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Abstract

In this paper, by using the notation of filter in a BL-algebra A, we
introduce the quasi-uniformity ¢ and uniformity @* on A. Then we
make the topologies T(Q) and T(Q*) on A and show that
(A, A, V,0,T(Q)) is a compact connected topological BL-algebra and
(A, T(Q*)) is a topological BL-algebra. Also we study Q*-cauchy fil-
ters and minimal Q*-filters on BL-algebra A and prove that the bi-
completion (ﬁ, @) of quasi-uniform BL-algebra (A, @) is a topological
BL-algebra.
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1 Introduction

BL-algebras have been introduced by Hajek [11] in order to investigate many-
valued logic by algebraic means. His motivations for introducing BL-algebras
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were of two kinds. The first one was providing an algebraic counterpart of
a propositional logic, called Basic Logic, which embodies a fragment com-
mon to some of the most important many-valued logics, namely Lukasiewicz
Logic, Gédel Logic and Product Logic. This Basic Logic (BL for short) is
proposed as "the most general” many-valued logic with truth values in [0,1]
and BL-algebras are the corresponding Lindenbaum-tarski algebras. The
second one was to provide an algebraic mean for the study of continuous
t-norms (or triangular norms) on [0,1]. In 1973, André Weil [24] introduced
the concept of a uniform space as a generalization of the concept of a metric
space in which many non-topological invariant can be defined. This concept
of uniformity fits naturally in the study of topological groups. The study of
quasi-uniformities started in 1948 with Nachbin’s investigations on uniform
preordered spaces. In 1960, A. Csaszar introduced quasi-uniform spaces
and showed that every topological space is quasi-uniformizable. This result
established an interesting analogy between metrizable spaces and general
topological spaces. Just as a metrizable space can be studied with refer-
ence to particular compatible metric(s), a topological space can be studied
with reference to particular compatible quasi-uniformity(ies). In this and
some other respects, a quasi-uniformity is a more natural generalization of
a metric than is a uniformity. Quasi-uniform structures were also studied
in algebraic structures. In particular the study of paratopological groups
and asymmetrically normed linear spaces with the help of quasi-uniformities
is well known. See for example, [17], [18], [19], [20]. In the last ten years
many mathematicians have studied properties of BL-algebras endowed with
a topology. For example A. Di Nola and L. Leustean [9] studied compact
representations of BL-algebras, L. C. Ciungu [7] investigated some concepts
of convergence in the class of perfect BL-algebras, J. Mi Ko and Y. C. Kim
[21] studied relationships between closure operators and BL-algebras.

In [2] and [4] we study (semi)topological BL-algebras and metrizability on
BL-algebras. We showed that continuity the operations ® and — imply
continuity A and V. Also, we found some conditions under which a locally
compact topological BL-algebra become metrizable. But in there we can not
answer some questions, for example:

(i) Is there a topology U on BL-algebra A such that (A,U) be a (semi)topo-
logical BL-algebra?

(77) Is there a topology U on a BlL-algebra A such that (A,U) be a compact
connected topological BL-algebra?

(i7i) Is there a topological BL-algebra (A,U) such that T, T} and T3 spaces
be equivalent?

(iv) If (A, —,U) is a semitopological BL-algebra, is there a topology V
coarsere than U or finer than U such that (A,V) be a (semi)topological
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BL-algebra?
Now in this paper, we answer to some above questions and get some
interesting results as mentioned in abstract.

2 Preliminary

Recall that a set X with a family U = {U,}aer of its subsets is called a
topological space, denoted by (X,U), if X, € U, the intersection of any
finite numbers of members of I/ is in U and the arbitrary union of members
of U is in U. The members of U are called open sets of X and the complement
of X € U, that is X \ U, is said to be a closed set. If B is a subset of X, the
smallest closed set containing B is called the closure of B and denoted by B
(or cl,B). A subset P of X is said to be a neighborhood of x € X, if there
exists an open set U such that x € U C P. A subfamily {U, : a € J} of U is
said to be a base of U if for each x € U € U there exists an o € J such that
x € U, C U, or equivalently, each U in U is a union of members of {U,}.
Let U, denote the totality of all neighborhoods of x in X. Then a subfamily
V, of U, is said to form a fundamental system of neighborhoods of z, if for
each U, in U,, there exists a V, in V, such that V, C U,. (X,U) is said to
be compact, if each open covering of X is reducible to a finite open covering.
Also (X,U) is said to be disconnected if there are two nonempty, disjoint,
open subsets U,V C X such that X = U UV, and connected otherwise. The
maximal connected subset containing a point of X is called the component
of that point. Topological space (X,U) is said to be:

(1) Ty if for each x # y € X, there is one in an open set excluding the other,
(17) Ty if for each x # y € X, each are in an open set not containing the
other,

(1ii) Ty if for each z # y € X, both are in two disjoint open set.(See [1])

Definition 2.1. [1] Let (A, %) be an algebra of type 2 and U be a topology
on A. Then A = (A, *,U) is called a

(i) left (right) topological algebra if for all a € A, the map %, : A — A is
defined by © — a*xz ( * — z *a) is continuous, or equivalently, for any z in
A and any open set U of a x z (x * a), there exists an open set V' of = such
that axV C U (V*xa CU).

(17) semitopological algebra if A is a right and left topological algebra.

(i) topological algebra if the operation % is continuous, or equivalently, if
for any z,y in A and any open set (neighborhood) W of x x y, there exist
two open sets (neighborhoods) U and V of x and y, respectively, such that
UxV CW.
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Proposition 2.2. [1] Let (A, *) be a commutative algebra of type 2 and U
be a topology on A. Then right and left topological algebras are equivalent.
Moreover, (A, *,U) is a semitopological algebra if and only if it is right or
left topological algebra.

Definition 2.3. [1] Let A be a nonempty set and {x;};,c; be a family of
operations of type 2 on A and U be a topology on A. Then

(1) (A, {*;}ier,U) is a right(left) topological algebra if for any i € I, (A, *;,U)
is a right (left) topological algebra.

(13) (A, {*;}icr,U) is a semitopological (topological) algebra if for all i € I,
(A, *;,U) is a semitopological (topological) algebra.

Definition 2.4. [11] A BL-algebra is an algebra A = (A, A, V,®,—,0,1) of
type (2,2,2,2,0,0) such that (A, A,V,0,1) is a bounded lattice, (A, ®,1) is
a commutative monoid and for any a,b,c € A,

c<a—=b&sao0ce<b, anb=a®(a—b), (a—>b)V(b—a) =1

Let A be a BL-algebra. We define ¢/ = ¢ — 0 and denote (a’)’ by a”. The
map c¢: A — Aby c(a) = d, for any a € A, is called the negation map. Also,
we define a® = 1 and a" = "' ® a, for all natural numbers n.

