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CONNECTEDNESS, ARCWISE-
CONNECTEDNESS AND CONVEXITY
FOR LEVEL-SETS OF
MULTIDIMENSIONAL DISTRIBUTION
FUNCTIONS

Luisa Tibiletti’

SUNTO - Si individuano condizioni sufficicnti per garantire le propricta di
connessione, arc-connessione e convessitd degli insiemi di livello delle
funzioni di ripartizione multidimensionali.

ABSTRACT - Sufficient conditions for guaraniccing connectedness,
arcwise-connectedness and convexity for level-scts of multidimensional
distribution functions are provided.

1. INTRODUCTION""

General concavity properties of n-dimensional (1 = 2) distribution functions

(d.f's) have became of recent interest in the literature, See, for example,
TONG [9], IYENGAR-TONG [3] for concavity of special distribution
classes, TIBILETTI [7] for d.f. quasi-concavily. MARSHALL-OLKIN [4]
for Schur-concavity.

In this note we confine our atlention to connecledness, arcwise-
connectedness and convexity of the d.f. level-scts. Sufficient conditions for
guarantecing above mentioned propertics arc stated. This issue can be
relevant both for theoretical and applied statistical analysis. Recently,
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TIBILETTI [8] has introduced a new notion of ¢-th quantile (where
g €[0,1]) of the random vector X as a point belonging (o the g-th level-set

of the d.f. of X. Previous properties characterise the quantile sets. The plan
of the paper is as follows. Section 2 contains notations and preliminaries.
Sufficient conditions for level-set connectedness, arcwise-connectedness and
convexity are formulated in Section 3. Section 4 collccts some final remarks.

2. NOTATION AND PRELIMINARIES
Let X = (X, ..., X,,;) be a random vector. Denolc by
F(x)= p{ A(X, <x, ;}
=1

the distribution function of A" and by

the one-dimensional marginal associated to the random variable .\';. Our
aim is to investigate the properties concerning the level-scis of F, i.e.,

I,= {x eR":F(x)= q}_ where ¢ €[0.1].

For sake of completeness, we recall the definitions utilised throughout the
work.

Definition 1. A set D e R” is said 1o be comnected if there exist nonempty
disjoint sets S' = R", % = K", such that neither contains cluser points of
the other, satisfying D = 5" U 52,

Definition 2. A set D e R" is said to be arcwise-connected if for every pair
of points x € D,y € D there exists a continuous vector valued function

H(x,y; .9), called an arc, defined on the unit interval and with values in D

such that
H(x,y:0)=y Hix.v1)=x.

We recall that every arcwise-connected sct is connected . while the opposite
does not necessarily hold.

22



Num. 8 - 1994 Ratio Math. L. Tibiletti

Definition 3. A subset D of the n-dimensional real Euclidean space R" is a
convex set if for every x,y € D and 0< A< 1 we have Ax+(1-A)yeD.

(See for example AVRIEL ef al. [1] for further details).

3. CONNECTEDNESS, ARCWISE-CONNECTEDNESS AND
CONVEXITY CONDITIONS

Below, sufficient conditions are provided in order to guarantee the
connectedness, arcwise-connectedness and convexity of the d.f. level scts.

Proposition 1. Assume F be continuous. Then, ] g 18 a connected set, for all
q € [O,I] .
Proof. Consider the set-valued map g:[0.1]— R” such that

glg)=1, =JLX eN":F(x)= f,r}.

Since " is continuous Iy = F"'(q) is a closed sct and the graph of g is

upper semi-continuous . It is immediate to prove that g is also lower semi-
continuous. then g is continuous. Thus. I, turns oul to be connccted,

because it is the image of a connected sct.

Proposition 2. Assume F be continuous and partially strictly increasing!
on C= [al ,bz]x,.,x[an ,bn], Cc R". Then 1, is arcwise-connected on C,
Jorall g e [(l,]].

Proof. Introduce the function

Ax)=Flx)-q.

Let x e/, nC. Clearly, ¥(x)=0. Suppose 1o fix (n-1) components of x,

let xy....,x,,_; be. Thus, the single-variable function y is continuous . strictly
increasing and changes its sign on [a,,JJ” ] By the implicit function theorem

! Fis said to be partially strictly increasing on (' = [a1 by ]x x[a”_bn] if
v( L * * *)
!(XJ'):F X weees xf-l'xl+l ..... X,

is a strictly increasing function on [q, ,b,-] for all :r: € [a s by ]_j =1,
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(see, for example, NIKAIDO [5]) there exists one and only one continuous
function qo,,:i}l”"l — R, defined for a; <x, <b,, (s =1,...,n—1), such that

r(xl s Xp—] ’(pn(xl 2o X )) =0

Therefore, if x e ] q it follows that
F(x1 ,...,r,,) = F(xl PTTe: St I qon(rl ey N )) = ("I(xl..,,.xn_; )

where G:R"' 5> R, is a continuous and partially strictly increasing
function .

