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Sommario. Viene affrontato il problema della verifica di casualita di succes-
sioni di numeri pseudocasuali, soprattutto da un punto di vista bayesiano. Nel
lavoro vengono proposti dei criteri operativi di carattere convenzionale adatti
per la verifica della bontd dei generatori ed alcune analisi bayesiane. In
particolare viene esaminata, da un punto di vista teorico, quella sostitutiva del
test classico delle frequenze, la cui applicazione numerica ¢ stata effettuata
dagli stessi autori in [5].

Abstract. After illustrating the classic and the bayesian approaches to the
analysis of randomness of pseudorandom sequences, the bayesian viewpoint
is further dealt with, since up to now, it has not been exhaustively analysed. A
bayesian analysis wich can replace the frequency test is also presentated. The
numerical application and its results can be found in [5].
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1. STATISTICAL ANALYSIS OF PSEUDORANDOM
GENERATORS

Let N be the set of natural numbers, and X a continuous random var1ab1e
uuuuuluy distributed over \U 1)

Let {X,},.\ be asequence of independent random variables havmg the same
distribution as X If x, (for each ie N) is a realization of X,, the sequence {x }
is called a sequence of random numbers.

For each me N, X® is a standard discrete random variable with parameter
m uniformly distributed, i.e. with values in {0, 1/m, 2/m, ..., (m-1)/m}, each
with probability 1/m. ‘

X has the characteristic function

ieN

H_(u) = (1/m)(e"-1)/(e""-1).

Therefore it results that:
lim H, (u)=(e" ~1)/ iu,

where the value of the limit defines the characteristic function of the random
variable X, so that the sequence {X™} .y converges in distribution to X.

Since computers employ only rational numbers with a limited number of
decimal-coded digits, the sequence {X },_, can be replaced by a sequence
{X™},. of independent random variables having the same distribution as X,
for sufficiently large m. Instead of the sequence {x } _,, it is then considered
the sequence {x,”}, ,, where x™ corresponds to a realization of X, called
sequence of random numbers too.

In practice, given a value of m, the sequence of values x, taken by X,
ieN, is replaced by a sequence {z},_ . of values obtained with the computer
applying the recursive formula:

Y. = o, 0, ..., 05 y), i€N, (1.1)
where f is a function of the variable y, defined fromI_= {0, 1,2, ...,m-1} to
I, and depending on the parameters o, 0., ..., 0. Therefore, if the starting
number y,€L_is fixed, a sequence {y, }leN of elements of set I is obtained.

Subsequently, assuming z.= y,/m, a sequence whose space is {0, 1/m, ...,
(m-1)/m} is obtained.

This procedure may seem completely illogical. In fact, according to it, they
are not considered random numbers, but numbers obtained out of a formula in
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a deterministic way. These are called pseudorandom numbers.

The procedure can be giustified by the subjective definition of pseudorandom
numbers (see i.e. Bruno Baldessari (1987), [1], Alfredo Rizzi (1989), [11])
according to which the sequence {z”},_,, is said pseudorandom if:

(1) a user who knows the generator (1.1) can univocally generate the
sequence;

(2) a user who does not know the generator, can assume that the sequence
{z},y is a realization of a sequence {X"},_, of standard discrete random
variables with parameter m uniformly distribuited.

In fact, if the function f and its parameters are given in the correct way, the
evaluation of y, starting from y, is the result of a "randomness effect” similar
to the one resulting from mixing cards. As a matter of fact, even in this case,
the card position is deterministic and its randomness depends on the fact that
the operator does not know it.

In the formula (1.1), to obtain sequences concording with Baldessari's
subjective definition, it is necessary that the operator who generates the
sequence knows well its matematical and statistical properties, so that it may
seem random to any observer.

We obtain this by assuming f egual to a function as simple as possible. For
example the formula

y,, =(ay+bymodm, ieN, abel (1.2)

is largely used.

The mathematical and statistical properties of the sequence S={y,},_,.
obtained by generator (1.2), vary considerably according to the variation of the
two parameters a e b, of the modulo m and of the starting point y, (see A. Rizzi
(1977), [10], Cera and Maturo (1983), [2] and [3], Maturo (1989), [7], Maturo
and Piscione (1990), [8]).

Let then consider a sequence {y,},_, whose space [ is obtained from any
formula of the (1.1) type, and let z=y /m.

A classical approach largely used in order to prove the randomness of the
sequence is the following.

