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In this article, we study some properties of multiplication Mp-
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1 Introduction

The notion of a I'-ring was first introduced by Nobusawa [17]. Barnes
[5] weakened slightly the conditions in the definition of I'-ring in the sense
of Nobusawa. After the I'-ring was defined by Barnes and Nobusawa, a
lot of researchers studied on the I'-ring. Barnes [5], Kyuno [15] and Luh
[16] studied the structure of I'-rings and obtained various generalizations
analogous of corresponding parts in ring theory. Recently, Dumitru, Ersoy,
Hoque, Oztiirk, Paul, Selvaraj, have studied on several aspects in gamma-
rings (see [10, 8, 12, 14, 18, 19, 20]).

McCasland and Smith [14] showed that any Noetherian module M con-
tains only finitely many minimal prime submodules. D. D. Anderson [2]
generalized the well-known counterpart of this result for commutative rings,
i.e., he abandoned the Noetherianness and showed that if every prime ideal
minimal over an ideal I is finitely generated, then R contains only finitely
many prime ideals minimal over /. Behboodi and Koohy [7] showed that this
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result of Anderson was true for any associative ring (not necessarily commu-
tative) and also, they extended it to multiplication modules, i.e., if M is a
multiplication module such that every prime submodule minimal over a sub-
module K is finitely generated, then M contains only finitely many prime
submodules minimal over K.

In this paper, we study some properties of multiplication left Mp-modules
and their prime Mp-submodules. This paper is organized as follows: In
Section 2, we review some basic notions and properties of I'-rings. In Section
3, the concept of a moltiplication Mp-module is introduced and its basic
properties are discussed. Also, we show that If L is a left operator ring of
the I'-ring M and A is a multiplication unitary left Mp-module, then A is a
multiplication left L-module. In Section 4, we proved that in fact this result
was true for I'-rings and Mp-modules.

2 Preliminaries

In this section we recall certain definitions needed for our purpose.
Recall that for additive abelian groups M and I' we say that M is a I'-ring
if there exists a mapping

o MxI'x M — M
(m,y,m') — mym’

such that for every a,b,c € M and «, 8 € T', the following hold:
1. (a+b)ac = aac+bac, a(a+F)c = aac+afc and aa(b+c) = aab+aac;
2. (aab)Be = aa(bpe).

Note that any ring R, can be regarded as an R-ring. A I'-ring M is called
commutative, if for any x,y € M and v € T', we have xyy = yyz. M is called
a ['-ring with unit, if there exists elements 1 € M and ~y € I" such that for
any m € M, 1lygym = m = m~yyl.

If A and B are subsets of a I'-ring M and © C I', we denote AOB,
the subset of M consisting of all finite sums of the form ) a;v;b;, where
(a;,7i,b;) € A x © x B. For singleton subsets we abbreviate this notation
for example, {a}OB = a©B.

A subset I of a I'-ring M is said to be a right ideal of R if I is an additive
subgroup of M and IT'M C I. A left ideal of M is defined in a similar way.
If I is both a right and left ideal, we say that A is an ideal of M.

For each subset S of a I'-ring M, the smallest right ideal containing S
is called the right ideal generated by S and is denoted by |S). Similarly
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we define (S| and (S), the left and two-sided (respectively) ideals generated
by S. For each a of a I'-ring M, the smallest right ideal containing a is
called the principal right ideal generated by @ and is denoted by |a). We
similarly define (a| and (a), the principal left and two-sided (respectively)
ideals generated by a. We have |a) = Za + aI'M, (a| = Za + MTa, and
(a) = Za+ al'M + MTa + MTal'M, where Za = {na : nis an integer}.

Let I be an ideal of I'-ring M. If for each a + I, b+ I in the factor group
M/I, and each v € ', we define (a + I)y(b+ I) = ayb+ I, then M/I is a
[-ring which we shall call the difference I'-ring of M with respect to I.

Let M be a I'-ring and F' the free abelian group generated by I' x M.
Then A = {>,ni(vi,z;) € F:a € M = ), nay;x; = 0} is a subgroup of
F. Let R = F/A, the factor group, and denote the coset (v, x)+ A by [y, z].
It can be verified easily that o, z] + [3,2] = [o + 5, 2] and [a, 2] + [0, y] =
[,z + y] for all a, f € T" and x, y € M. We define a multiplication in
R by > lai, @] Y5085, y51 = X2, lai, xiByy;]. Then R forms a ring. If we
define a composition on M x R into M by a ), [a;, ;] = >, acuz; for a € M,
> ilei,z;] € R, then M is a right R-module, and we call R the right operator
ring of the I' -ring M. Similarly, we may construct a left operator ring L of
M so that M is a left L-module. Clearly I is a right (left) ideal of M if and
only if I is a right R-module (left L- module) of M. Also if A is a right (left)
ideal of R(L), then MA(AM) is an ideal of M. For subsets N C M, & C T,
we denote by [®, N] the set of all finite sums ) .[v;, ;] in R, where v; € @,
x; € N, and we denote by [(®, N)| the set of all elements [p, x] in R, where
¢ € &, x € N. Thus, in particular, R = [I"; M].