Example 2.5. [11] (i) Let “©” and “—” on the real unit interval I = [0, 1]
be defined as follows:

r©y=min{z,y} :L‘—>y:{1 =Y,
’ y , otherwise.
Then Z = (I, min, max, ®, —,0,1) is a BL-algebra.
(17) Let ® be the usual multiplication of real numbers on the unit in-
terval I = [0,1] and x — y = 1 iff, * < y and y/x otherwise. Then
Z = (I, min, max, ®, —,0, 1) is a BL-algebra.

Proposition 2.6. [11] Let A be a BL-algebra. The following properties
hold.

(By) x®y <z,yand x ®0 =0,

(By) v <yimpliesz®2 < y© z,

(Bs) x <yiff z -y =1,
(By)l—=z=z10z=uz,

(Bs) y <z —y,

(Bs) z = (y = 2)=(20y) > 2=y — (z—2),
(Br) zVy=((z—y) = y) Ay = ) = ),
(Bs)z<y=ax—z2>y—z z—>x<2—Y,
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) r—=y<(z—=2x) —(2—>y),
—y<(y—2) = (x—2),
(y/\Z) (z = y) Az = 2),

T —=y) Oy —2)
)© (a — z)
=y Oa— 2)
)© (a— 2)

< (zVa)— (yV2),
swa) (y A 2),
<

(r©a) = (y©2).

Definition 2.7. [11] A filter of a BL-algebra A is a nonempty set /' C A
such that z,y € F implies z ©y € F and if z € F and z < y imply y € F,
for any z,y € A.

) x
)z
)
)
Mr—=y<rdz—oyoz,
)
)
)
)

It is easy to prove that if F'is a filter of a BL-algebra A, then for each
z,y€ F,z ANy, xVyand x — y are in F'

Proposition 2.8. [11] Let F' be a subset of BL-algebra A such that 1 € F'.
Then the following conditions are equivalent.

(1) F is a filter.

(i) r € Fandz —y € Fimply y € F.

(i) xr >y € Fandy — 2z € F imply x — z € F.

Proposition 2.9. [11] Let F be a filter of a BL-algebra A. Define z =
y & v —=vy,y — v € F. Then =" is a congruence relation on A. Moreover,
if v/F ={ye A:y=" 2z}, then

(i) o/F =y/F & y=

(i) x/F =1/F < x €F.

Definition 2.10. [2] (i) Let A be a BL-algebra and (A, {*;},U) be a semi-
topological (topological) algebra, where {x;} C {A,V,®, =}, then (A, {x;},U)
is called a semitopological (topological) BL-algebra.

Remark 2.11. If {*;} = {A,V,®,—}, we consider A = (A,U) instead of
(A, {N,V,®, =}, U), for simplicity.

Proposition 2.12. [2] Let (A, {®, —},U) be a topological BL-algebra. Then
(A,U) is a topological BL-algebra.

Notation. From now on, in this paper, we use of BL-filter instead of
filter in BL-algebras.
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Definition 2.13. [10] Let X be a non-empty set. A family F of nonempty
subsets of X is called a filter on X if (i) X € F, (ii) for each Fj, Fy of
elements of F, F1 N F, € F and, (ii7) if F € F and F C G, then G € F.

A subset B of a filter F on X is said to be a base of F if every set of F
contains a set of B.
If F is a family of nonempty subsets of X, then there exists the smallest
filter on X containing F, denoted with fil(F) and called generated filter by
F.

Definition 2.14. [10] A quasi-uniformity on a set X is a filter @ on X
such that

(i) A={(z,x) e X x X :x € A} C ¢, for each q € Q,

(77) for each ¢ € @, there is a p € Q) such that pop C ¢, where

pop={(zr,y) e X x X :3z€ A st (z,2),(zy) €p}.
The pair (X, Q) is called a quasi-uniform space.

If Q is a quasi-uniformity on a set X, ¢ € Q and ¢~ = {(x,9) : (y,z) €
q}, then Q7! = {¢7! : ¢ € Q} is also a quasi-uniformity on X called the
conjugate of ). It is well-known that if () satisfies condition: ¢ € ) implies
g~ € Q, then Q is a uni formity. Furthermore, Q* = QV Q! is a uniformity
on X. If Q and R are quasi-uniformities on X and @) C R, then @ is called
coarser than R. A subfamily B of quasi-uniformity @) is said to be a base for
Q if each ¢ € @ contains some member of B.(See [10])

Proposition 2.15. [22] Let B be a family of subsetes of X x X such that
(1) A C g, for each g € B,

(1) for q1, g2 € B, there exists a g3 € B such that g3 C ¢; N qo,

(i) for each g € B, there is a p € B such that pop C q.

Then, there is the unique quasiuniformity @ = {¢ C X x X : for some p €
B,p C q} on X for which B is a base.

The topology T'(Q) = {G C X : Vo € G 3qg € Q s.t g(xz) C G} is called
the topology induced by the quasi-uniformity Q).

Definition 2.16. [10] (i) A filter G on quasi-uniform space (X, Q) is called
Q*-cauchy filter if for each U € @), there is a G € G such that G x G C U.
(17) A quasi-uniform space (X, Q) is called bicomplete if each Q*-cauchy filter
converges with respect to the topology T(Q*).

(7i1) A bicompletion of a quasi-uniform space (X, Q) is a bicomplete quasi-
uniform space (Y,V) that has a T'(V*)-dense subspace quasi-unimorphic to
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(X, Q).
(1v) A Q*-cauchy filter on a quasi-uniform space (X, Q) is minimal provided
that it contains no @)*-cauchy filter other than itself.

Lemma 2.17. [10] Let G be a Q*-cauchy filter on a quasi-uniform space
(X,Q). Then, there is exactly one minimal Q*-cauchy filter coarser than G.
Furthermore, if B is a base for G, then {q(B) : B € B and q is a symetric
member of Q*} is a base for the minimal Q*-cauchy filter coarser than G.

Lemma 2.18. [10] Let (X,Q) be a Ty quasi-uniform space and X be the
family of all minimal Q*-cauchy filters on (A, Q). For each q € Q, let

§={(GH) eXxX:3GecGand HeH st G x HC g},

and @ fz'l{ij q € Q}. Then the following statements hold:

(i) (X,Q) is a Ty bicomplete quasi-uniform space and (X Q) is a quasi-
uniformly embedded as a T((Q ))-dense subspace of (X, Q) by the map i :
X — X such that, for each v € X, i(x) is the T'(Q")-neighborhood filter at

x. Furthermore, the uniformities Q* and (Q*) coincide.

Notation. From now on, in this paper we let A be a BL-algebra and
F be a family of BL-filters in A which is closed under intersection , unless
otherwise state.

3 Quasi-uniformity on BL-algebras

In this section, by using of BL-filters we introduce a quasi-uniformity ¢
on BL-algebra A and stay some properties it. We show that (A, Q) is not
a T1 and Ty quasi-uniform space but it is a Ty quasi-uniform space. Also
we study (Q*-cauchy filters, minimal @Q*-cauchy filters and we make a quasi-
uniform space (A, Q) of minimal Q*-cauchy filters of (A, Q) which admits
the structure of a BL-algebra.

