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Abstract  

Hyperstructure theory can overcome restrictions which ordinary algebraic 

structures have. A hyperproduct on non-square ordinary matrices can be 

defined by using the so called helix-hyperoperations. We study the helix-

hyperstructures on the representations using ordinary fields. The related 

theory can be faced by defining the hyperproduct on the set of non square 

matrices. The main tools of the Hyperstructure Theory are the fundamental 

relations which connect the largest class of hyperstructures, the Hv-

structures, with the corresponding classical ones. We focus on finite 

dimensional helix-hyperstructures and on small Hv-fields, as well.  
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1 Introduction  

    

We deal with the largest class of hyperstructures called Hv-structures 

introduced in 1990 [10], [11], which satisfy the weak axioms where the non-

empty intersection replaces the equality.   

Definitions 1.1 In a set H equipped with a hyperoperation (which we abbreviate 

it by hope)   

∙ : HHP (H)-{}: (x,y) x∙yH 

we abbreviate by 

WASS  the  weak associativity:    (xy)zx(yz), x,y,zH    and by  

COW  the  weak commutativity:     xyyx, x,yH.   

The hyperstructure (H,) is called Hv-semigroup if it is WASS and is called Hv-

group if it is reproductive Hv-semigroup:  xH=Hx=H, xH.    

(R,+,) is called  Hv-ring  if (+) and () are WASS, the reproduction axiom is 

valid for (+) and  () is  weak distributive  with respect to (+):     

x(y+z)(xy+xz),    (x+y)z(xz+yz), x,y,zR. 

For more definitions, results and applications on Hv-structures, see books and 

the survey papers as [2], [3], [11], [1], [6], [15], [16], [20]. An extreme class is 

the following: An Hv-structure is very thin iff all hopes are operations except 

one, with all hyperproducts singletons except only one, which is a subset of 

cardinality more than one. Thus, in a very thin Hv-structure in a set H there exists 

a hope () and a pair (a,b)H2 for which ab=A, with cardA>1, and all the other 

products, with respect to any other hopes (so they are operations), are singletons. 

The fundamental relations β* and γ* are defined, in Hv-groups and Hv-rings, 

respectively, as the smallest equivalences so that the quotient would be group 

and ring, respectively [9], [10], [11], [12], [13]. The main theorem is the 

following:  

Theorem 1.2 Let (H,) be an Hv-group and let us denote by U the set of all finite 

products of elements of H. We define the relation β in H as follows:  xβy  iff 

{x,y}u where uU. Then the fundamental relation β* is the transitive closure 

of the relation β. 

An element is called single if its fundamental class is a singleton. 

Motivation for Hv-structures:  

The quotient of a group with respect to an invariant subgroup is a group. 

Marty states that, the quotient of a group by any subgroup is a hypergroup. 
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Now, the quotient of a group with respect to any partition is an Hv-group. 

Definition 1.3 Let (H,), (H,) be Hv-semigroups defined on the same H. () is 

smaller than (), and () greater than (), iff there exists automorphism  

fAut(H,)  such that   xyf(xy), xH. 

Then (H,) contains (H,) and write   .  If (H,) is structure, then it is basic 

and (H,) is an Hb-structure. 

The Little Theorem [11]. Greater hopes of the ones which are WASS or COW, 

are also WASS and COW, respectively. 

Fundamental relations are used for general definitions of hyperstructures. 

Thus, to define the general Hv-field one uses the fundamental relation γ*:   

Definition 1.4 [10], [11]. The Hv-ring (R,+,) is called Hv-field if the quotient 

R/γ* is a field. 

Let ω* be the kernel of the canonical map from R to R/γ*; then we call 

reproductive Hv-field any Hv-field (R,+,) if  

x(R-ω*)=(R-ω*)x=R-ω*,xR-ω*. 

From this definition, a new class is introduced [15]: 

Definition 1.5 The Hv-semigroup (H,) is h/v-group if the H/β* is a group.   

Similarly h/v-rings, h/v-fields, h/v-modulus, h/v-vector spaces, are defined. 

The h/v-group is a generalization of the Hv-group since the reproductivity is not 

necessarily valid. Sometimes a kind of reproductivity of classes is valid, i.e. if H 

is partitioned into equivalence classes σ(x), then the quotient is reproductive   

xσ(y)=σ(xy)=σ(x)y, xH.    

