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Abstract  

We would like to prevent, detect, and protect communication and 

information systems' attacks, which include unauthorized reading of a 

message of file and traffic analysis or active attacks, such as modification 

of messages or files, and denial of service by providing cryptographic 

techniques. If we prove that an encryption algorithm is based on 

mathematical NP-hard problems, we can prove its security. In this paper, 

we present a new NTRU-Like public-key cryptosystem with security 

provably based on the worst-case hardness of the approximate lattice 

problems (NP-hard problems) in some structured lattices (ideal lattices) in 

order to attain the applicable objectives of preserving the confidentiality 

of communication and information system resources (includes hardware, 

software, firmware, information/data, and telecommunications). Our 

proposed scheme is an improvement of ETRU cryptosystem. ETRU is an 

NTRU-Like public-key cryptosystem based on the Eisenstein integers 
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where is a primitive cube root of unity. ETRU has heuristic security and it 

has no proof of security. We show that our cryptosystem has security 

stronger than that of ETRU, over Cartesian product of Dedekind domains 

and extended cyclotomic polynomials. We prove the security for our main 

algorithm from the R-SIS and R-LWE problems as NP-hard problems. 

Keywords: Lattice-based cryptography; Ideal lattices; ETRU; Provable 

security; Dedekind domain. 

2010 subject classification: 94A60; 11T71; 14G50; 68P25. 
 

 

1. Introduction  
 

Public-key cryptography has many exciting applications for web browsers, 

e-mail programs, cell phones, bank cards, RFID tags, smart cards, government 

communications, banking systems, and so on. The users to communicate over 

non-secure channels without any prior communication can use public-key 

cryptography. The idea of public-key cryptography was first proposed by Diffie 

and Hellman in 1976 [1]. Lattice-based cryptography as a field of public-key 

cryptography has attracted considerable interest and it has been categorized into 

post-quantum cryptography [6]. Lattice-based cryptography enjoys efficient 

implementations, very strong security proofs based on worst-case hardness, as 

well as great simplicity. Our focus here will be mainly on the theoretical aspects 

of lattice-based cryptography. 

The NTRU cryptosystem which is a famous lattice-based crypto scheme 

devised by Hoffstein, Pipher and Silverman, was first presented at the Crypto’96 

rump session [2]. Although its structure relies on arithmetic over the quotient 

polynomial ring [ ]/ 1
N

q
x x − Z  for N prime and q a small integer, it was quickly 

shown that breaking it could be reflected as a problem over Euclidean lattices 

[3]. At the ANTS’98 conference, the NTRU authors presented an improved 

variant including a thorough assessment of its practical security against lattice 

attacks [4]. The NTRU cryptosystem standard number and version is IEEE 

P1363.1 [5]. The NTRU encryption (NTRUEncrypt) system is also often 

considered as the most practical post-quantum public-key crypto scheme [6] and 

this scheme uses the properties of structured lattices to achieve high efficiency 

but its security remains heuristic and it was an important open challenge to 

provide a provably secure scheme with comparable efficiency. For example, an 

8-dimensional lattice in 2D view is shown in Figure 1. 

By rising number of attacks and practical variants of NTRU, provable 

security in lattice-based cryptography is developed. The first provably secure 

lattice-based cryptosystem and its variant of GapSVP in arbitrary lattices were 

presented by Ajtai and Dwork [8, 9]. Ajtai’s average-case problem is now 

reflected to as the Small Integer Solution problem (SIS). Another major 
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achievement in this field was the introduction in 2005 of the Learning with 

Errors problem (LWE) by Regev [13]. Micciancio [10] presented an alternative 

based on the worst-case hardness of the restriction of Poly(n)-SVP to cyclic 

lattices and succeeded in restricting SIS to structured matrices while preserving 

a worst-case to average-case reduction, which correspond to ideals in 

polynomial ring [ ]/ 1
n

x x − Z . Subsequently, Lyubashevsky and Micciancio 

[11] and independently Peikert and Rosen [12] showed how to modify 

Micciancio's function to construct an efficient and provably secure collision 

resistant hash function. So, they introduced the more general class of ideal 

lattices, which correspond to ideals in polynomial rings [ ]/
q

x   Z  with a   

that is irreducible cyclotomic polynomial, also is  sparse (e.g., 1n
x = +  for n 

a power of 2). Their system relies on the hardness of the restriction of Poly(n)-

SVP to ideal lattices (called Poly(n)-Ideal-SVP). The average-case collision-

finding problem is a natural computational problem called Ideal-SIS, which has 

been reflected to be as hard as the worst-case instances of Ideal-SVP.  In 2011, 

Stehlé and Steinfeld [14] proposed a structured variant of the NTRU, which they 

proved as hard as CPA security from the hardness of a variant of R-SIS and R-

LWE (Ring Learning with Errors problem). R-LWE has great efficiency and 

provides more natural and flexible cryptographic constructions. The current 

paper was motivated by [14], in which the integers were replaced with the ring 

of Cartesian product of Eisenstein integers. 

 

 
Figure 1. An 8-dimensional lattice in 2D view. 

