
, . . . , χan

k
)(sni

k )∧∧
k∈K

βi(s
1
k, . . . , s

ni
k )(tk)]

=
∧
k∈K

[
∨

(s1k)k∈K ,...,(s
ni
k )k∈K

p1(χa1
k
, . . . , χan

k
)(s1

k)∧. . .∧pni
(χa1

k
, . . . , χan

k
)(sni

k )∧βi(s1
k, . . . , s

ni
k )(tk)]

=
∧
k∈K

βi(p1(χa1
k
, . . . , χan

k
), . . . , pni

(χa1
k
, . . . , χan

k
))(tk)

=
∧
k∈K

βi(p1, . . . , pni
)(χa1

k
, . . . , χan

k
)(tk)

=
∧
k∈K

p(χa1
k
, . . . , χan

k
)(tk).

which finishes the proof of the proposition.2

Theorem 2.2 If ((Hk, (β
k
i : i ∈ I)), k ∈ K) be an indexed family of fuzzy hy-

peralgebras with the same type I such that p∩q 6= ∅ is satisfied on each fuzzy
hyperalgebra Hk, then is also satisfied on the fuzzy hyperalgebra

∏
k∈K Hk.

Proof. Let p, q ∈ P (n)(F∗(H)) and suppose that p ∩ q 6= ∅ is satisfied
on each fuzzy hyperalgebra Hk. This means that for all k ∈ K and for any
a1
k, . . . , a

n
k ∈ Hk we have p(χa1

k
, . . . , χan

k
)∧q(χa1

k
, . . . , χan

k
) > 0. By proposition

3.7 , we conclude that
p(χ(a1

k)k∈K
, . . . , χ(an

k )k∈K) ∧ r(χ(a1
k)k∈K

, . . . , χ(an
k )k∈K) =

=
∧
k∈K

p(χa1
k
, . . . , χan

k
) ∧

∧
k∈K

q(χa1
k
, . . . , χan

k
)

=
∧
k∈K

(p(χa1
k
, . . . , χan

k
) ∧ q(χa1

k
, . . . , χan

k
)) > 0

and the proof is finished.2

Theorem 2.3 If ((Hk, (β
k
i : i ∈ I)), k ∈ K) be an indexed family of fuzzy hy-

peralgebras with the same type I such that p = q is satisfied on each fuzzy hy-
peralgebra Hk, then p = q is also satisfied on the fuzzy hyperalgebra

∏
k∈K Hk.

Proof. Let p, q ∈ P (n)(F∗(H)) and suppose that p = q is satisfied on
each fuzzy hyperalgebra Hk. This means that for all k ∈ K and for any
a1
k, . . . , a

n
k ∈ Hk we have p(χa1

k
, . . . , χan

k
) = q(χa1

k
, . . . , χan

k
). By proposition

3.7 , we conclude that

p(χ(a1
k)k∈K

, . . . , χ(an
k )k∈K) =

∧
k∈K

p(χa1
k
, . . . , χan

k
)

=
∧
k∈K

q(χa1
k
, . . . , χan

k
)
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= r(χ(a1
k)k∈K

, . . . , χ(an
k )k∈K)

and the proof is finished.2
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