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PRACTICAL ASPECTS IN SOME NOT
CLASSICAL METHODS FOR THE
NUMERICAL EVALUATION OF CPV-
INTEGRALS

Franca Calio , Elena Marchetti’

SUNTO - In quesio lavoro presentiamo due metodi non classici per la
valutazione numerica di integrali pesati e con singolarita di tipo Cauchy
(CPV). I primo metodo & una quadratura interpolatoria di tipo gaussiano sul
semidisco unitario. Il secondo ¢ una integrazione numerica quasi
interpolatoria basata sull’ approssimazione spline.

ABSTRACT. - Two different not classical approaches are given for the
numerical evaluation of weighted Cauchy principal valye integrals. The first
approach is an interpolatory Gaussian integration over the unit haif disc.
The second method is a quasi interpolatory integration rule based on spline
approximation.
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INTRODUCTION

Frequently real systems meodeling, €.g. asrodynamics or structural related
problems, leads to integral equations having irrational kernel with real poles
of first order in the integration interval.

Precisely, finding solutions of these equations, often yields singular integrals
as:

1= [ 28 oo o

where wix} = (1-x2)™"? with 0= 10, 1/2, 1, and -1<A<1,

In this work we ghall discuss some approaches to the numerical evaluation
of integrals (1). In particular we present some not classical methods to
approximate (1), in alternative 1o classical methods which we briefly recall.
This paper is organized as follows; in section 1 we consider classical and not
classical Gaussian methods and in section 2 classical and not classical
quadrature based on particular approximating splines. Here we present a
short survey of them, with the aim to collect the must significant results and
make comments on the computational aspects, which may be useful to the
reader.

1. GAUSSIAN METHODS
Let us consider integral (1), defined in the Cauchy principal value sense:

= SILIB+J'_]_£ :}Exl)lf(x)dx + J;Jr&_:—ij):f(x)dx

A classical way for the numerical computation of integrals (1) is the
following.
Using the transformation;

I+ A
Tt
we obtain:
1
I= r,v()b)p,v.j‘_1 w(t)g(A,1)t ' dt )
where;
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t+A
g(ﬁ’!)_&il_)

T A+

Then we generate quadrature formulas, based on the interpolation of the
function g(.,t) on # distinct peints x; (i=1, 2,....n) belonging to [-1,1], with a
polynomial of degree n-7. From the integration of the polynomial the
following quadrature formula holds:

=2 wg(hx) 3)

In(3)x, (i=1,.2,..,n) are called nodes of the quadrature; w, (i=1f, 2,...n) are
the weights depending on w(), on A, and on x; (in particular w, = w /%,
when x, # 0). The formula (3} is exact at least for all polynomials of degree
n-1 (polynomial order #-1).

When the nades are the zeros of the polynomiat of degree n orthogonal with
respect to w(t) in [-1,1] (in the case of (1) the orthogonal polynomials are
called Chebyshev polynomials of first kind, for oo = 1, of second kind, for o
= 0, and Legendre polynomials, for o = 1/2) the corresponding quadrature
formulas (3} are called Gaussian, and are exact for gAY € Poy ()
(polynomial order 2n-{).

Many authors proposed formulas of interpolatory type and related
algorithms to evaluate the weights (for instance Delves, Hunters, Elliot,
Paget, and Monegato). For an accurate bibliography see Monegato [11],

As it is well known, the accuracy— which is of high polynomial order — of
the Gaussian formulas is related to the regularity of the function f{x).
Nevertheless the non uniform distribution of the nodes x; fi=1, 2. .n} and
some cancellation problems affect sometimes adversely the accuracy of this
type of quadrature formulas.

Gaumtschi and Milovanovic in [9] proposed an alternative Gaussian technique
which makes the degree of the numerical cancellation in the computation of
the quadrature 1-2 orders of magnitude smaller,

This technique approximates integrals (2) by a Gaussian quadrature formula
on the semicircle in the complex plane,

With the assumption that f{z} is an analytic function on the closed upper unit
half disc, it follows:

1=w(i(g (D) - [ we®)g(r,e*)a0)

If fiz) is real for real z, then:
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I= w()b)ImJ: w(e'’Yg(A,e?)do

To approximate integral (1) Gautschi and Milovanovic in [9] and
Milovanovic in [10] proposed the application of the following complex
gaussian quadrature formula:

I=w(l) Im(_:Zlc?,-g(i, £)) @

where & (i=1, 2, ...,n) are the zeros of a suitable complex polynomial 7.(z)
and & (i=1, 2, ..., n) are the corresponding weights.

{m(z) b of degree precisely % is the class of the polynomials orthogonal with
respect 1o the non hermitian inner product.

p.a)= @) w()p(2)g(2)dz

r

where w() is as in (1) and T is the circular part of the boundary of D.,
where: _

D, ={z e Clz <1,Im(z) > 0}

The comparison between formulas (4) and (3) shows the better behaviour of
(4) in terms of rounding errors and consequently better algorithmic stability.
Unfortunately formula (4) concentrates again the nodes in the
neighbourhood of the extremes of the integration interval.