Once we have fixed ne N, we ask if the null hypothesis H  can be accepted:
z, are determinations of independent random variables Z, having continuous
uniform distribution or discrete normalized uniform distribution with parameter
m of the random variable Z=X".

For this purpose check the finite sequence S={z}
means of a set of statistical tests.

Some of the most common tests are (see A. Rizzi (1977) e (1989), [10] e
[11], Knuth (1969), [6], Maturo (1989), [8], Cera e Maturo (1983) € (1990), [2]
e [4], Tausworthe (1965), [14]): Test on the mean; on the numbers variance; on
the numbers frequence; on the digits frequence; on the number pairs frequence;

, of lenght n by

i€{1,2,...,n
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onthe digitpairs frequence; on the numbers correlation; on the digits correlation;
on the complete sequences; the runs test; the, gaps test.

The non-parametric checking methods, used in the aforementioned studies
are based on the following steps:

a) consider suitable statistics D=DJ(Z,,Z,, ..., Z), k=1, 2, ..., r, assuming
nonnegative real values that, in certain situations regarded as «ideal»,
assume the value zero. The D, usually have asintotic or chi-square distribution
or they are equal to absolute value of a symmetric distribution with respect to
zero and tabulated (i.e. Student's t-distribution or standardized normal one).

b) For each k a "small" number ¢, (0,1) is fixed, (usualy o=0.01 or
0,=0.001 or a value between the two), called level of significance, and
consequently a real number B, such that prob (D 2B, )=0, is determined. The
pair T,=(D,,B,) is called statistical test at level of significance c,.

c) Let d, the value of D, for Z=z, with i=1, 2, ..., n. If d 2B, H, is rejected
with respect to the test T, if this not, H, is accepted.

d) The sequences for which the hypothesis H, is accepted, with respect to
each of the T, tests, are considered "acceptable” with respect to the set of tests.

The principle according to which the hypothesis H, is rejected, if d 2B, is
based on the following points;

(1) probabilistic evaluation: the event E=(D 2>, )/H, has very small
probability o, of occurring. Since he has occurred, that leads to consider the
hypothesis H, false;

(2) psychological evaluation: if d 2, then the value of D, is very far from
the, "ideal value", zero. ‘

Some authors (see i.e. R. Scozzafava (1989), [12], A. Maturo and A.
Piscione (1990), [8]) have made the following observations:

a) the confusion between E, and the event A =H /(D 2B,). According to (1),
since the probability of E, is little, the probability of A is little too.

Such conclusions lead to paradoxical consequences.

In fact anyone can see that, whatever the finite sequence z of lenght n is, if
the z are numbers with q decimal digits, being prob (z/H,)=10" and then it
result prob (z/H,)=10".

Since, for each o, >0, there is a positive integer n such that 10™<a,, for a
fixed o, it is possible to determine a positive integer m such that, for each n=>m,
the event z/H, has probability lower than o,.

Therefore, following the same procedure described in Par. 1 we are led to
reject H, whatever z would be, as long as n=m.

b) The disturbing element put in by (2). The psychological point of view
lead us "to reject the tail” of distribution of D,, since in it there are values wich
are very far from the ideal value of D,, "0". On the other hand, from arigorously
probabilistic point of view, if a is a nonnegative real number minor than 8, and
bis areal number such that the event: E =(asD,<b)/H,; has a probability o, the
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event E, may play the same role as the event E, in the accepting-rejecting game.
For example, assuming a=0, the test would lead us to reject the "first part" of
the distribution.

¢) The lack of consideration of alternative hypotheses to H,. If we assume
that the event A =H /(D >B,) has very little probability, that is not a sufficient
reason for rejecting H,. In fact it may happen that there are many alternative
hypotheses H, with i=0, 1, 2, ..., m, and that all the events A, =H/(D>p,) have
very little probability. In this case, then, if d, 2, should all the hypotheses be
rejected?

At this point the replacement of the classical checking methods by a
Bayesian one, is proposed, since the latter gives the following advantages:

a) apart from the hypotheses H,, it takes into consideration a set of
alternative hypotheses to be compared with H,;

b) it only gives probabilistic outcomes, without recurring to procedures
which do not belong to the probability theory.

Therefore the problem is how to find Bayesian analysis which can replace
classical models. However, we cannot think of replacing them with the
Bayesian analysis based on numbers frequency alone, in fact this may lead to
erroneus results.

Using such procedures it may appear that the banal sequences, wich are not
random, such as {z=(1 mod m)/m} .» look better than others. These drawbacks,

ie

however, are not sufficient for refusing the Bayesian approach.