Also, the repeated use of the theorem shows that there exist continuous
functions @,,...,¢,_;, such that

G 5005 Xt ) = O Ry 5y By (e By ) =iim Kilyity y) =

= K(xl,xz,g)3(x] .xz]) = J'*Vl'xl ,x2)= I-I'[,x'].(.oz(x,)) = T(xl)

Note that: ¢;.i = 2,..,n depends on the remaining @, .1 # j. morcover, from
the uniqueness of ¢,,.., ¢, derives that fixed x; there exists a unique (n-1)-
dimensional vector (xz,,..,x,,) such that x = (x, ...... Y ,,) el

Consider x, y €/,, so that F(x) =F(v)= g . Let /1 be defined on [(},]] c R
by

H(x,y:8)=(t,.....1,). where

f = % +(1- 9y
Iy = @’2(&),
ly= @3(%’2)

f" - I;B"(l'l ,fz.,...,fn_] )
Since H is a continuous arc with valuc in .-’q our claim comes out.

An example of arcwise-connected set is given below.

Example Let /7 be a d.f. defined via

Flxy,xp)= (1 —e )(1 —e M )
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Observe that

(1-e7)

1, = (xl,xz)e‘.]iz:xgzlog . q€(0,1].
1 (l—e'xl—(;j [ ]

It is clear that I, is arcwisc-connected. In fact, we can connect each pair of
points x = (r, ,X3 )..v = (y| .,vz) €/, by the arc

(1-e)

H(x, v, 8)=|t.log
1-e”f —q)

where £ = S +(1- 9)y; and 9 e[0,1].

Proposition 3. Assume F be continuous and partially sirictly increasing on
C= [al _bz]x“,x[aﬂ,bn]. Let x=(x..... X, )€ Iy, O, with q e(0.1). For

each x;,i =1,...n there exists an unique (n-1)-dimensional vector such that

x= (r| ORI Iy C.

In one dimension, the g-th level set /4 1s conneceted. then also convex for all

q €[0.1]. Nevertheless, this property is not preserved in higher dimensions.

In fact, all level sets of / are convex ill /" is quasi-monotone, i.e., I is both
quasi-concave and quasi-convex, and this property holds only for a class of
generalised uniform distributions.

4 SOME FURTHER FINAL REMARKS

Now, some further remarks are collected.

Remark 1. To check whether / is partially strictly increasing or not, it
could be useful to calculate VF. If V/ exists (obviously, a sufficient
condition is that the density function is continuous) and V&< >0 the

property holds.

Remark 2. Straightforward calculations show that for the d.f. F results

(8]
n
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g‘-=j}(x,—)F(xl,....x,_l.x,—+|,...,x,,‘r,) foralli=1,..,n
3

where

f(x,) is the one-dimensional marginal density function of X,
F(xl,...,xj_l,xj.,_l,...,x,,]x..-) is the conditional distribution function of .\’
given X; = x;.

Thus, the condition VF >0 requires that all one-dimensional densities and
all conditional d.f.'s be not null.

Note that under these assumptions, the implicit function thcorem guarantees
that functions ¢, ,i = 2,..,n are also continuously diffcrentiable.

Remark 3. F can be only partially increasing. even if cach one-dimensional
marginal F,-(i =1,..,n) is strictly increasing? . Additional conditions have to

be added. Clearly, the assumption that the copula has to be partially strictly
increasing yields our claim (for further details on the copula and a historical
overview, the reader can refer to SCHWEIZER [6]).

Remark 4, Above discussion deals with the d.[. (also called cumulative
function) F of the random vector A" = (.\.....\", ). ncvertheless, analogous

results can be expanded upon for every partially deccumulative-cumulative
function

E’.....,r,, (X)IP{[ :m{‘yi Er, }}ﬁ[.l= m{'\.a 2 xa'}J}-

of X', where /;,..,i, are integers from 1 to n. such that i #i if j#t (for

further details on the partially cumulative-decumulative function level-sets
see TIBILETTI [8]).

2 For example, consider the Fréchet cumulative function
F(x,y) = Min(F(x)). 7 (x;)).
where F; and F, are strictly increasing (sce FRECHET [2]). Let x,y,z e R
such that
Fi(x) </ (v) < F(z).
where y <z. Sinceﬁ‘(x,y} =F(x,z)= F‘,{x, ). then £ is not partially strictly
increasing,.
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