In [2] and [3] we proposed an extension of formula (4) which provides a
better distribution of the quadrature nodes.

Precisely considering the complex polynomial E,.;(z) of degree n+I
satisfying the following orthogonality conditions:

JI (iz) " w(z)z, (2)E,, (2)zdz =0,k =0,1,...,n

r

to approximate (2) we proposed the application of the following extended
complex Gaussian quadrature formula:

i+l

I =w(4) Irn(lea.-gu, 63+ 27,81 8,) )
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where & (i=1, 2, ..., n) are the zeros of the complex polynomial n,(z), G G=1,
2, ..., n+l) are the zeros of the complex polynomial E,.,(2), o, T; the
corresponding weights.

In [1, 2] we have proved that the zcros of £,.,z) are non real, simple,
contained in the upper unit half disc D, and located symmetrically with
respect to the imaginary axis; in [3] we have also tested formula (5) and
compared it with (4) in the approximation of some integrals of type (1). In
particular, for A belonging to a neighbourhood of the extremes of the
integration interval, we showed the better behaviour of ($), which has a
suitable distribution of nodes in the upper unit half disc.

3. APPROXIMATING SPLINE METHODS

We point out that the above mentioned “Gaussian “ or “extended Gaussian™
methods as » increases converge very rapidly, when they do, if applied to
integrals (1) with analytical functions. However very frequently the regular
behaviour of function f7x) is lost in practical applications.

Moreover, those formulas require that the function be calculated at the zeros
of particular polynomials, what is not always convenient.

Facing such problems, recently an alternative approach, to evaluate (1),
based on the spline approximation has been selected.

We recall that the spline functions of order p on [a,b] are the piccewise
polynomials of degree p in subintervals of [a,b], with conditions of regularity
in the connection points, which build the vector of definition of the splines
(8]

A typical expression for such approximation is the following:

12 2w, (/)

where the set of points x; (i=/, 2,...,n) is the so called mesh and w,(d) (i=1,
2,...,nj are the weights evaluated through spline approximation.

In an early paper [6] an interpolating cubic spline (p=3), is proposed to
approximate integral (1). To have convergence, the integrand function f7x) is
required to be continuous with its first derivative, in the integration interval,
and the mesh to be equally spaced. Therefore, paper [6] doesn't effectively
overcome the two drawbacks of Gaussian formulas.

In a subsequent paper [7] restrictions, as far as the function to be integrated
is concerned, are skightly relaxed. However some strong limitations on the
mesh are still present. Besides, some restrictions on the spline order and on
border conditions are required.
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Recently, in paper [12], Rabinowitz gives a new idea. Namely he proposes to
apply, to approximate integral (1), a class of approximating splines of order
P

S (x) = gf(x, B, (x)

where B, ,(x) are the B-splines [8] of order p, forming a basis for the spline
space determined by p and by the vector of modes I, =(¢t,, i =1, 2.0,
and x; (=1, 2,...n) are arbitrary points subjected only to the condition that
x; lies in the support of B; ,(x).

Consequently, as fx) is approximated by S,(x), then:

B, ,(x)
x-A

w(Ad)= p.v.[]w(x) dx

A particularly case accurs when x; (i=1, 2,...n) are the so-called Schoenberg
points, precisely

[+t ,+. .+

i+2

p-1

i+1 i+p-l

X =

in which tcase the spline is called variational diminishing Schoenberg spline
(SVD).

In [4] we draw that the conditions on ffx) for the convergence of the
quadrature formula are the same as for the interpolating spline method [7].
We note that this method does not place any restriction neither on the order
of the approximating spline, nor on the mesh. So the nodes of the mesh can
have multiplicity greater than one and an arbitrary distribution.

This property is very useful because a suitable distribution of the nodes in
the integration interval enables us to perform the irregularities of the
function, (what is impossible with Gaussian formulas).

Some examples showing the advantages of the formula based on the SVD
splines are also presented in [4, 51

Moreover a new application of these formulas is presented in [5]. Precisely
we have approximated the solution of the particular integro-differential
equation known as Prandtl’s equation. It must be noted that, as this equation
presents the derivative of the unknown function in the CPV integral, then it
has been necessary to provide a snitable adaptation of the formulas used in

[41
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CONCLUDING REMARKS

In view of the application of quadrature formulas to the solution of integral
equations with weighted CPV integrals the following remarks can be useful.
If the model can be described by a sufficiently regular function, then
gaussian or quasi-gaussian formulas realize computational advantages by a
reduction of the order of the system (said collocation system), which
provides the values of the unknown function.

On the contrary, if the model is described by a function of low order of
regularity, then approximating splines perform better.
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