2. BAYESIAN ANALYSIS

In order to check the randomness of pseudorandom sequences from a
bayesian viewpoint, it is suitable to replace each classical test with a bayesian
one. For example, a sample randomness check can be done by replacing each
of the eleven quoted tests with a bayesian analysis.

Therefore, the following general procedure is proposed.

From the pseudorandom numbers finite sequence z={z , z,, ..., z }, obtained
as shown in Par. 1, another one of the kind:

T={u,u, ...,u,}
comes out, where r is a suitable positive integer, r<<n, with the u , vectors of
R*, k=1, functions of the vector (z, z,, ..., z,)eé R" and realizations of the k-

dimensional random variables U, which are equidistributed and independents.
The U, depend on certain parameters, and for their suitables values, they
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have the same distribution as those requested by the classical test replaced.

After all suppose that:

(1) the vectors u , are realizations of random variables U >~ which are
equidistributed, independent and functions of the parameters (o, o.,, ..., @,);

(2) in ideal conditions of randomness, the parameters ., 0L, ..., O, take the
values M, M, ..., U, :

Let A be the set of the values taken by the parameter g=(Q, Q,, ..., O,).
Suppose that on a suitable subalgebra of 97 (A) to which belong all the
elementary events {a}, witha€ A, acomparative probability has been assigned
by a relation of "not more possible” (see i.e. Scozzafava (1984), [13], and
Maturo (1989), [9]).

Suppose, moreover, that, being & the collection of finite subsets of A, a
positive real function f, defined in A, and called pseudodensity, has been
assigned. ,

The function f is strictly compatible with the comparative probability
definition, being such that, for each pair of events of % E={a, a,, ..., a/},
E={b,b, ...,b.},a€A,beA,i=1,2,...,n,j=1,2, ..., m, it follows:

Z f(a,) < Zf(bi) < E, isnot more possible thanE, . 2.0
i i

Let us consider two possibilities:
(a) A is a countable set, A={a,a, ...,a, ...};

(b) A is ameasurable R"-set with non-zero measure, and _[A f(o) d(g) exists,
being either finite or not.

If (a) is true compute the sum of the series X, f(a,).

i=1
If this sum is finite and equals to a real number M, then being: p(a)=f(a)/
M, the function: p:a€ A->p(a) is a probability.

If (b) is true and J'A f(a)d(o) is a finite real number M, then: p(o)=f(a)/M,
is probability density function (pdf).

In the following the simbol | f(o)d(a) will indicate also: >.f(a;), and the
i=1

expression "probability density function” to name also the probabilities in the
(a) case.

In many papers R. Scozzafava (see i.e. [13]), has shown that the Bayes
theorem, valid for prior distributions given by probabilities or probability
density functions can be generalized to the case in which the prior distribution
is simply given by a pseudodensity.

In the case at hand, if f(o), o=(ct,, O, ..., O, )€ A, is the prior pseudodensity,
and p(u/o) is the pseudodensity of U= (U, U, ..., U) conditional on g, the
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generalized Bayes theorem takes up the form:
g(a/w) =k f(o) p(W/e) (22)

where k is a function of u and g(a/u) is the posterior pseudodensity.
If g(a/u) is a pdf it then follows:

1
 [e(e/wda’

By applying this formula (2.2), the problem is to estimate if g(o/u) "aims
to help" the value u=(u, u,, ..., W,).
For this tree conventional operative criteria can be followed:

1. Criterion of the distance of the absolute maximum of g from the ideal
point

The extreme absolute point § of the function g(a/u) can be identified, under
the hypothesis of existence and uniqueness, and then the distance between 3
and L can be evaluated. According to the Bayesian analysis, the sequences with
a minor distance are to be preferred.

The procedure then requires:

a) the identification the collection of the lines passing through L.

X, _“'1 +Tlt
X, =W, +T,t
......... ,teR
Xy _u‘h +Tht

with T, T,, ..., T, satisfying the condition:
T+ 4+ +T, =1

This means that for t=0 we obtain the point i and that [t] is equal to the
distance of the point x=(x,, X,, ..., X,) from y.

b) The search of the extreme point of g on a suitable number of such lines
by solving problems with one variable functions and by comparing the
outcomes obtained. If g is a regular function, h directions pairwise orthogonals
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can be sufficient.

c) Being u” the extreme point of the constriction of g at the union of the
considered lines (if there are many extreme points, the one with the smaller
| ¢ |, will be considered), assume a positive number "small" ¢ and consider the
distance 8 between W and L.