Lemma 3.1. Let F' be a BL-filter of BL-algebra A and F,(x) = {y : y —
x € F}, for each x € A. Then for each x,y € A, the following properties
hold.

(i) x <y z'mplz'es F.(z) C Fi(y),

(i) Fu(z) A Fi(y) = F(z Ay) = Fu(z) 0 Fi(y),

(iii) Fu(z) vV Fi(y) € Fu(z Vy),

(iv) Fi(z) © Fi(y) € Fi(z ©y),

(v) If for each a € A, a ©® a = a, then F,(x) ® F,(y) = Fi(x ©y),
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(vi)x € Fe 1€ Fi(x) e F(x) = A,
(vii) Fora,b€ A, ifaVbe F,(x), then a,b € Fy(x),
(vitd) [fyGF( ), then F,(y) C Fi(x).

Proof. (i) Let x,y € A, such that z < y and z € F,(z). Then by (Bs),
2z —x < z—y. Since F is a BL-filter and z -z € F', z — y is in F and so
z € Fi(y).

(i7) Let z,y € A, such that a € F,(x) and b € F,(y). Then a - = € F
and b - y € Fand so (a — z) ® (b — y) € F. Since by (By7), (a —
r)® (b —=y) < (anbd) = (xAy), we get (a Ab) — (x ANy) € F. Thus,
aNbe F(xANy). Now, if a € F,(x Ay), since a — (x Ay) € F and by
(B11), a = (x ANy) = (a = ) A (a — y), we conclude that @ — = € I and
a — y € F. Hence a € F,(z) N F,(y). Finally, let a € F,(x) N F,(y). Since
a=aAla,then a € Fy(x) N\ F,(y).

(7i1), (iv) The proof is similar to the proof of (i7), by some modification.

(v) Let z,y € A such that z € F,(x ®y). Then z — (x ® y) € F. By (Bs),
z—= (zOy) <z—zand z = (rOy) < z — y which imply that z — x,z —
y € F. Hence z is in both F,(x) and F,(y) and so z = 2 ® z € F,(z) ®© Fi(y).
(vi) The proof is clear.

(vit), (viii) The proof come from by (B;3) and (Bis). O

Lemma 3.2. Let F' be a BL-filter of BL-algebra A. Define F, = {(z,y) €
Ax A:ye F(x)} and F} = F,NF . Then

(i) F7'={(z,y) e AxA:z —yeF}

(it) Ff ={(z,y) e Ax A:w ="y} = F7

(ii7) Fy(z) = {y 2 ="y},

(iv) FH(z) =y C Fz = y),

(v) If e € {\,V,®, =}, then F}(z) @ F}(y) C Fi(zey).

Proof. The proof of (i), (ii) and (iii) are clear.

(iv) Let @ € F7'(x) — y. Then there exists a z € F'(z) such thata = z — y
and © — z € F. By (By), (2 > y) = (r — y) > — 2. Since F is a filter,
(z—=y)—(r—y) €F. Hencea=z -y € F(z — y).

(v) Let a € F7(x) and b € F?(y). Then by (iii), a =" x and b =" y. By
Proposition 2.9, a ¢ b =" z e . Therefore, aeb € Fi(x o y). O
Theorem 3.3. Let F be a family of BL-filters of BL-algebra A which is
closed under finite intersection. Then the set B = {F, : F € F} is a base

for the unique quasi-uniformity Q@ = {q € Ax A: IF € F st F, C q}.
Moreover, Q* ={qC Ax A:3JF € F s.t F} C q}.

Proof. We prove that B satisfies in conditions (i), (i) and (i7i) of Proposition
2.15. For (1), it is easy to see that for each F' € F, A C F,. Let F|, Fy € F

12



Quasi-Uniformity on BL-algebras

and F' = Fy N Fy. If (z,y) € Fy, then y — « € F = F; N F,. Hence
(x,y) € Fi. N Fy,. This concludes that F, C Fy, N Fy, and so (i) is true.
Finally for (i), let F' € F and (z,y) € F, o F,. Then there is a z € A such
that (z,z) and (z,y) are both in F,. Hence z — x and y — z are in F. Since
F is a filter and by (Bs), (y = 2) ® (z — 2) < y — z, we conclude that
y — x € F. Hence F,oF, C F, and so (7it) is true. Therefore, by Proposition
2.15, @) is a unique quasi-uniformity on A for which B is a base.
Now, we prove that

Q" ={qCAxA:IF€F st F;Cq}

First we prove that P = {¢ C Ax A: JF € F s.t F¥ C ¢} is a uniformity
on A. With a similar argument as above, we get {F} : F' € F} is a base for
the quasi-uniformity P = {g C A x A:3JF € F s.t F} C q}. To prove that
P is a uniformity we have to show that for each ¢ € P, ¢! is in P. Suppose
q € P. Then there exists a F' € F, such that F} C ¢. By Lemma 3.2(i7),
F* = F*'. Hence F* C ¢! and so ¢~' € P. Thus P is a uniformity on A
which contains Q. Since Q* = Q V Q !, then Q* C P. On the other hand, if
q € P, then there is a F' € F such that F} C ¢. Since F¥ = F, N F ! € Q*,
we get that ¢ € Q*. Therefore, Q* = P. O

In Theorem 3.3, we call @) is quasi-uniformity induced by JF, the pair
(A, Q) is quasi-uniform BL-algebra and the pair (A, Q*) is uniform BL-
algebra.

Notation. From now on, F, ) and Q* are as in Theorem 3.3.

Example 3.4. Let T be the BL-algebra in Example 2.5 (i), and for each
a €1(0,1), F, = (a,1]. Then F, is a BL-filter in Z and easily proved that
for each a,b € [0,1), F, N Fy, = Fynp. Hence F = {Fy}acp) is a family of
BL-filters which is closed under intersection. For each a € [0, 1),

F,. = (a,1] x [0,1], F;' =[0,1] x (a,1] and F, = (a,1] x (a,1].

By Theorem 3.3, QQ = {q : Ja € [0,1) s.t (a,1] x [0,1] C ¢} and Q" = {q :
Jda € [0,1) s.t (a,1] x (a,1] C q}.

Recall that a map f from a (quasi)uniform space (X, Q) into a (quasi)uniform
space (Y, R) is (quasi) uni formly continuous, if for each V' € R, there exists
a U € @ such that (z,y) € U implies (f(x), f(y)) e V.If f : (X,Q) — (Y, R)
is a quasi-uniform continuous map between quasi-uniform spaces, then f :
(X, Q) — (Y, R*) is a uniform continuous map. (See [10])

13
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Proposition 3.5. In BL-algebra A, for each a € A, the mappings t,(z) =
aNz, ro(r) =aVal(r) =a@®az and L,(xr) = a — x of quasi-uniform
BL-algebra (A, @) into quasi-uniform BL-algebra (A, Q) are quasi-uniformly
continuous. Moreover, they are uniformly continuous mappings of uniform
BL-algebra (A, Q*) into uniform BL-algebra (A, Q).