An Hv-group is called cyclic [11], if there is element, called generator, which 

the powers have union the underline set, the minimal power with this property is 

the period of the generator. If there exists an element and a special power, the 

minimum, is the underline set, then the Hv-group is called single-power cyclic.  

Definitions 1.6 [11], [14]. Let (R,+,) be an Hv-ring, (M,+) be COW Hv-group 

and there exists an external hope  : RMP(M):(a,x)ax, such that, a,bR 

and x,yM  we have 

a(x+y)(ax+ay),    (a+b)x(ax+bx),    (ab)xa(bx), 

then M is called an Hv-module over R. In the case of an Hv-field F instead of Hv-

ring R, then the Hv-vector space is defined. 

Definition 1.7 [17]. Let (L,+) be Hv-vector space on (F,+,), φ:FF/γ*, the 

canonical map and ωF={xF:φ(x)=0}, where 0 is the zero of the fundamental 
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field F/γ*. Similarly, let ωL be the core of the canonical map φ: LL/ε* and 

denote again 0 the zero of L/ε*. Consider the bracket (commutator) hope: 

[ , ] : LLP(L): (x,y)[x,y] 

then L is an Hv-Lie algebra over F if the following axioms are satisfied: 

(L1)  The bracket hope is bilinear: 

[λ1x1+λ2x2,y](λ1[x1,y]+λ2[x2,y])  

[x,λ1y1+λ2y](λ1[x,y1]+λ2[x,y2]), x,x1,x2,y,y1,y2L and λ1,λ2F 

(L2)  [x,x]ωL, xL 

(L3)  ([x,[y,z]]+[y,[z,x]]+[z,[x,y]])ωL, x,yL 

Two well known and large classes of hopes are given as follows [11], [16]: 

Definitions 1.8 Let (G,) be a groupoid, then for every subset PG, P, we 

define the following hopes, called P-hopes:   x,yG 

P: xPy = (xP)yx(Py),   

 Pr: xPry= (xy)Px(yP),     Pl: xPly= (Px)yP(xy). 

The (G,P), (G,Pr) and (G,Pl) are called P-hyperstructures.  

The usual case is for semigroup (G,), then  

xPy=(xP)yx(Py)=xPy 

and (G,P) is a semihypergroup but we do not know about (G,Pr) and (G,Pl). In 

some cases, depending on the choice of P, the (G,Pr) and (G,Pl) can be 

associative or WASS.  

A generalization of P-hopes: Let (G,) be abelian group and P a subset of G 

with more than one elements. We define the hope P as follows: 

xPy = {xhy hP}    if   xe  and  ye 

xPy   =        

                      xy                                 if   x=e   or  y=e 

we call this hope, Pe-hope. The hyperstructure (G,P) is an abelian Hv-group. 

Definition 1.9 Let (G,) be groupoid (resp., hypergroupoid) and f:GG be a 

map. We define a hope (), called theta-hope, we write -hope, on G as follows 

xy = {f(x)y, xf(y)} ( resp. xy = (f(x)y)(xf(y) ), x,yG.   

If () is commutative then  is commutative. If () is COW, then  is COW. 
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If (G,) is groupoid (or hypergroupoid) and f:GP(G)-{} multivalued map. 

We define the -hope on G as follows:   xy = (f(x)y)(xf(y)), x,yG. 

Motivation for the -hope is the map derivative where only the product of 

functions can be used.  

Basic property: if (G,) is semigroup then f, the -hope is WASS.  

 

2  Some Applications of Hv-Structures 

 

Last decades Hv-structures have applications in other branches of 

mathematics and in other sciences. These applications range from 

biomathematics -conchology, inheritance- and hadronic physics or on leptons to 

mention but a few. The hyperstructure theory is closely related to fuzzy theory; 

consequently, hyperstructures can be widely applicable in industry and 

production, too [2], [3], [7], [18].  

The Lie-Santilli theory on isotopies was born in 1970’s to solve Hadronic 

Mechanics problems. Santilli proposed a ‘lifting’of the n-dimensional trivial unit 

matrix of a normal theory into a nowhere singular, symmetric, real-valued, 

positive-defined, n-dimensional new matrix. The original theory is reconstructed 

such as to admit the new matrix as left and right unit. The isofields needed 

correspond into the hyperstructures introduced by Santilli & Vougiouklis in 

1999 [7] and they are called e-hyperfields. The Hv-fields can give e-hyperfields 

which can be used in the isotopy theory in applications as in physics or biology.  