If 8<o the generator is considered "good" with respect to the adopted
criterion, but, in order to "accept” it, further analysis must be carried out, where
further factors of randomness are taken into consideration.

2. Criterion of probability in the intervals or in the circles with center y

Let g(o/u) be a probability density function.

Fixed cither a suitable interval or circle I, with center W, calculate the
probability that o belongs to I. According to the bayesian analysis the
sequences with a major probability are preferred.

3. Criterion of the confidence interval or confidence circle

Fixed a level of probability 8 and calculated the extreme point § of the
function g(o/u) we determine an interval or circle I_ with center B such that the
probability that & belongs to I is equal to ©.

It has to be admitted that the sequence u is pseudorandom, according to the
proceeding analysis and at confidence level 0, if and only if O 1.

Let us consider some of such analyses:
1. Bayesian analysis of the frequences; let's u=z, for each i {1, 2, ..., n};

2. Bayesian analysis of the pairs; for eachie {1,2, ...,n-1} let'su=[z,z_]".
It results: r=1;

3. Bayesian analysis of the k-ple; it is a generalization of the previous
analyses. Let's u=[z,z,, ..., z,,,]', foreachie {1, 2, ..., n-k+1}. It results: r=k-1;
4. Bayesian analysis of the runs; consider m sequences zZ = {z', ..., z } and
suppose that for each i and j Z#z_ (it is in pratice always true). Assume:

i i i
i+l 2 or Zi > Zi+1 > Zi+2

Eij

{Ofori>1andzf<z.j <z,

1 otherwise

for eachie(l, 2, ..., n-2} and for each je(1, 2, ..., m}.
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For each sequence Z the number (called runs number)
v,=2u,
i=t

can be considered. This numbers can be considered as independents.

The ideal distribution of the v, (seei.e. A.Rizzi (1977),[10]) is the gaussian
one, with mean (2n-1)/3 and variance (16n-29)/90.

The parameters on wich the inference procedure is made are the mean 6 and
the variance ¢°.

Assuming 0~(0,6), v = (v, v,, ..., v ), the relation (2.2) is replaced by:

g(a/v) = k f(o) p(v/o0).

The Bayesian analysis, illustrated in this work, equivalent to the frequency
classical test, can be described in the following way:

(1) let us consider the hypothesis H as an element of a collection of
hypotheses (H)  , where A is a set of indexes, such that for a certain value pu
of A:H = H, then results. Then, in a subjective way and following suitable
criteria, let us assign, to each hypothesis H, the value f(a), a€ A, of a
probability density function defined in A or, more generally, of a pseudodensity.

(2) Starting from a given sequence z={z, z, ..., z } of pseudorandom
numbers varying between [0,1), calculate the likelihoods p(z/H ), o€ A;

(3) using the Bayes formula
g(H/2) =k f (H) p(z/H), (2.3)

with k function only of z, calculate the posterior probability density function
(or more generally, the pseudodensity);

(4) by suitable conventional criteria, for example 1, 2 or 3, consider if the
hypothesis o= is preferred.

Starting from the H hypothesis of Z independence and equidistribution, it
follows that each sequence S' obtained as a permutation of z, originates the
same likelihoods and, therefore, the same g values.

This implies that the Bayes theory gives information only about the
frequences of the z values taken by the Z, and therefore it can replace only
the frequency classical test.
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However, such Bayesian analysis is just one particolar case of those we
have considered in the u=z hypotheses.

Assuming other hypoteses for the u, we obtain further Bayesian analysis
which can replace further classical tests.

Now an example of Bayesian analysis based on frequences will be illustrated.

3. AN EXAMPLE OF BAYES ANALYSIS AS FREQUENCY
TEST

Assume each random variable Zi, (i=1, ..., n), varying in the interval {0,1),
and distribuited as a Beta one, with parameters: a,b>0. The probability density
function is then: ‘

[1/B(a,b)]z* " (1—2)"", for ze (0,1)
p(z;a,b)= 3.1

~ 10 forz ¢ (0,1)

where B(a,b)=[ z*" (1-2)dz

The choice can be justified accordingly to the following points:

(i) the Beta distribution varies in the interval (0,1), like any element of the
pseudorandom number sequence;

(ii) assuming a determinated set of values for the parameters (a=b=1), the Beta
law is trasformed in the continuous uniform distribution, as it happens
following null hypothesis.

Since the a and b parameters of the Beta distribution are unknown, they can
be thought as random numbers on which the statistical inference is drawn, with
the aim of obtaining a posterior probability density function.