Proof. Let ¢ € Q. Then, there is a F' € F such that F, C ¢. If (x,y) € F,
then y — x € F. By (By) (e Ay) — (a Ax) > y — = which implies that
(aNy) — (aNx) € F Cq. Hence t, is quasi-uniform continuous. Moreover,
te: (A, Q%) — (A, Q%) is uniform continuous. In a similar fashion and by use
of (Big), (B14) and (Byg), we can prove that, respectively, r,, [, and L, are
quasi-uniform continuous of (A, Q) — (A, Q) and are uniform continuous of

(4,Q7) = (A,Q"). O

Let (X, Q) be a (quasi)uniform space and B be a base for it. Recall (X, Q)
1
(i) Ty quasi-uniform if (z,y) and (y,z) are in (), .5z U, then # = y, for each
r,y € X,
(it) Ty quasi-uniform if A =,z U,
(#ii) To quasi-uniform if A = (\;,cgU ™" o U. (See [10])

wn

Theorem 3.6. Quasi-uniform BL-algebra (A, Q) is not Ty and Ty quasi-
uniform. If {1} € F, then (A, Q) is a Ty quasi-uniform space and uniform
BL-algebra (A, Q*) is To, T1 and Ty quasi-uniform space.

Proof. Let z,y € Aand F € F. Sincey — 1 =1 € F, we get that (1,y) €
Nrer Fi- Hence (A, Q) is not T quasi-uniform. Alsosincez =+ 1=y —1¢€
F, we conclude that (1, ), (1,y) € F. Hence (z,y) € F_' o F, which implies
that A # per Fo ' o Fi. So (A, Q) is not T quasi-unifom

Let {1} € F and (z,y) and (y,x) be in (\pcx Fi. Then for each F' € F,
r — y and y — 2z are in F. Hence z =1} 3y, which implies that z = v.
Therefore, (A, Q) is Ty quasi-uniform. With a similar argument as above,
we can prove that (A, Q*) is a Ty and T quasi-uniform space. To verify T5
quasi-uniformity, let (z,y) € (\per F* ' o F*. Then for each F' € F there is
a z € A such that (x,2) € F* ' and (z,y) € F*. By Lemma 3.2(i1), z =" 3.
Since {1} € F, we get that z = y. Therefore, (A4, Q*) is a T; quasi-uniform
space. ]

Proposition 3.7. Let B be a base for a Q*-cauchy filter G on quasi-uniform

BL-algebra (A, Q). Then the set {F}(B) : F € F, B € B} is a base for the
unige minimal ()*-cauchy filter coarser than G.
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Proof. By Lemma 2.17, the set {q(B) : B € B, ¢-! = q € Q*} is a base for
the unique minimal Q*-cauchy filter Gy coarser than G. Let ¢~ = ¢ € Q*
and B € B. Then for some F' € F, F} C q. So, F}(B) C ¢(B). Now, it is
easy to prove that the set {F}(B): F € F, B € B} is a base for Gj. O

Proposition 3.8. F is a base for a minimal QQ*-cauchy filter on quasi-
uniform BL-algebra (A, Q).

Proof. Let C={S C A:3F € F s.t F C S}. It is easy to prove that C is a
filter and F is a base for it. We prove that C is a (Q*-cauchy filter. For this,
let ¢ € Q. There is a F' € F such that F, C ¢. Since F is a filter, clearly
F x F C F, C q. Hence C is a Q*-cauchy filter. Now, by Proposition 3.7,
the set {F}(Fy) : F,F, € F} is a base for the unique minimal Q*-cauchy
filter Fy coarser than C. To complete proof we show that for each F, F} € F,
FY(Fy)) = F\. Let F,F, € F. If y € F(F,), then for some x € F}, z =" y.
By Proposition 2.9, y € Fj. Hence F}(Fy) C Fy. Clearly, Fy C F}(Fy).
Therefore, F; = F}(F1). Thus proved that F is a base for Fy. O

Proposition 3.9. The set B = {F(0) : F € F} is a base for a minimal
Q*-cauchy filter on quasi-uniform BL-algebra (A, Q).

Proof. Let C ={S C A:3F € F s.t F;(0) C S}. It is easy to prove that C
is a filter and the set B = {F}(0) : F € F} is a base for it. To prove that
C is a Q*-cauchy filter, let ¢ € Q). There is a F' € F such that F, C ¢. If
z,y € F7(0), then x = y and so (z,y) € F¥ C F, C gq. This prove that
Fr(0) x Fr(0) C gq. Hence C is a Q*-cauchy filter. By Proposition 3.7, the
set {FF(F(0)): F € F} is a base for the unige minimal Q*-cauchy filter Z
coarser than C. But it is easy to pove that fo each F' € F, F}(F}(0)) = F;}(0).
Therefore, B is a base for Z. n

Lemma 3.10. Let G and H be Q*-cauchy filters on quasi-uniform BL-algebra
(A, Q). If e € {A\,V,®,—}, thenGeH ={GeH:GecG, He H} isa
Q*-cauchy filter base on quasi-uniform BL-algebra (A, Q).

Proof. Let C={S CA:3G, HstGe G, HeH, GeH C S}. It is easy to
prove that C is a filter and the set B={GeH : G € G, H € H} is a base for
it. We prove that C is a Q*-cauchy filter. For this, let ¢ € (). Then for some a
F e F, F, Cq. Since G, H are Q*-cauchy filters, there are G € G and H € ‘H
such that GxG C F, and Hx H C F,. We show that GeH xGeH C F, C q.
Let g1,90 € G and hy,hy € H. Then (g1, g2), (g2, 91), (h1, h2), (ha, hy) are in
F..So g1 = g, and hy = hy. By Proposition 2.9, g, @ hy = g, @ hy, which
implies that (g; @ hy, go ® hy) € F,. O
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Theorem 3.11. There is a quasi-uniform space (,21/7 @) of minimal Q* -cauchy
filters of quasi-uniform BL-algebra (A, Q) that admits a BL-algebra structure.

Proof. Let A be the family of all minimal Q*-cauchy filters on (A, Q). Let
for each g € Q,

(={GH) cAxA:3GeG HeHstGxHCq}

IfQ = fil{q : ¢ € Q}, then (AV, @) is a quasi-uniform space of minimal
(Q)*-cauchy filters of (A, Q). Let G, H € A. Since G, H are minimal Q*-cauchy
filters on A, then by Lemma 3.10, GAH, GV H, GO H and G — H are Q*-
cauchy filter bases on A. Now, we defineG A H, G Y H,Go© H and G — H as
the minimal Q*-cauchy filters contained GAH, GVH, GOH and G — H,
respectively. Thus, G AH, GYH, GO H and G — H are in A. Now, we
will prove that (A, A,Y,®,—,Z,Fy) is a BlL-algebra, where Z is minimal
Q*-cauchy filter in Proposition 3.9 and Fy is minimal QQ*-cauchy filter in
Proposition 3.8. For this, we consider the following steps:
(1) (A, A, Y) is a bounded lattice.