Definition 2.1 A hyperstructure (H,) which contain a unique scalar unit e, is 

called e-hyperstructure. In an e-hyperstructure, we assume that for every 

element x, there exists an inverse  x-1, i.e.  exx-1x-1x.        

Definition 2.2  A hyperstructure (F,+,), where (+) is an operation and () is a 

hope, is called e-hyperfield if the following axioms are valid:  (F,+) is an abelian 

group with the additive unit 0,  () is WASS,  () is weak distributive with respect 

to (+),  0 is absorbing element: 0x=x0=0, xF, there exist a multiplicative 

scalar unit 1, i.e. 1x=x1=x, xF, and xF there exists a unique inverse x-1, 

such that  1xx-1x-1x.  

The elements of an e-hyperfield are called e-hypernumbers. If the relation: 

1=xx-1=x-1x, is valid, then we say that we have a strong e-hyperfield.  

Definition 2.3 The Main e-Construction. Given a group (G,), where e is the 

unit, then we define in G, a large number of hopes () as follows:   

xy = {xy, g1, g2,…}, x,yG-{e}, where g1, g2,…G-{e} 
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g1, g2,… are not necessarily the same for each pair (x,y).  (G,) is an Hv-group, it 

is an Hb-group which contains the (G,). (G,) is an e-hypergroup. Moreover, if 

for each x,y such that  xy=e, so we have  xy=xy, then  (G,) becomes a strong 

e-hypergroup.  

The main e-construction gives an extremely large number of e-hopes.  

Example 2.4 Consider the quaternion group Q={1,-1, i,-i, j,-j, k,-k} with 

defining relations   i2 = j2 = -1,  ij = -ji = k.  Denoting  i={i,-i}, j={j,-j}, k={k,-k} 

we may define a very large number () hopes by enlarging only few products. 

For example, (-1)k=k, ki=j and ij=k. Then the hyperstructure (Q,) is a 

strong e-hypergroup. 

Mathematicalisation of a problem could make its results recognizable and 

comparable. This is because representing a research object or a phenomenon 

with numbers, figures or graphs might be simplest and in a recognizable way of 

reading the results. In questionnaires Vougiouklis & Vougiouklis proposed the 

substitution of Likert scales with the bar [5], [18].This substitution makes things 

simpler and easier for both the subjects of an empirical research and the 

researcher, either at the stage of designing or that of results processing, because 

it is really flexible. Moreover, the application of the bar opens a window 

towards the use of fuzzy sets in the whole procedure of empirical research, 

activating in this way more recent findings from different sciences, as well. The 

bar is closelly related with hyperstructure and fuzzy theories, as well. 

More specifically, the following was proposed: 

In every question, substitute the Likert scale with the ‘bar’ whose poles are 

defined with ‘0’ on the left and ‘1’ on the right: 

                         0                          1 

The subjects/participants are asked, instead of deciding and checking a specific 

grade on the scale, to cut the bar at any point they feel best expresses their 

answer to the specific question.  

The suggested length of the bar is approximately 6.18cm, or 6.2cm, following 

the golden ration on the well known length of 10cm.  

 

3 Small Hv-Numbers. Hv-Matrix Representations   

In representations important role are playing the small hypernumbers. 

Construction 3.1 On the ring (Z4,+,∙) we will define all the multiplicative h/v-

fields which have non-degenerate fundamental field and, moreover they are,  

(a)  very thin minimal,  
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(b)  COW (non-commutative),  

(c)  they have the elements 0 and 1, scalars.  

Then, we have only the following isomorphic cases 23={0,2} or 32={0,2}.  

Fundamental classes: [0]={0,2}, [1]={1,3} and we have (Z4,+,)/γ*(Z2,+,∙). 

Thus it is isomorphic to (Z2×Z2,+). In this Hv-group there is only one unit and 

every element has a unique double inverse. Only f has one more right inverse 

element, the d, since  fd={I,b}. Moreover, the (X,) is not cyclic.  