An ideal P of M is prime if, for any ideals U and V of M, UT'U C P
implies U € P or V C P. A subset S of M is an m-system in M if S = ()
or if a,b € S implies < a > T < b > NS # (. The prime radical P(A) is the
set of x in M such that every m-system containing x meets A. The prime
radical of the zero ideal in a I'-ring M is called the prime radical of the I'-ring
M which we denote by P(M).

An ideal @@ of M is semi-prime if, for any ideals U of M, UTU C @
implies U C Q.

Proposition 2.1. [15] If Q is an ideal in a commutative I'-ring with unit
M, then P(Q) is the smallest semi-prime ideal in M which contains @, i.e.

P@Q =[P
where P runs over all the semi-prime ideals of M such that ) C P.

Let P be a proper ideal in a commutative ['-ring with unit M. It is clear
that the following conditions are equivallent.
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1. P is semi-prime.
2. For any a € M, if aypa € P, then a € P.
3. For any a € M and n € N, if (ayy)"a € P, then a € P.

Proposition 2.2. [13] Let Q be an ideal in a commutative I'-ring with unit
M and A be the set of all x € M such that (z7y)"x € Q for somen € NU{0},
where (x7y9)°x = z. Then A = P(Q).

3 Mpr-module

Let M be a I'-ring. A left Mp-module is an additive abelian group A
together with a mapping - : M x I' x A — A ( the image of (m,~,a)
being denoted by m~ya), such that for all a,a,a0 € A, v,71,72 € T', and
m,my, mg € M the following hold:

L. my(a1 + az) = myay + myas;
2. (my1 4+ mo)ya = myym + moya;

3. miyi(mayea) = (Mm1y1ma)yea.

A right Mp-module is defined in analogous manner. If [ is a left ideal of a
[-ring M, then I is a left Mp-module with rva (r € M,y € I';a € I) being
the ordinary product in M. In particular, {0} and M are Mp-modules.

Let A be a left Mpr-module and B a nonempty subset of A. B is a Mp-
submodule of A, which we denote by B < A, provided that B is an additive
subgroup of A and m~b € B, for all (m,~,b) € M x ' x B.

Definition 3.1. Let A be a left Mr-module and X a subset of A. Let { Ax}xea
be the family of all Mp-submodule of A which contain X. Then [,., Ax is
called the Mr-submodule of A generated by the set X and denoted (X|.

IfBC A NCMand® CTI', wedenote NOB, the subset of A consisting
of all finite sums of the form > n;y;b; where (n;,~v;,b;) € N x © x B. For
singleton subsets we abbreviate this notation for example, {n}©B = nO©B.

If X = {ai,...,a,}, we write (ay,...,a,| in place of (X|. If A =
(a1,...,ay|, (a; € A), A is said to be finitely generated. If a € A, the
Mp-submodule (a| of A is called the cyclic Mp-submodule generated by
a. We have (X| = ZX + MTX, where ZS = {3V n; - ni € Z,2; €
S and kis an integer}.

Finally, if {Ba}rea is a family of Mp-submodules of A, then the Mp-
submodule generated by X = J,., B, is called the sum of the Mr-modules
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B, and usually denoted (X| = ",_, By. If the index set A is finite, the sum
of By, ..., By is denoted By + By + ... + By. It is clear that if {B)}ea is
a family of Mp-submodules of A, then ), , B\ consists of all finite sums
b>\1 + ...+ b)\k with b)\j € B/\l'

Proposition 3.1. Let M be a T'-ring and {I\} ea be a family of left ideals
of M. If A is a left My-module, then

() L)FA=> (I.TA).

AEA AEA

Proof. Let x € (3 ,c5 Ix)T'A. Then there exists ay,...,a; € Aand vy, ...,y €
I'and @1,...,25 € ) cp Ly such that x = Zle Tyaq, it follows that for
1<t<k x = ft:l i, with iy, € I),,. Hence z = Zle Zf’;l i Vel €
Yonea(hI'A). Therefore (3, .y I)IA C >0, A(I\T'A).  Also, Since for
every A € A, LT'A C (3 ,cpo M)A, we conclude that ), ., ([h,['A) C

(> oaea DITA. Hence (D, cp I)TA =3, A (ITA). O

Definition 3.2. If A is a left Mr-module and S is the set of all Mr-submodules
B of A such that B # A, then S is partially ordered by set-theoretic inclu-

sion. B is a mazrimal Mrp-submodule if and only if B is a mazximal element

in the partially ordered set S.