Let G, H, K € A. We consider the following cases:
Case 1.1: G A G=G,GYG=¢
By Proposition 3.7, S} = {F}(G) : G € G, F € F} and Sy = {F;(G1 N Gs) :
G1,Gy € G, F € F} are bases of the minimal Q*-cauchy filters G and G A G,
respectively. First, we show that Sy C S;. Let FF(G1 A Go) € Sy. Put
G = G1 NGy, then G € G. Let y € F}(G). Then there is a x € G such
that (z,y) € F}. Since z Az = x, it follows that (x A z,y) € F} and so
y € F*(G1 N Gs). Hence Sy C S;. Therefore, G A G C G. By the minimality
of G, G A G = @G. The proof of the other case is similar.
Case 1.2: GAH=HAG GYH=HYG
By Proposition 3.7, Sy = {F;(GANH): Ge€ G H e H,F € F}and Sy =
{F;(HNG) : G € G H € H,F € F} are bases of G A H and H A G,
respectively. For each G € G and H € H, since G A H = H A G, for each
FeF F/(GNH)=F(HANG). Hence G A H =H A G. The proof of the
other case is similar.
Case 1.3: GA(HAK)=(GAH) ALK, GY(HYK)=(GYH) YK
By Proposition 3.7, the families

S) = {F'(F.(GNH)AK):Ge G HeHKeK,F,F, e F},

Sy = {FI(GANF(HANK):GeG HeH,KeK,F,F, € F}

are bases for the minimal Q*-cauchy filters (G A H) A K and G A (H A K),
respectively. Let F} (F5,G N (H ANK) € Sy and F' = F; N F,. Then F € F.
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Now, we show that F}(F;(GANH)ANK) C F,(GANF;(HANK). Let y €
FY(F(G N H) A K). Then there are x € F}(GANH), k € K, g € G and
h € H such that y = z Ak and 2 = g A h. Hence y =" (9AR) ANk =
g\ (hAk), which implies that y € F}(GAF;(HANK) C Fj . (GAF;,(HNK).
Therefore, G A (H A K) C (G A H) A K. By the minimality of (G A H) A K,
GA(HAK)=(G AH)AK. The proof of the other case is similar.

Case 1.4: GA(GYH)=G,GY(GAH)=G

It is enough to prove that G A (G Y H) = G. The proof of the other case
is similar. By Proposition 3.7, the families S = {F(G) : G € G, F € F}
and Sy = {F},(G1 AN Fy5.(GoV H) : G1,Gy € G H € H,F,F>, € F} are
bases for the minimal Q*-cauchy filters G and G A (G Y H) , respectively. Let
Fl**(Gl N FQ**(GQ V H) S SQ. Put G = G1 N G2 and ' = F1 N FQ. We prove
that F}(G) C F/.(G1 A F5,(GyV H). Let y € Ff(G). Then thereisa g € G
such that y =" g. If h € H, since g = g A (g \V h), then y = g A (g V h) and
soy € Ff,.(G1 ANF5(GyV H). Hence G A (G Y H) C G. By the minimality of
G, we conclude that G A (G Y H) =G.

Now the cases 1.1,1.2,1.3,1.4 imply that (E, A, Y) is a lattice.

Case 1.5: The lattice (A, A, Y) is bounded.

For this, for each G,H € Av, define G <H & G AH =G. It is clear that
(A, <) is a partial ordered. Now, we prove that for each G € A, Z < G < Fy.
First, we show that Z < G. Let S € Z. Then for some a F' € F, F(0) C S.
Since G is a minimal Q)*-cauchy filter, there is a G € G such that G xG C F,.
We show that F}(G A F}(0)) C S. Let y € F(G A F}(0)). Then there are
g € G and x € F}(0) such that y = g Az. On the other hand, since x =" 0,
we get g A x = 0. Hence y =" 0 which implies that y € F*(0) C S. Since
FY(GAF}(0)) € GAZ, then S € GAZ. By the minimality of GAZ, GAZ = 7.
Now, we prove that G < F,. By Proposition 3.7, the set S; = {F}(G A F}) :
G € G, F.F, € F} is a base for G A Fy. Let F}(G A Fy) € S;. We prove
that F}(G) C F}(G A Fy). Let y € Ff(G). Then, there is a g € G such that
y=t"g=gA1l. Hencey e F*(GAF)). By the minimality of G, G A Fy = G.
(2) (A,®) is a commutative monoid

Case 2.1: (A,®) is a commutative semigroup.

We will prove that G ® (H © K) = (G © H) ® K. By Proposition 3.7, the sets

S1={F.(GoOFHOK)):GeG HeH,KeK,F,F e F},

So={F(F;,(GOH)®K)):GeG, HeH,KeK,F,F, e F}

are bases from G ® (H © K) and (G ® H) ® I, respectively. Let F}, (F5,(G®
H)OK)) € Sy, F =FinFyandy € Ff(GOF(H®K). Then there are g € G,

x € F}(HOK),he Hand k € K such thatyég@x and o = h ® k. Hence
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y = go(hok) = (9oh)ok and so y € FX(FX(GOH)OK) C Fi(F (GO H)o
K)). Therefore, Sy C S; which implies that (GO H)@ K C G (H o K).
Now, by the minimality of G@ (H@K), @ (HeK)=(G§oH)o K. Fi-

nally, it is easy to prove that GO H =H ©G.

Case 2.2: (A, ©®) is a monoid

We prove that G Fy = G. By Proposition 3.7, the set Sy = {F(GOF) : G €
G,F, F; € F} is a base for G ® Fy. It is clear that for each F(G ® F}) € S,
F}(G) C Ff(G ® Fy) and this implies that G ® Fy C G. By the minimality
of G, G Fy=G.

B)Ge(G—H)=GAH

By Proposition 3.7, the families

={F;(GANH):G€G,HEMNFcF}

SQ:{FF*(G1®F;*(G2_>H)):G17G2 GQ,HE'H,FDFQE,F}

are bases for G A H and G © (G — H), respectively. Let F}\ (G, ® F5,(Gy —
H)) € S, G=G NGy and F = Fy N Fy,. We will prove that F'(GA H) C
Fr (G, © F5(Gy — H)). Let y € Ff(GA H). Then there are g € G and
h € H such that y = g A h. It follows from g A h = g ® (¢ — h) which
y € Fr (G ® Fy.(Gy — H)). Hence FX(G A H) C F,(Gy @ FL(Gy — H))
which implies that G© (G — H) C G A H. Now, by the minimality of G A H,
we get GO (G —H)=G A H.

4G<H—-KesGoH<K

First, we prove the following statements:

(a) G<HEG—H=F

b)G—(H—=>K)=GoH =K.

(a) To prove it, let G — H = Fy. Then Go© (G — H) =G Fy=G. By (3),
GAH=Gandso G <H.