Construction 3.2 On (Z6,+,∙) we define, up to isomorphism, all multiplicative 

h/v-fields which have non-degenerate fundamental field and, moreover they are: 

(a)  very thin minimal 

(b)  COW (non-commutative) 

(c)  they have the elements 0 and 1, scalars 

Then we have the following cases, by giving the only one hyperproduct, 

(i)  23={0,3}  or  24={2,5}  or  25={1,4}        

      34={0,3}  or  35={0,3}  or  45={2,5}  

In all 6 cases the fundamental classes are [0]={0,3}, [1]={1,4}, [2]={2,5} and 

we have   (Z6,+,)/γ*  (Z3,+,∙). 

(ii)  23={0,2}  or  23={0,4}  or  24={0,2}  or  24={2,4}  or    

25={0,4}  or  25={2,4}  or  34={0,2}  or  34={0,4}  or    

35={1,3}  or  35={3,5}  or  45={0,2}  or  45={2,4}.          

In all 12 cases the fundamental classes are [0]={0,2,4}, [1]={1,3,5} and we have   

(Z6,+,)/γ*  (Z2,+,∙). 

Remark that if we need h/v-fields where the elements have at most one 

inverse element, then we must exclude the case of 25={1,4} from (i), and the 

case 35={1,3} from (ii). 

Hv-structures are used in Representation Theory of Hv-groups which can be 

achieved by generalized permutations or by Hv-matrices [11], [12], [13], [14].  

Hv-matrix (or h/v-matrix) is a matrix with entries of an Hv-ring or Hv-field 

(or h/v-ring or h/v-field). The hyperproduct of two Hv-matrices (aij) and (bij), of 

type mn and nr respectively, is defined in the usual manner and it is a set of 

mr Hv-matrices. The sum of products of elements of the Hv-ring is considered 

to be the n-ary circle hope on the hyperaddition. The hyperproduct of Hv-

matrices is not necessarily WASS. 

The problem of the Hv-matrix (or h/v-group) representations is the following:  

Definition 3.3 Let (H,) be Hv-group (or h/v-group). Find an Hv-ring (or h/v-

ring) (R,+,), a set  MR={(aij)aijR} and a map T:HMR: h T(h) such that   
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T(h1h2) T(h1)T(h2)  , h1,h2H. 

T is Hv-matrix (or h/v-matrix) representation. If T(h1h2)T(h1)T(h2), h1,h2H, 

then T is called inclusion. If T(h1h2)=T(h1)T(h2)= {T(h)hh1h2}, h1,h2H, 

then T is good and then an induced representation T* for the hypergroup algebra 

is obtained. If T is one to one and good then it is faithful. 

 

The main theorem on representations is [13]:       

Theorem 3.4 A necessary condition to have an inclusion representation T of an 

h/v-group (H,) by nn, h/v-matrices over the h/v-ring (R,+,) is the following: 

For all classes β*(x), xH must exist elements aijH, i,j{1,...,n} such that 

T(β*(a))  {A=(aij)aijγ*(aij), i,j{1,...,n}} 

Inclusion T:HMR:a T(a)=(aij) induces homomorphic representation T* of 

H/β* on R/γ* by setting T*(β*(a))=[γ*(aij)], β*(a)H/β*, where γ*(aij)R/γ* 

is the ij entry of the matrix T*(β*(a)). T* is called fundamental induced of T. 

In representations, several new classes are used: 

Definition 3.5 Let M=Mmn be the module of mn matrices over R and P={Pi:iI}M. 

We define a P-hope P on M as follows 

P: MM  P(M): (A,B)  APB={APt
iB: iI } M 

where Pt denotes the transpose of P.   

The hope P is bilinear map, is strong associative and  inclusion distributive: 

AP(B+C)  APB+APC, A,B,CM 

Definition 3.6 Let M=Mmn the mn matrices over R and let us take sets 

  S={sk:kK}R,  Q={Qi:jJ}M,   P={Pi:iI}M. 

Define three hopes as follows 

S: RMP(M): (r,A)rSA = {(rsk)A: kK} M 

Q+: MMP(M): (A,B)AQ+B = {A+Qj+B: jJ} M 

P: MMP(M): (A,B)APB = {APt
iB: iI} M 

Then (M,S,Q+,P) is hyperalgebra on R called general matrix P-hyperalgebra. 
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4  Helix-Hopes and Applications 

Recall some definitions from [19], [8], [20], [4]: 

Definition 4.1 Let A=(aij)Mmn be mn matrix and s,tN be naturals such that 

1sm, 1tn. We define the map cst from Mmn to Mst by corresponding to the 

matrix A, the matrix Acst=(aij) where 1is, 1jt. We call this map cut-

projection of type st. Thus Acst is matrix obtained from A by cutting the lines, 

with index greater than s, and columns, with index greater than t.  