Proposition 3.2. If A is a non-zero finitely generated left Mr-module, then
the following statements are hold.

1. If K is a proper Mr-submodule of A, then there exists a maximal M-
submodule of A such that contain K.

2. A has a maximal Mr-submodule.
Proof. (1) Let A= (ay,...,a,| and
S={L:K CL and L is a proper Mp-submodule of A}.

S is partially ordered by inclusion and note that S # 0, since K € S. If
{Lx}sen is a chain in S, then L = (J,., Ly is a Mp-submodule of A. We
show that L # A. If L = A, then for every 1 < ¢ < n, there exists \; € A
such that a; € Ly,. Since {Ly}xea is a chain in S, we conclude that there
exists 1 < j < n such that ay,...,a, € Ly;. Therefore A = Ly, € § which
contradicts the fact that A ¢ S. It follows easily that L is an upper bound
{L }xea in S. By Zorn’s Lemma there exists a proper Mp-submodule B of
A that is maximal in S. It is a clear that B a maximal Mp-submodule of A
such that contain K.

(2) By part (1), it suffices we put K = (0]. O
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Definition 3.3. A left Mr-module A is unitary if there exists an element, say
1 in M and an element vy € ', such that, 1y9a = a and 1ygm = m = mypl
for every (a,m) € A x M.

Corolary 3.1. If M is a unitary left (right) Mr-module, then M has a left
(right) mazimal ideal.

Proof. 1t is evident by Proposition 3.2. O

Let A be a left Mp-module. let X C A and let B < A. Then the set
(B:X):={me M :mI'X C B} is a left ideal of M. In particular, if
a € A, then (0 : a) := ((0) : {a}) is called the left annihilator of a and
(0 : A) := ((0) : A) is an ideal of M called the annihilating ideal of A.
Furthermore A is said to be faithful if and only if (0 : A) = (0).

Definition 3.4. A left Mr-module A is called a multiplication left Mr-module
if each Mr-submodule of A is of the form IT' A, where I is an ideal of M.

Proposition 3.3. Let B be a Mr-submodule of multiplication left Mr-module
A. Then B = (B : A)T'A.

Proof. 1t is a clear that (B : A)I’A C B. Since A is a multiplication left Mp-
module, we conclude that there exists ideal I of I'-ring M such that B = IT'A,
it follows that B = ITA C (B : A)T'A C B. Therefore B= (B : A)TA. O

Proposition 3.4. Let A be a left Mr-module. A is multiplication if and only
if for every a € A, there exists ideal I in M such that (a| = IT A.

Proof. In view of Definition 3.4, it is enough to show that if for every a € A,
there exists ideal I in M such that (a| = IT' A, then A is multiplication. Let
B be an Mp-submodule of A. Then for every b € B, there exists ideal [, in
M such that (b| = I,['A. By Proposition 3.1, (3,5 Iy)[A =", z(L,T'A) =
Y peplb] = B, it follows that A is multiplication. O

Proposition 3.5. Let M be a I'-ring which has a unique mazimal ideal ()
and A be a unitary multiplication left Mr-module. If every ideal I in M is
contained in Q, then for every a € A\ QT'A, (a] = A.

Proof. Suppose that a € A\ QT'A. Since A is multiplication left Mp-module,
we conclude that there exists ideal I in M such that (a| = IT'A. Clearly
I Z @ and hence I = M, which implies (a| = MT'A = A. O

Corolary 3.2. Let I'-ring M be a unitary left Mr-module which has a unique
maximal ideal Q) and A be a unitary multiplication left Mr-module. Then for

every a € A\ QT'A, (a| = A.
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Proof. By Propositions 3.2 and 3.5, it is evident. [

Proposition 3.6. Let L be a left operator ring of the I'-ring M and let A
be a unitary left Mr-module. If we define a composition on L x A into A
by O [wi, au])a = >, micya for a € A, Y [z, 4] € L, then A is a left L-
module. Also, for every B C A, B is a Mr-submodule of A if and only if B
is a L-submodule of A.