Conversely, let G < ‘H. By Proposition 3.7, the set S = {F (G — H) : G €
G,H e H,F e F}isabase for G — H. Let F)(G — H) € S. We prove
that 1 € Ff(G — H). Since by Lemma 3.10, G — H is a Q*-cauchy filter
base, there are Gy € G and H; € H such that (G; — Hy) x (G; — Hy) C F,.
Put Go = Gy NG and Hy, = H; N H. It is easy to see that Go A Hy C
Ff(GoNHy) € GAH. Since GAH =G, there is a G3 € G such that G3 C G
and G3 C Gy A Hy. Since G3 # ¢, there are g5 € G3, g € Gy and h € H,
such that g3 = g A h. Since (g3 — h,g — h) and (¢ — h,g3 — h) both
are in (G; — Hy) x (G — Hy) C F,, weget g > h="g3 - h=1
and so 1 € F(G — H). Hence F}(1) C F}(G — H). This implies that
G — H C Fy. By the minimality of Fy, G — H = Fy. Therefore, we have
(a).
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(b) By Proposition 3.7, the families
S ={F(G—=F(H—=K)):GeG HeH,Kek [\ FecF}

Sy = {Fr(F;(GOH) > K):GeG HeH,KeK,F,F,e F}

are bases of G — (H — K) and (G@H) — K, respectively. Let F}, (F5, (G®
H)—- K)e Sy, F=FNFandye€ F(G — F;(H — K)). Then there are
g € Gand x € F}(H — K) such that y = ¢ — x. Also there are h € H
and k € K such that x =" h - k. Hence y =" ¢ - 2 =" ¢ - (h —
k) = (g ® h) — k. Therefore, y € F},(F; (G ® H) — K). This implies that
(GoH) = K CG— (H— K). By the minimality of G — (H — K), we
get G — (H — K) =G ©H — K. Hence we have (b).

Now, by (a) and (b), we have

G<H—Keg—oH—K)=Frec(GoH) - K=F<GoH<K.

SoG<H—-K&GoHK.
(5) (G—=H)Y (H—=G)=Fo
By Proposition 3.7, the set

S = {F{;(F;*(Gl — Hl)VF:;;(HQ — GQ)) . Gl,GQ € Q,Hl,Hg - H,Fl,FQ,Fg - .F}

is a base for (G — H) Y (H — G). Let F} (F5.(Gy — Hy)V F;i(Hy —
Gy)) €S, G=G NGy, H= H N Hyand F = F; N F,N F3. We show that
1€ FY(F/(G— H)VF/(H - G)). Let g€ G and h € H. Since A is a
BL-algebra, we have (9 — h) V (h — g) = 1. Since ¢ — h € F}(G — H)
and h - g € F}(H — G), we have (9 — h)V (h = g) € F}(F}(G —
H)VF(H — G))andsol € F/(F}(G— H)VF(H — G)). Hence F}(1) C
F}(F}(G — H)VF(H — G)) which implies that (G — H)Y (H — G) C Fo.
By the minimality of Fo, (G — H) Y (H — G) = Fo.

[

4 Some topological properties on quasi-unifom
BL-algebra (A, Q)

Let T(Q) and T(Q*) be topologies induced by @ and Q*, respectively. Our
goal in this section is to study (semi)topological BL-algebras (A4, T(Q)) and
(A, T(Q*)). We prove that (A, A,V,®,T(Q)) is a compact connected topo-
logical BL-algebra and (A, T(Q*)) is a regular topological BL-algebra. We
study separation axioms on (A,7T(Q)) and (A, T(Q*)). Also we stay condi-
tions under which (A, Q) becomes totally bounded. Finally, we show that if
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(A, Q) is a Ty quasi-uniform space, then the BL-algebra (ﬁ, @) in Theorem
3.11 is the bicomplition topological BL-algebra of (A, Q).

Theorem 4.1. The set T(Q) = {G C A : Vo € G IF € F st Fi(z) C
G} is the topology induced by Q@ on A such that (A,{N,V,0},T(Q)) is a
topological BL-algebras. Also (A,—,T(Q)) is a left topological BL-algebra.
Furthermore, if the negation map c(x) = x’ is one to one, then (A,T(Q)) is
a topological BL-algebra.

Proof. First we prove that T'(Q) is a nonempty set. For this, we prove that
for each F' € F and each z € A, F,(z) € T(Q). Let FF € F, x € A and
y € Fy(z). If z is an arbitrary element of F,(y), then z — y € F. Since
y— x € F, by (B;5), we get z — x € F. Hence F,(y) C Fi(z) which implies
that F,(z) € T(Q). Now we prove that T'(Q) is a topology on A. Clearly,
¢, A € T(Q). Also it is easy to prove that the arbitrary union of members
of T(Q) is in T(Q). Let Gy,...,G, be in T(Q) and x € (;_| G;. There are
Fy,...,F, € F such that Fj,(z) C Gj, for 1 <i <n.Let F'=FyN..NF,.
Then F' € F and F,(z) C Fi,(xz)N...N F.(z) € N:Z] Gi. Hence T(Q) is a
topology. Since for each F' € F, F, belongs to @, then T(Q) is the topology
induced by Q. Now, by Lemmas 3.1, it is clear that (A,{A,V,0},T(Q))
is a topological BL-algebra. In continue, we prove that (A, —,T(Q)) is
a left topological BL-algebra. Let x,y,z € A, and z € F,(y). By (By),
(x = 2) = (x = y) > z — y which implies that (z — z) = (x — y) € F. So
r— 2z € F,(x — y). Hence x — F,(y) C F.(z — y) and so (A, —,T(Q)) is
a left topological BL-algebra.

To complete the proof, suppose that the negation map c is one to one. Since
(A,—,T(Q)) is a topological BL-algebra, ¢ is continuous. Now by [[2], The-
orem(3.15)], (A4, 7(Q)) is a topological BL-algebra. O

Theorem 4.2. BL-algebra (A, T(Q)) is a connected and compact space and
each F € F, is a closed compact set in (A, T(Q)).

Proof. First we prove that if {G; : i € I} is an open cover of A in T'(Q),
then for some i € I, A = G;. Let A = |J,.; Gi, where G; € T(Q). Then,
there are i € I and F' € F such that 1 € G; and F,(1) C G;. By Lemma 3.1
(vi), A = Fy(1). Hence A = G;. Now, it is easy to show that (A,7(Q)) is
connected and compact. In continue we prove that each F' € F, is a closed,
compact set in (A, T(Q)). For this, let F' € F and = € F. Then, there is a
y € F(x)NF. Sincey € Fandy — o € F, we get + € F. Hence F = F.
Now, Since (A, T(Q)) is compact, F' is compact. O

Theorem 4.3. (i) BL-algebra (A, T(Q)) is not a Ty and Ty topological space.
(1) BL-algebra (A, T(Q)) is a Ty topological space iff, for each 1 # x € A,
there is a F € F such that © &€ F.
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Proof. (i) (A,T(Q)) is not a T} and T3 topological space because for each
GeT(Q),1eG if and only if G = A.