We use cut-projections on all types of matrices to define sums and products. 

Definitions 4.2 Let A=(aij)Mmn be an mn matrix and s,tN, 1sm, 1tn.  

We define the mod-like map st from Mmn to Mst by corresponding to A the 

matrix Ast=(aij) which has as entries the sets  

aij = {ai+κs,j+λt 1is, 1jt. and κ,λN, i+κsm,  j+λtn}. 

Thus we have the map 

st: Mmn  Mst: A  Ast = (aij). 

We call this multivalued map helix-projection of type st. Ast is a set of st-

matrices X=(xij) such that xijaij, i,j. Obviously Amn=A.  

Let A=(aij)Mmn be a matrix and s,tN such that 1sm, 1tn.  Then it is 

clear that we can apply the helix-projection first on the rows and then on the 

columns, the result is the same if we apply the helix-progection on both, rows 

and columns. Therefore we have  

(Asn)st =  (Amt)st =  Ast. 

Let A=(aij)Mmn be matrix and s,tN such that 1sm, 1tn. Then if Ast is 

not a set but one single matrix then we call A cut-helix matrix of type st.  In 

other words the matrix A is a helix matrix of type st, if   Acst= Ast. 

Definitions 4.3  

(a) Let A=(aij)Mmn , B=(bij)Muv be matrices and s=min(m,u), t=min(n,u). 

We define a hope, called helix-addition or helix-sum, as follows: 

: MmnMuvP(Mst): (A,B)AB=Ast+Bst=(aij)+(bij) Mst, 

where 

(aij)+( bij)= {(cij)= (aij+bij) aijaij and bijbij}. 

(b) Let A=(aij)Mmn and B=(bij)Muv be matrices and s=min(n,u). We define 

a hope, called helix-multiplication or helix-product, as follows: 

: MmnMuvP(Mmv):(A,B)AB=AmsBsv=(aij)(bij)Mmv, 
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where 

(aij)(bij)= {( cij)=(aitbtj) aijaij and bijbij}. 

The helix-sum is external hope since it is defined on different sets and the result 

is also in different set. The commutativity is valid in the helix-sum. For the 

helix-product we remark that we have AB=AmsBsv so we have either  

Ams=A or Bsv=B, that means that the helix-projection was applied only in one 

matrix and only in the rows or in the columns. If the appropriate matrices in the 

helix-sum and in the helix-product are cut-helix, then the result is singleton. 

Remark. In Mmn the addition is ordinary operation, thus we are interested only 

in the ‘product’. From the fact that the helix-product on non square matrices is 

defined, the definition of the Lie-bracket is immediate, therefore the helix-Lie 

Algebra is defined [17], as well. This algebra is an Hv-Lie Algebra where the 

fundamental relation ε* gives, by a quotient, a Lie algebra, from which a 

classification is obtained.  

In the following we restrict ourselves on the matrices Mmn where m<n. We 

have analogous results if m>n and for m=n we have the classical theory.  

Notation. For given κℕ-{0}, we denote by κ the remainder resulting from its 

division by m if the remainder is non zero, and κ=m if the remainder is zero. 

Thus a matrix A=(aκλ)Mmn,  m<n  is a cut-helix matrix if we have  aκλ=aκλ, 

κ,λℕ-{0}. 

Moreover let us denote by Ic=(cκλ) the cut-helix unit matrix which the cut matrix 

is the unit matrix Im. Therefore, since Im=(δκλ), where δκλ is the Kronecker’s 

delta, we obtain that, κ,λ, we have  cκλ=δκλ. 

Proposition 4.4 For m<n in (Mmn,) the cut-helix unit matrix Ic=(cκλ), where 

cκλ=δκλ, is a left scalar unit and a right unit. It is the only one left scalar unit. 