Proof. Suppose that 1 € M and 7o € I such that for every (a,m) € A x M,
Iya = a and 1yom = m = myl. Let S [zi, ] = > i-1lvs B € L and
a =b € A. By definition of left operator ring of the I'-ring M, we conclude
that S0 w1 = > 5—1 Y3341, it follows that

(2521 [xi, ai])a = Zﬁzl T;05a

>t (wii(1y0a))
>ty (wicil)yoa
(Zle 552'041'1)’70(1
(32521 %38 1)0b
22:1 yjﬂjb

= (O 5=alvs BiDb

Hence composition on L x A into A is a well-defined. Let r = >_'_, [z;, a]
and s = > " [y;, Bj]. Then for every a € A,

(rs)Ja = (Zi,j[xiaiyj’ﬁj])a

> (@icuy;) Ba

> vici(y;0;a)

Yo miei(Yo5_ yiBia)

= (Cialr al) (X5 vi8a)
r(X25=11ys, Bi])a)

= r(sa)

The remainder of the proof is now easy. ]

Proposition 3.7. Let L be a left operator ring of the I'-ring M. If A is
a multiplication unitary left Mr-module, then A is a multiplication left L-
module.

Proof. Let B be a L-submodule of A. By Proposition 3.6, B is a Mrp-
submodule of A and there exists ideal I of I'-ring M such that B = IT'A. It
well known that [I', I] is an ideal of L. We show that B = [I,T']A. Suppose
that ay,...,a; € A, and for every 1 < i <t, Z?i:l[a:ij, ;] € [I,T]. Then we
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have 22:1(Z§;1[$ijaaij])ai =", Z§;1 7i,05,a;) € B and it follows that
[I,T']A C B. Also, if b € B, then there exists z,...,2; € I,y1,...,% € T,
and aq,...,a; € A such that b = Zle Tivia; = Zzzl[mi,’yi]ai € [/,TA and

we conclude that B = [I,T']A. O

Proposition 3.8. Let A be a unitary cyclic left Myr-module. If L is a left
operator ring of the I'-ring M and for every l,I' € L, there exists " € L such
that 1! =1"1, then A is a multiplication left L-module.

Proof. Let B be a L-submodule of A and I = {l € L : [A C B}, then
IA C B. Since A is a unitary cyclic left Mp-module, we conclude that
there exists a € A such that A = MT'a. Let b € B. Hence there exists
mi,...,m; € M and 71,...,7 € T such that b = > myya. In view
of operations of addition and multiplication in left L-module A, we have
b= [mi,yila = (O [mi,v])a. We put I = >'_ [my,~] and it follows
that b = la. If ' € A, then a similar argument shows that there exists I’ € L
such that a’ = ['a. By hypothesis, there exists [” € L such that [I' = ["I.
Therefore la’ = ll'a = I"la = I"b € B and it follows that [ € I, this is
b=1la € IA. Hence B = IA and the proof is now complete. O

Definition 3.5. Let A be a unitary left Mr-module and B be a Mr-submodule
in A and P € Max(M). A is called P-cyclic if there exist p € P and b € B
such that (1—p)yB C MTb and also, it is clear that (1—p)yB = (1—p)I'B.
Define TpB as the set of all b € B such that (1 —p)yob = 0, for some p € P.

Lemma 3.1. Let A be a unitary left Mr-module and B be a Mry-submodule
in A and P € Max(M). If M is a commutative I'-ring, then TpB is a
Mr-submodule in A.

Proof. Suppose by, by € TpB. So there exist pi, ps € P such that by = p1yb;
and by = payoba. Let pg = p1+p2—p17yope. It is clear that (1—pg)yo(by—b2) =
0. Hence by — by € TpB. Let x € MI'(TpB). So x = ., myy;b;, where
neN, b €TpB, v €l andm; € M (1 <i<mn). Suppose i € {1,---,n}.
Since b; € TpN, there exists p; € P such that (1 — p;)yom;v;b; = 0. Hence
mfyzbl € TPN Thus x € TPB Hence MFTPB = TPB ]

Proposition 3.9. Let M be a commutative I'-ring and let A be a unitary
left Myr-module. A is multiplication Mr-module if and only if for any ideal
P e Max(M), either A=TpA or A is P-cyclic.

Proof. Let A be a multiplication ideal and P € Max(M). First suppose that
A = PT'A. Since A is multiplication ideal, we conclude that for every a € A,
there exists an ideal I in M such that < a >= IT'A. Hence < a >= PI' <
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a >. So there exists p € P such that (1 — p)ya = 0, it follows that a € TpB
and then A = TpA.

Now suppose that A # PT'A and x € A\ PT'A. Then there exists an ideal
I in M such that < x >= IT'A and P + I = M. Obviously, if we assume
that p € P, then (1 — p)yA C MT'z. Therefore A is P-cyclic.