(77) Suppose for each 1 # x € A, thereis a ' € F such that x ¢ F. We prove
that (A, 7(Q)) is a Ty topological space. For this, let 1 # x € A. Then for
some F' € F,x ¢ F. Since 1 — x = z, then 1 ¢ F,(x). Moreover, since (A4, —
,T(Q)) is a left topological BL-algebra, by [[2], Proposition(4.2)], (A, T(Q))
is a T topological space. Conversely, let (A,T(Q)) is a Ty topological space
and 1 # x € A. Then for some FF € F, 1 ¢ F,(x). Hencex =1 —x ¢ F. O

Theorem 4.4. The set T(Q*) ={GC A:Vex € G IF € F st F}(z) C G}
is the topology induced by Q* on BL-algebra A such that (A, T(Q*)) is a
topological BL-algebras.

Proof. By the similar argument as Theorem 4.1, we can prove that T'(Q*)
is the topology induced by Q* on A. By Lemma 3.2(v), (A,T(Q*)) is a
topological BL-algebra. O]

Theorem 4.5. (i) BL-algebra (A, T(Q*)) is connected iff, F = {A},
(12) F has only a proper filter iff, each F' € F is a component.

Proof. (i) Let F = {A}. Then it is easy to prove that T(Q*) = {¢, A}. Hence
(A, T(Q*)) is connected.

Conversely, let F # {A}. Then, there is a filter I € F such that F' # A.
Since for each x € F, F}(x) C F, we conclude that F € T(Q*). Let y € F.
Then there is a z € F(y) N F. This proves that y € F. Hence F is closed.
Now, since F' is a closed and open subset of A, then A is not connected.
(77) Let F has a proper filter F. By the similar argument as (i), we get that
F' is closed and open. We show that F' is connected. Let G; and Gy be in
T(Q*) and F = (FNGy) U (FNGy). Without loss of generality, Suppose
that 1 € FFN Gy, then FF C Ff(1) C G;. Hence F NGy = F, which implies
that F'is connected. Therefore, F' is a component.

Conversely, suppose each F' € F is a component. If F} and F5 are in F, then
Fy N F,is in F and is component. Hence F; = F} N Fy = F5. O

Recall that a topological space (X,U) is regular if for each x € G € U

thereisa U € U such that x €¢ U C U C G.
Theorem 4.6. BL-algebra (A, T(Q*)) is a reqular space.

Proof. First we prove that for each F' € F and x € A, F}(z) = F}(z). Let
y € F*(z). Then there is a z € F}(y) N F}(z). Hence y =" 2 = z which
implies that y € F}(z). Therefore, F}(x) = F}(x). Now if z € G € T(Q*),
then for some a F' € F, x € Fy(z) = Ff(z) C G. Hence (A, T(Q*)) is a
regular space. 0
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Theorem 4.7. On BL-algebra (A, T(Q*)) the follwing statements are equiv-
alent.

(1) (A, T(Q)) is a Ty space,
(i) mFe}'F:(l) = {1},
(1i1) (A, T(Q*)) is a Ty space,

() (A, T(Q*)) is a Ty space.

Proof. (i = ii) Let (A, T(Q*)) be a T space and 1 # x € A. By [[2], Propo-
sition(4.2)], there is a F' € F such that 1 ¢ F(x). Hence x ¢ F. This implies
that = & F(1). Therefore, x & (\por F7(1).

(it = 1) Let Nper FF(1) = {1} andl;«émeA Then for some a F' € F,
x ¢ F. Hence 1 ¢ F*( ). Now by [[2], Proposition(4.2)], (A, T(Q*)) is a Ty
space.

By Theorems 4.4 and 4.6, (A,T(Q*)) is a regular topological BL-algebra.
Hence by [[2], Theorem(4.7)], the statements (iz), (ii7) and (iv) are equiva-
lent. [

Example 4.8. In Ezample 3.4, For each a € [0,1) and x € [0,1]

Fola) = {/Ox/ Jr<a, F_1<>:{[:c,1/ r<a,

[0,1] ,x>a ~ v (a,1] , x> a.
x , T <a,
Fr(x)=<% a , T =a
(a,1] , x> a.

If T(Q) is the induced topology by Q and G € T(Q), then for each x € G,
there is a a € [0,1) such that F* (x) C G. Hence [0,2] C G or G =10,1]. If
G € T(Q) and G #[0,1], then for each x € G, [0,z] C G. If g = supG, then
G =10,g] or[0,g). Therefore T(Q) = {[0,z] : = € [0,1]}U{[0,z) : x € [0,1]}.
Also if T(Q*) is topology induced by Q* and G € T(Q*), then for each x € G,
there is a a € [0,1) such that F¥ (x) C G. Hence if G € T(Q"), then for some
a€l0,1),aeG or(al CG.

Now since for each a € [0,1), Fy, (1) = (a, 1], we get that (¢ ) Fa(l) =
{1}. Hence by Theorems 4.4, 4.6 and 4.7, (A, T(Q*)) is a T; regular topolog-
1cal BL-algebra, when 0 <1 < 2.

Theorem 4.9. Let (A,—,U) be a semitopological BL-algebra and Fy be an

open proper BL-filter in A. Then, there exists a nontrivial topology V on A
such that V CU and (A, V) is a topological BL-algebra.

Proof. Let F be a collection of BL-open filters in A which closed under finite
intersection and Fy € F. Let @ be the quasi-uniformity induced by F. Since
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Fy # A, by Lemma 3.1(vi), there is a x € A such that F,(z) # A. So T(Q")
is a nontrivial topology. We prove that T(Q*) C U. Let = € G € T(Q*).
Then, there is a F' € F such that F(z) C G. Sincex -z =1€ F € U,
thereisaU e U suchthat z €e U and U — 2 C Fandae —- U C F. If
z € U, then z — z,2 — z € F and so z € F}(z). Hence z € U C G.
Therefore, T'(Q*) is a nontrivial topology coaser than ¢ and so by Theorem
4.4, (A, T(Q*)) is a topological BL-algebra. O

Example 4.10. Let T be the BL-algebra in Ezample 2.5(ii), and U be a
topology on T with the base S = {(a,b] NZ : a,b € R}. We prove that
(Z,—,U) is a semitopological BL-algebra. Let x,y € I, and x — y € (a,b].
If © < y, then [0,z] and (ax,y] are two open neighborhoods of x and y,
respectively, such that (0,z] — y C (a,1] and z — (az,y] C (a,1]. If x >y
and y = 0, then (0,z] and {0} are two open neighborhoods of x and 0,
respectively, such that (0,z] — 0 C [0,b] and x — {0} C [0,0]. If x > y
and y # 0, then (y/b,y/a] and (ax,bx] are two open sets of x,y, respectively,
such that (y/b,y/a] — y C (a,b] and x — (ax,bzx] C (a,b]. It is easy to
prove that F = {(0,1], A} is a collection of BL-filters which is closed under
intersection. Now since for each x € A, Af(x) = A and (0,1]%(z) = (0, 1], we
conclude T(Q*) = {¢,(0,1], A}. By Theorem 4.9, (A, T(Q*)) is a topological
BL-algebra.