In the inference procedure, the examined parameters are therefore collected
in a random vector §=(a;b).

As a prior distribution for each of the two parameters, the Gamma law with
two parameters T, 1>0, can be assumed whose pdf is expressed by:

0 forx <0

] [t/T(le™(tx)*", forx >0
h(x; T, )—{ (3.2)

If the two components of § can be considered as independent, the probability
density function of the random vector 8=(a,b) is the following one:
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f(a,b;T,w)=[t* /T(W)]e™a""[t* /T(W)]e™"b*", (3.3)
with (a,b)e (0,+00)X(0,+00).
The partial derivatives of the function f are continuous in the set:
A=(0,+)x(0,+20); then the extreme points correspond to the ones that make
nul these derivatives. It follows therefore:

of u-1 of -1
—=0f =—, — =0 forb="— )
da T db o 1 (3:4)

Then, only one extreme point of f function exists, this being the point:
P=((u~1)/t,( u—-1)/1)).
It is therefore:

gaf =[(z*/ 1“(|,L))]2 b*e e a" [ 2u( — 1) +pla’ + (- (L —2)]
gbf =[(v /T )] @ e e b [=2pu(i — D)+ ub* + (- D ~2)]
ai_afb - [(1:" / F(u))r [(u—Da"e™ —te™a" "' [b" e ™ [(L—Db—1]

Assuming that the partial derivatives are equal to zero if valuated in (1,1),
it results that:

T=p-1 3.5)

A direct consequence of this hypothesis is that:

o f 9*f 9*f
91 o, Lo, 2L _p
a7 % 3% <% Saap

and therefore the Hessian matrix:

o*f of
_| 9a* odadb
e I I
dacb ob’
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is negative definite. Therefore P is a maximum for f, and this hypothesis
corresponds to substantiate the null hypothesis: a=1, b=1.

Denoting by p(z/(a,b)) the pdf of Z=(Z ,Z, ..., Z ), conditional on 8=(a,b),
according to the Bayes theorem, it follows therefore:

- gl(a,b)/2) = k f(a,b; T,1) p(z/(a,b)) (3.6)
where, if g((a,b)/z) is a pdf,

1
@/ @™ 3.7

According to the independence condition: -

p(z/(a,0) =IIp(z / (a,b))=
=[[(a+b)/T (@I (z,z,...2,)  [(1-z)1-z,)...Ad -z )]
Therefore, considering the relation (3.5), it follows that:
g((a,b)/ z) =k[7" /T(W)7] (ab)*e ™ *
*T(a+b)/T(@T MBI (z,...2,) "' [(1-2,)...(1—z ). (3.8)
Letassume that 8 has a uniform distribution. This can be derived interpreting
the relation (3.3) as a pseudodensity.

Therefore, by assuming two arbitrary points, belonging to A, (a , bl) and (az,
b)), calculate the limit:

o £, bT)
=0 f(a,,b; T, )

It results equal to:

o LE/Tawle™a " [ /EQu]e™ b
=0 [t /T(uw)le ™ ay [t /T (W)]e™by™

_[ (a,b]) } (3.9)

(a,b,)
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The limit of the pseudodensity expressed by (3.3), is, a part from a costant:

f(a,b; O,u) = (ab)*'. (3.10)

According to the relation (3.5), being =0, it then results: p=1. The limit
(3.9) then equals 1, and the pseudodensity (3.10) is the uniform one.

It is easy to derive that the one expressed by the (3.10) is not a pdf. Infact,
being u>0, it follows that:

[[ (ab)*" dadb=+ oo,
Nonetheless, the Bayes Theorem (3.6) is valid altogether, also if the
condition (3.7) is not satisfied.
In the particular case: T=0, assuming f(a,b; T,)) as the pseudodensity,
expressed by the relation (3.10) it results that:

f(a,b; O,u) = (aby*"

and the (3.8) is equal to:

g((a,b)/z) =k(ab)**[[(a+b)/T(@)T(b)I" *

*(2,2,...2,) " [(A~2,)(1~2,)...(A~2)]"". G.1
If the (3.5) is valid, the (3.11) then reduces to:
g((a,b)/z)=k[I'(a+b)/T(@T([D)I *
(3.12)

*(z,...2,)" [(1-2)...(-z,)1"".

The numerical application and its results of this procedure based on the
criterion of the distance of the absolute maximum of g from the ideal point u
can be found in G. Di Biase and A. Maturo (1990), [5].
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