Conversely, suppose that B is a Mp-submodule in A. Define I as the set
of all m € M, where myya € B for any a € A. Clearly [ is an ideal in M and
ITA C B. Let b € B. Define K as the set of all m € M, where m~yb € IT'A.
We claim K = M. Assume that K C M. Hence by Zorns Lemma there
exists @) € Max(M) such that K C @ C M. By hypothesis A =Ty A or Ais
Q-cyclic. If A =T A, then there exists s € @) such that (1—s)v,b = 0. Hence
(1—s) € K C Q, it follows that 1 € @, a contradiction. If A is @-cyclic, then
there exist t € @ and ¢ € A such that (1—1t)yA C MTI'c =< ¢ >. Define L as
the set of all m € M such that mvyyc € (1 —1t)yB. Clearly L is an ideal in M
and Lvyoc C (1 —t)yB C< ¢ >. Hence (1 —t)yB C Lyyc. So (1 —t)yB =
Lpc, it follows that (1 —t)y0LyA C (1 —t)y%B C B and (1 —t)yL C I.
Therefore (1 — t)yo(1 — t)y0B C IT'A. Hence (1 —t)y(1 —t) € K C Q.
Thus 1 —t € @, it follows that 1 € @), a contradiction. Hence K = M and
b€ IT'A. Thus A is a multiplication ideal. O

Let A be a left Mp-module. A is said to have the intersection property
provided that for every non-empty collection of ideals {I)} e of M,

(VLA = ([ I)TA.

AEA AEA

If left Mr-module of A has intersection property, then for every non-empty
collection of ideals {I}ren of M,

() IATA = ([)(Ix + Ann(A)))T A,

AEA AEA

Proposition 3.10. Let M be a commutative I'-ring and let A be a unitary
left Mr-module.

1. If A has intersection property and for any Mrp-submodule N in A any
ideal I in M which N C IT'A, there exists ideal J in M such that J C 1
and N C JUA, then A is multiplication left Mr-module.

2. If A is faithful left multiplication Mr-module, then A has intersection
property and for any Mrp-submodule N in A any ideal I in M which
N C IT'A, there exists ideal J in M such that J C I and N C JI'A.
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Proof. (1) Let N be a Mp-submodule in A and
S={I: Iisanideal of M and N C IT'A}.

Clearly M € S. Since A has intersection property, we conclude from Zorns
Lemma that S has a minimal member I (say). Since N C [T'A and [ is
minimal element of S, we can conclude that N = IT'A. It follows that A is
a multiplication ideal.

(2) Let {Ix}aea be a nonempty collection of ideal in M and I = (., I».
Clearly ITA C (ea(NT'A). Let 2 € (),cp (IAI'A) and we put L = {m € M :
myox € ITA}. We claim L = M. Assume that L C M. By Proposition 3.2,
there exists P € Max(M) such that L C P. It is clear that x ¢ TpA. Hence
TpA # A and by Proposition 3.9, A is P-cyclic. Hence there exist a € A and
p € P such that (1 —p)yA C MT'a =< a >. Thus (1 —p)yz € [,cx(Irv00)
and so for any A € A, (1 — p)yoz € Iyya. It is clear that (1 — p)y(1 —p) €
L C P, in view of the fact that A is faithful. Hence 1 € P, a contradiction.
Therefore L = M, it follows that x+ = 1yyx € IT'A and A has intersection
property. Now suppose N be a Mp-submodule in A and I be an ideal in M
which N C IT'A. Since A is multiplication Mp-module, there exists an ideal
J in M such that N = JI'A. Let K = I N J. Clearly, K C I and since A
has intersection property, we conclude that N C KT'A. The proof is now
complete. O

Proposition 3.11. Let A be a faithful multiplication Myr-module and I,J be
two ideals in M. ITA C JT A if and only if either I C J or A= [J : I|TA.

Proof. Let I € J. Note that [J : I] = (,cx[J :< i >] where X is the set of
all elements ¢ € I with ¢ € J. By Proposition 3.10,

[J: ITA = (\([J :< i >]TA)

i€X

If for every i € X, A = [J :< i >|['A, then A = [J : I|l'A, which finishes
the proof. Let i € X and Q = [J :< i >]. It is clear that Q # M. Let Q
denote the collection of all semi-prime ideals P in M containing (). Suppose
that there exists P € 2 such that A # PI'A and z € A\ PI'A. Since A is a
multiplication Mp-module, we conclude that there exists ideal D in M such
that < © >= DI'A and D € P. Thus cI'A C< = > for some ¢ € D\ P.
Now we have cl'al’'A C JI' < x >. It is easily to show that for any v € T,
there exists v; € I' and b € J such that (cya — 1y1b)vz = 0, it follows
that (cya — 1y0)['cI’A = 0. Hence cyec € [J :< i >] = Q. Since P is
a semi-prime ideal containing (), we conclude that ¢ € P, a contradiction.
Therefore for every P € 2, A = PI'A and by Propositions 2.1 and 3.10,
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A= P(Q)TA. Let j € A. 1t is easily to show that < j >= P(Q)[' < j >.
Then there exists s € P(Q) such that for every n € N, j = (s7)"j. By
Proposition 2.2, there exists t € N U {0} such that (syy)'s € @, it follows
that j = (s70)'s70j € QT'A, i.e., A C QT'A. Hence QT'A = A. The converse
is evident. [

4 Prime Mpr-submodule

Through this section M and A will denote a commutative I'-ring with
unit and an unitary left Mpr-module, respectively.