Recall a quasi-uniform space (X, Q) is totally-bounded if for each ¢ € @,
there exist sets Ay, ..., A, such that X = [J.Z] 4; and for each 1 < i < n,
A; x A; € q.( See [10])

Theorem 4.11. The following conditions on BL-algebra (A, T(Q*)) are equiv
alent.

(i) For each F € F, A/F is finite,

(17) (A, Q) is totally bounded,

(131) (A, T(Q*)) is compact.

Proof. (i = ii) Let for each F' € F, A/F be finite. We prove that (A, Q) is
totally bounded. For this it is enough to prove that, for each F' € F, there
are ay,...,a, € A, such that for each 1 < i < n, a;/F x a;/F C F,. Let
F € F. Since A/F is finite, there are ay, ..., a, € A, such that A = Ul" ,a;/F.
For each 1 <i <mn, a;/F x a;/F C F, because if (z,y) € a;/F X a;/F, then
x = a; = y and so (z,y) € F,. This proves that (A, Q) is totally bounded.
(i = i) Let (A,Q) be totally bounded and F' € F. There exist sets
Ay, ..., A, such that Uzj A; = Aand foreach 1 <i<n, A; x A; C F,. Let
1 <i<nanduxy € A Since (z,y) and (y,z) are in F,, we get x = y.
This proves that A; = a;/F, for some a; € A;.
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Now to prove that (A,T(Q*)) is compact let A = J,.; G;, where each Gj is
in T(Q*). Then there are Hy, ..., H, € {G; : i € I}, such that a; € H;, for
each 1 <1i < n. Now suppose = € A, then x € a;/F, for some 1 <i < n, and
so x € F}(a;) C H;. Therefore, A C |J;_, H;, which shows that (A, T(Q*)) is
compact.
(11t = i) Let F € F. Since {F}(z) : x € A} is an open cover of A in T(Q*),
then there are ai,...,a, € A, such that A C |J;_, F(a;). Now, it is easy to
see that A/F = {a/F,...,a,/F}.

]

In the end, we prove that the quasi-uniform Bl-algeba (Av, @) in Theorem
3.11, is Ty bicomplition quasi-uniform of BL-algebra (A, Q).

Theorem 4.12. If quasi-uniform BL-algebra (A, Q) is Ty, then
(1) (g Q) is the bicompletion of (A, Q).

(i1) (A, T(Q)) is a topological BL-algebra.

(1) A is a_sub BL-algebra of A.

(iv) (A, T(Q)) is a topological BL-algebra.

Proof. (i) By Theorem 3.11 and Lemma 2.18, (ﬁ, @) is an unique Ty-bicompletion
quasi-uniform of (A4,Q) and the mapping i : A — A by i(r) = {W C

A Wis a T(Q") — neighborhood of x} is a quasi-uniform embedded and
ClT(Q*)i<A) = A.

(7i) It is clear that

T(Q)={SCA:VGeSIFcFstF,(G) CS}

Let @ € {A,V,©} and @ € {A,Y,@}. We have to prove that for each
G, H €A, F,(G)eF,(H) C F.(GoH). Let G, € F,(G) and H, € F,(H). Then,
there are G € G, G; € G;, H € ‘H and H, € H; such that G x G; C F,
H x Hy C F,. By Proposition 3.7, S = {F}(GeH) : Ge G, He H,F € F}
and Sy = {F}(G1e Hy) : Gy € Gi,H, € Hi,F € F} are bases of GoH{
and GieH, respectively. We show that GeH; € E(Q:’H). For this, it is
enough to show that (G e H) x F} (G, e Hy) C F,. Let (y,y1) € F}(G e
H) x F(G, e Hy) C F*. Then, there are g € G, g1 € G, h € H and
hy € H; such that y =F g e h and y; = ¢,  hy. By (Byr), (Big) and
(Big), we have (g1 — g) ® (hy — h) < (g1 @ hy) — (g ® h). It follows from
(9,91) € GX Gy C F,and (h,hy) € Hx H; C F, that gy — g and hy — h are
in F'. Hence g;  hy — g h € I Therefore, y1 — y € I and so (y,y1) € Fl.

Thus we proved that F,(G)eF,(H) C F.(GoH).

(t7i) Let @ € {A\,V,®,—}, @ € {A,Y,®,—} and a,b € A. We shall prove
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that i(a)ei(b) = i(a @ b). By Proposition 3.7, the set S = {F;(W, ¢ W,) :
F e F, Wo,Wy are T(Q*) — neighborhoods of a,b} is a base for i(a)ei(b).
Since F}(aeb) C F;(W,eW,) and F;(aeb) € i(aeb), we deduce that filter
i(a)ei(b) is contained in the filter i(a ® b). Since they are minimal Q*-cauchy
filters, i(a)®i(b) = i(a ® b). Hence A is a sub-BL-algebra of A.

(iv) By Lemma 2.18, Q* = (Q)*. Hence

—~

T(Q*)={SCA:YG e S3IFecFstFr(G)CS}

We prove that (E,T(@V*)) is a topological BL-algebra. Let € {A,V,®, —}
and® € {A,Y,®,—} and let GoH € F*(GoH). We show that F*(G)eF*(H) C
ﬁ‘}(g??—[). Let G € FE‘(G) and H; € FE(H) Then, there are G € G,
G1 € G, H € H and H; € H; such that G x G; C Ff and H x H; C F.
By Proposition 3.7, F}(G, e Hy) € GioH; and F(G ¢ H) € GoH. We
have to prove that GeH; € ﬁj(g:H). For this, it is enough to show that
F}(GeH)x F(GyeH,) CFl.Let y € F})(GeH) and y, € F}(Gy e Hy).
Then y =" ge h and y; = g, @ hy for some g € G, gy € G1, h € H and
hy € H,. Since (g,q1),(h,hy) are in F}, we get g e h = g, e hy. Hence
(y.31) € F. O

5 Conclusions

The aim of this paper is to study In [2] and [4] we study (semi)topological
BL-algebras and metrizability on BL-algebras. We showed that continuity
the operations ® and — imply continuity A and V. Also, we found some
conditions under which a locally compact topological BL-algebra become
metrizable. But in there we can not answer some questions, for example:
(1) Is there a topology U on BL-algera A such that (A,U) be a (semi)topological
BL-algebra?
(17) Is there a topology U on a BL-algebra A such that (A,U) be a compact
connected topological BL-algebra?
(7ii) Is there a topological BL-algebra (A,U) such that Ty, 77 and T5 spaces
be equivalent?
() If (A,—,U) is a semitopological BL-algebra, is there a topology V
coarsere than U or finer than U such that (A,V) be a (semi)topological
BL-algebra?

Now in this paper, we answered to some above questions and got some
interesting results as mentioned in abstract.
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