Proof. Let A,BMmn then in the helix-multiplication, since m<n, we take helix 

projection of the matrix A, therefore, the result AB is singleton if the matrix A 

is a cut-helix matrix of type mm. Moreover, in order to have AB=AmmB=B, 

the matrix Amm must be the unit matrix. Consequently, Ic=(cκλ), where  cκλ=δκλ, 

κ,λℕ-{0}, is necessarily the left scalar unit. 

Let A=(auv)Mmn and consider the hyperproduct AIc. In the entry κλ of this 

hyperproduct there are sets, for all 1κm, 1λn , of the form 

aκscsλ =  aκsδsλ=  aκλ aκλ. 

Therefore AIcA, AMmn.  ■ 

In the following examples of the helix-hope, we denote Eij any type of matrices 

which have the ij-entry 1 and in all the other entries we have 0.  
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Example 4.5 Consider the 23 matrices of the forms,  

Aκλ = E11+E13+κE21+E22+λE23, κ,λℤ.   

Then we obtain   AκλAst = {Aκ+s,κ+t, Aκ+s,λ+t, Aλ+s,κ+t, Aλ+s,λ+t}. 

Moreover     AstAκλ={Aκ+s,λ+s,Aκ+s,λ+t,Aκ+t,λ+s,Aκ+t,λ+t}, so  

AκλAstAstAκλ={Aκ+s,λ+t}, thus () is COW. 

The helix multiplication () is associative. 

Example 4.6 Consider all traceless matrices A=(aij)M23, in the sense that we 

have a11+ a22=0. The cardinality of the helix-product of any two matrices is 1, or 

23, or 26.  These correspond to the cases:  a11=a13 and a21=a23, or only a11=a13 

either only a21=a23, or if there is no restriction, respectively.  

Proposition. The Lie-bracket of two traceless matrices A=(aij), B=(bij)Mmn, 

m<n, contain at least one traceless matrix.  

Example 4.7 Let us denote by Eij the matrix with 1 in the ij-entry and zero in the 

rest entries. Then take the following 2×2 upper triangular h/v-matrices on the 

above h/v-field (Z4,+,), on the set  Z4={0,1,2,3}, of the case that only 

23={0,2} is a hyperproduct: 

I=E11+E22,   a=E11+E12+E22,  b=E11+2E12+E22,  c=E11+3E12+E22, 

d=E11+3E22,   e=E11+E12+3E22,  f=E11+2E12+3E22,  g=E11+3E12+3E22, 

A hyper-matrix representation of four dimensional case with helix-hope: 

Example 4.8 On the field of real or complex numbers we consider the four 

dimensional space of all 2×4 matrices of type, called helix-upper triangular 

matrices,  

            a    b    a    c             

A  =     0    d    0   d       

This set is closed under the helix-hope. That means that the helix-product of two 

such matrices is a 2×4 matrix, of the same type. In fact we have   

                  a    b    a    c          a   b   a   c 

AA =     0   d    0    d       0    d   0    d   =  

 

                a    {b,c}         a   b   a   c 

     =     0       d       • 0    d   0   d   =  

 

                  aa   {ab+bd, ab+cd}    aa   {ac+bd, ac+cd}   

     =       0                dd                 0                 dd               
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Therefore the result is a set with 4 matrices. 

Examples 4.9  
(a)  On the same type of matrices using the Construction 4.1, on (Z4,+,∙) we take 

the small h/v-field (Z4,+,), where only 23={0,2}, where we remind that the 

fundamental classes are {0,2}, {1,3}.  We take from the set of all matrices  

            a    b    a    c         

A =      0    d    0    d   

the matrix  

            2    1    2    3         

X =      0    1    0    1   

Then the powers of this matrix are 

              0    {1,3}   0    {1,3}         

X2  =      0       1        0       1       , 

 

              0    {1,3}   0    {1,3}         

X3  =      0       1        0       1       , 

We obtain that the generating set is the following 

       2    1    2   3   0   {1,3}    0   {1,3}        

0    1    0   1       0     1         0      1 

The classes remain the same. 

(b)  If we take the matrix  

            2    1    2    2         

Y =      0    1    0    1   

Then the powers of this matrix are 

              0    {0,3}   0    {1,2}         

Y2  =      0       1        0       1       , 

 

              0    Z4    0    Z4         

Y3  =      0     1     0     1       , 

We obtain that the generating set is the following 

       2    1    2   2   0    Z4    0    Z4        

0    1    0   1       0     1     0     1 

We have only one class. 
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