Definition 4.1. A prime ideal P in M is called a minimal prime ideal of
the ideal I if I C P and there is no prime ideal P' such that I C P' C P.
Let Min(I) denote the set of minimal prime ideals of I in I'-ring M, and
every element of Min((0)) is called minimal prime ideal.

Proposition 4.1. If an ideal I of U'-ring M is contained in a prime ideal P
of M, then P contains a minimal prime ideal of I.

Proof. Let
A={Q : Q is prime ideal of M and I C Q C P}.

By Zorn’s Lemma, there is a prime ideal ) of R which is minimal member
with respect to inclusion in A. Therefore @ € Min(I) and I CQ C P. [

Lemma 4.1. Let I" be a finitely generated group. If I and J are finitely
generated ideals of M, then IT'J is finitely generated ideal of M.

Proof. Let I = (ay,...,a,), J = (by,...,by), and T" = (y1,...,7%). It is
clear that ITJ = (a;yb; : 1 <i<mn,1 <t <k 1<j<m). O]

Proposition 4.2. Let I" be a finitely generated group. If I is a proper ideal
of M and each minimal prime ideal of I is finitely generated, then Min(I)
s finite set.

Proof. Consider the set
S ={PTI'P...P;;neNand P, € Min(I),for each 1 <i <n}
and set

A ={K; K is an ideal of M and Q € K, for each Q € S}
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which is the non-empty set, since I € A. (A, C) is the partial ordered set.
Suppose { K} e is the chain of A in which A # () and set K = [J,., K. It
is clear that K is an ideal of M. Also, if there exits () € S such that Q) C K,
then by Lemma 4.1, Q = P,I'P;...P, is finitely generated ideal of M, i.e.,
Q = (x1,...,2,). But Q C K implies that x1,zs,...,z, € K. Thus there
exists A € A such that zy,29,...,2, € K, and so Q C K, contradiction.
Hence, for each Q € S, Q € K and K € A is the upper band of this chain.

By Zorhn’s lemma A has maximal element such as (). Now if a ¢ @) and
b Qfora,be M, then @ C (QU{a}) and @ C (QU{b}). Maximality of Q)
implies that (Q U {a}), (QU {b}) & A. So there exists @; and @3 in S such
that @1 C (QU{a}) and Q2 C (Q U {b}). It is clear that Q1 I'Q2 C @ which
is contradiction, since Q1I'Qs € S. Therefore (a)I'(b) Z ) and @ is a prime
ideal of M contained I. By Proposition 4.1, there exists a minimal prime
ideal P C ). But P € &, contradictory with ) € A. Above contradicts
show that there exists Q' = Pi\I'...P,, € S such that ' C I.

Now for each P € Min(I) we have Q' C I C P and PI'P,...P,, C P. It
is clear that P; C P for some 1 < j < m. Thus P; = P, since P is minimal.
Hence Min(I) = { Py, P, ..., P, } is finite. O

Proposition 4.3. For proper Mr-submodule B of A, the following state-
ments equivalent:

1. For every Mr-submodule C of A, if B C C, then (B : A) = (B :C).
2. For every (m,a) € M x A, if ml'a C B, then a € B orm € (B : A).

Proof. (1) = (2) Let (m,a) € M x A such that mI'a C B and a ¢ B. It
is clear that B C B + MT'a. Since mI'(B + MTa) C mI'B + mI'(MT'a) =
mI'B + MT(ml'a) C B, we conclude from statement (1) that m € (B :
B+ MTa) = (B : A) and the proof is now complete.

(2) = (1) Let C be a Mp-submodule of A such that B C C. It is clear
that (B : A) C (B : C). Now, suppose that m € (B : C). Since B C C,
we infer that there exists a € C'\ B such that mI'a C B. By statement (2),
m € (B : A) and the proof is now complete.

O]

Definition 4.2. A proper Mr-submodule B of A is said to be prime if mI'a C
B for (m,a) € M x A implies that either a € B orm € (B : A).

Proposition 4.4. If B is a prime Mr-submodule of A, then (B : A) is a
prime ideal of I'-ring M.
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Proof. Let x,y € M such that (x)I'(y) C (B : A) and = € (B : A). Then
there exists v € I' and a € A such that zya ¢ B, and also, yI'(xya) =
(yI'z)ya = (2T'y)ya € B. Since B is a prime Mp-submodule of A and
zya ¢ B, we conclude that yI'A C B, i. e., y € (B : A). The proof is now
complete. O

Proposition 4.5. Let A be a multiplication left Mr-module, and B, By, ...,
By be Mr-submodules of A. If B is a prime Mr-submodule of A, then the

following statements are equivalent.
1. B; € B for some 1 <j <k.
2. N, B: C B.

Proof. (1) = (2) It is clear.

(2) = (1) We have B; = I,I'A for some ideals I;, (1 <1i < k) of I'-ring M.
Then (N, IHTA C N (LTA) =N, B: € Bandso ,_, I, C (B : A).
Since M is a commutative I'-ring, we infer that for every permutations 6 of
{1, 2, ey k‘}, IIFIQ cee ]k = ]9(1)Flg(2) cee Ig(k), it follows that ]1FIQ cee Ik g
Ni, I; € (B : A). Since by Proposition 4.4, (B : A) is prime ideal of T-ring
M, we conclude that I; C (B : A) for some 1 < j < k. Therefore, by
Proposition 3.3, B; = I,T’TA C B for some 1 < j <k. O

Proposition 4.6. If A is a multiplication left Mr-module, then for Mp-
submodule B of A, the following statements are equivalent.

1. B is prime Mr-submodule of A.
2. (B : A) is prime ideal of I'-ring M.

3. There exists prime ideal P of I'-ring M such that B = PT'A and for
every ideal I of M, IT'A C B implies that I C P.

Proof. (1) = (2) By Proposition 4.4, It is evident.
(2) = (3) We put

M ={P:B=PI'Aand P is an ideal of I'-ring M }

Since A is multiplication left Mp-module, we conclude that (M, C) is a non-
empty partial order set. Let {Py\}rea € M be a chain. By Proposition 3.10,
Maea Pr € M is an upper bound of {P\}iea. By Zorn’s Lemma M has a
maximal element. Thus, we can pick a P to be maximal element of M. Let
z,y € M and (z)['(y) C P. Hence ({(x)I'(y))A C PTA = B and we infer
that (x)I'(y) C (B : A). Now, by statement (2), x € (B: A) ory € (B : A).
Since A is multiplication left Mp-module, we conclude from the Proposition
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3.3 that B = (B : A)T'A, it follows that (B : A) € M. On the other hand,
clearly P C (B : A) andso P = (B : A),ie.,, z € Pory € P, Thus P is
prime ideal of I'-ring M.

(3) = (1) Let prime ideal P of I'-ring M such that B = PT'A and for
every ideal I of I'-ring M, ITA C B implies that I C P. It is clear that
P = (B:A). Lt m e M and a € A such that mI'a C B. Since A is a
multiplication S-act, we conclude that there exists an ideal I of I'-ring M
such that (a) = IT'A, it follows that (mI'[)'’A = mI'(ITA) = mI'(MTa) =
(mIM)l'a = (MT'm)l'a = MT'(mI'a) C B. Therefore mI'I C (B : A) = P
and it is easy to see directly that (m)['l C (B : A). Then mI’A C B or
a € ITA C B and the proof is now complete. O

Lemma 4.2. Let A be a finitely generated left Mr-module. If I is an ideal
of M such that A = IT'A, then there exists i € I such that (1 — i)y A = 0.

Proof. If A=< ay,...,a, >, then forevery 1 < i < n, there exists y;1,...,¥yin €
I such that a; = Z?zl YijYoa;, it follows that

—Yi1Yoa1 — -+ — Yi(i—1)YoQi—1 T (1 —=yii)yoa; — Yi(i+1)Y0it1 =+ — YinYoln = 0.
If
L—yn —v2 -+ —Yin
B=| : S N
—Yn1 —Yn2 - 11— Ynn

then there exists y € I such that detr(B) = (1 + y), where

detF(B) = Z Sign(O')bl’Um70b2’0(2)’70 T Wobn’a(n)

and ¢ runs over all the permutation on {1,2,...,n} (see [13]). Since for
every 1 < i < n, detr(B)ya; = 0, we conclude that (14 y)y9A = 0 and by
setting ¢ = —y the proof will be completed. O

Proposition 4.7. Let A be a finitely generated faitfull multiplication left My -
module. For proper ideal of P in M, the following statements are equivalent.

1. P is a prime ideal of M.
2. PT'A is a prime Mrp-submodule of A.

Proof. (1) = (2) Let I be an ideal of M such that IT'A C PT'A. Then by
Proposition 3.11, either / C P or A= [P : [|['A. If A= [P : I|l'A, then by
Lemma 4.2, there exists ¢ € [P : I] such that (1 —i)yA = 0. Since A is a
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faitfull Mpr-module, we conclude that ¢ = 1 and I C P. Hence by Proposition
4.6, PI'A is a prime Mp-submodule of A.

(2) = (1) Since A is a faitfull Mpr-module and [PTA : ATA C PTA,
we conclude from the Proposition 3.11 and Lemma 4.2 that [PT'A: A] C P.
Hence [PT'A : A] = P and by Proposition 4.6, P is a prime ideal of M. [

Proposition 4.8. Let A be a multiplication left Myr-module. Then

1. If M satisfies ACC (DCC) on prime ideals, then A satisfies ACC
(DCC) on prime Mr-submodules.

2. If A is faitfull Mpr-module and (B : A) is a minimal prime ideal in M,
then B is a minimal prime Mrp-submodule of A.

Proof. (1) Assume that By C By C ... is a chain of prime Mp-submodule of
A. By Proposition 4.4, (B; : A) C (By : A) C ... is a chain of prime ideal
of I'-ring M. By hypothesis there exists k& € N such that for every ¢ > k,
(Bi: A) = (By : A). It follows from Proposition 3.3 that B; = (B; : A)TA =
(B : A)'A = By,. Thus A satisfies ACC on prime Mp-submodules.

(2) assume that B’ is a prime Mp-submodule of A such that B’ C B.
By Proposition 4.6, (B’ : A) C (B : A) is a chain of prime ideal of I'-ring
M. By hypothesis (B" : A) = (B : A), it follows from Proposition 3.3
that B' = (B’ : A)TA = (B : A)TA = B. Thus B is a minimal prime
Mrp-submodule of A. H

Proposition 4.9. Let A be a finitely generated faitfull multiplication left
Mr-module. Then

1. If A satisfies ACC (DCC') on prime Mryp-submodules, then T'-ring M
satisfies ACC' (DCC') on prime ideals.

2. If B is a minimal prime Mp-submodule of A, then (B : A) is a minimal
prime ideal of I'-ring M.

Proof. (1) Assume that P, C P, C ... is a chain of prime ideals of I'-ring M.
By Proposition 4.7, PLT'A C P,I'A C ... is a chain of prime Mp-submodule of
A. By hypothesis there exists k € N such that for every i > k, P,I'A = P,I'A.
Since A is a finitely generated faitfull multiplication Mp-module, we conclude
from the Proposition 3.11 and Lemma 4.2 that P, = P;.

(2) By Proposition 4.6, (B : A) is a prime ideal of [-ring M. Assume that
P is a prime ideal of I'-ring M such that P C (B : A). Hence by Proposition
3.3, PTAC (B: A)I'A = B. Since by Proposition 4.7, PTI'A is a prime M-
submodule of A, we conclude from our hypothesis that PT'A = (B : A)T'A.
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Since A is a finitely generated faitfull multiplication Mp-module, we conclude
from the Proposition 3.11 and Lemma 4.2 that P = (B : A). The proof is
now complete. []

Proposition 4.10. Let I" be a finitely generated group. Let A be a finitely
generated faitfull multiplication left Mr-module.

1. If every prime ideal of I'-ring M is finitely generated, then A contains
only a finitely many minimal prime Mr-submodule.

2. If every minimal prime Mrp-submodule of A is finitely generated, then
['-ring M contains only a finite number of minimal prime ideal.

Proof. (1) Assume that { By }aca is the family of minimal prime Mp-submodules
of A. Set Iy = (By : A) for A\ € A. By Proposition 4.9, each I, is a min-
imal prime ideal of I'-ring M. On the other hand, by Proposition 4.2, M
contains only a finite number of minimal prime ideal as {I, I3, ... I,}. Now
suppose that A € A. So I, = I;, for some 1 < i < n and by Proposition
3.3, By=I1I'A=LLT'A. Thus {I,T'A, IL,T'A,..., I, I'A} is the finite family of
minimal prime Mp-submodule of A.

(2) Suppose that I and J are two distinct minimal prime ideal of I'-ring
M. By Proposition 3.11 and Lemma 4.2, A # IT'A # JI'A and also, by
Proposition 4.7, IT A and JI'A are prime Mp-submodules of A. Assume that
By and B, are two prime Mp-submodules of A such that By C IT'A and
B, C JT'A. By Proposition 3.3, By = (By : A)T'A and By = (By : A)TA. By
Proposition 3.11 and Lemma 4.2, (B : A) C [ and (By : A) C J. Since [
and J are two distinct minimal prime ideal of I'-ring M, we conclude from
the Proposition 4.4 that (B; : A) = I and (B : A) = J. This says that IT'A
and JI'A are two distinct minimal prime Mp-submodules of A. Now if I'-ring
M contains infinite many minimal prime ideals, then A must have infinitely
many minimal prime Mp-submodules which is contradiction. O]
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