 

The ETRU is obtained from the NTRU by replacing Z  with the ring of 

Eisenstein integers [7]. It is faster and has smaller size of keys for the same or 

better level of security than that of NTRU. Both division algorithm for 

Eisenstein integers and the choice of lattice embedding are integral, thus 

significantly improving their efficiency over the complex-valued versions 
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proposed in [15]. Note that the ETRU security is based on both SVP and then 

CVP so its security remains heuristic. The other author's lattice-based schemes 

are [20 – 28] which are suitable for application to WSNs and IoT [29-31]. 

In this paper, our proposed cryptosystem based on extended ideal lattices 

over 
3 3

: ( [ ] [ ])[ ]/R xz z= ´ < F >Z Z  (for 1
(1,1,1,1) (1,1,1,1) ... (1,1,1,1) (1,1,1,1)

nn
x x x

−
 = + + + +   

with n+1 a prime) exploits the properties of the ETRU structured lattice to 

achieve high efficiency and it has IND-CPA security based on ideal lattices with 

established hardness of R-SIS and R-LWE problems. We prove that our 

modification of ETRU is provably secure, assuming the quantum hardness of 

standard worst-case problems over extended ideal lattices. 

The rest of this paper is structured as follows: In section 2, we shortly review 

the ETRU system and explain the security related to the computational 

problems. In section 3, we study ideal lattices, R-SIS and R-LWE problems. In 

section 4, we suggest a key generation algorithm, where the generated public 

key follows a distribution for which Ideal-SVP reduces to R-LWE. In section 5, 

we make our modified ETRU cryptosystem as secure as worst-case problems 

over ideal lattices. Finally, the paper concludes in section 6. 

 

 

2. ETRU Cryptosystem 
 

2.1. Parameters Creation 

We denote by 
3  a complex cube root of unity, that is 3

3
1 =  where 

3 31 / 2( 1 )i = − +  since 3

3

2

3 331 ( 1)( 1) 0   − = − + + = , we have 2

3 3
1 0 + + =  

and hence 2

3 3
1 = − − . The ring of Eisenstein integers, denoted 

3[ ]Z , is the set 

of complex numbers of the form 
3a b = +  with ,a bZ . For 

3a b = +  we will 

define 22
( )d a b ab = = + −  which is the square of the usual analytic complex 

norm | | . Note that ( )d   is a positive integer for 0   since ( )d   is the square 

of a norm and ,a bZ . For any complex numbers ,   we have that | | | | . | |  =  

hence it follows that ( ) ( ). ( )d d d  = . The Eisenstein integers 
3[ ]Z  form a 

lattice in  generated by the basis 
3{1, }B = . Note that the two basis vectors 1 

and 
3 , represented by the vectors (1, 0) and ( 1 / 2,  3 / 2)−  in 2, have 120 

degrees with equal length. Let   be an Eisenstein integer. We define the ideal 

3( ) { }| ,L a b a b  = + Z . Therefore ( )L   is a lattice generated by the basis 

3{ ,  }  . According to [7], we deduce that the Eisenstein integers are an 

Euclidean domain that the units and Eisenstein primes exist. For each matrix B 

with entries that are Eisenstein integers we will set < B > to be the 2n by 2n 

matrix. We choose an prime n and set 3[ 1, ]/
n

R x x= − Z , we also choose p 
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and q in 
3[ ]Z  relatively prime, with |q| much larger than |p|. Since each ETRU 

coefficient is a pair of integers, an element of ETRU at degree n is comparable 

with an element of NTRU of degree n' = 2n. 

 

2.2. Key Generation 

Private key consists of two randomly chosen polynomials f, g in R. We 

define the inverses Fq = f -1 in Rq and Fp = f -1 in Rp. Hence public key is 

generated by h = Fq * g. The public key h is a polynomial with n coefficients 

which are reduced modulo q. Each coefficient consists of two integers which by 

Theorem 3 in [7] can be stored as binary strings of length 
2

log (4 | | /3)q   , hence 

the size of the ETRU public key is 
2

2 log (4 | | /3)K n q=    . An NTRU public key, 

corresponding to polynomials with n' = 2n coefficients reduced modulo an 

integer q', has size 
2

' ' log ( ')K n q=    . Therefore to maintain the same key size as 

NTRU with n' = 2n and q' = 2k , we should choose | | (3 / 4) 'q q  so that 

2 2
log (4 | | /3) log ( ')q q       . 

 

2.3. Encryption 

Each encryption requires the user to compute *  mod  e ph m q= +  where m 

is a plaintext and   is a ephemeral key. In total one counts 
22

' ' ~ 4 2n n n n+ +  

operations for NTRU encryption at ' ~ 2n n  in contrast to only 
2

3 27n n+  

operations for ETRU encryption. 

 

2.4. Decryption 

Each decryption requires the user to compute both *   mod  a f e q=  and 

*   mod  pm F a p= . For decryption, we have 
22

2 ' 2 ' ~ 8 4n n n n++  operations for 

NTRU and only 
2

6 29n n+  operations for ETRU. 

 

2.5. Decryption Failure and Security 

In [7] is shown that in fact | |~ (3 / 8) 'q q  is an optimal choice in view of 

security against decryption failure and lattice attacks. Based on this choice the 

public key size for ETRU will be smaller than that of the NTRU public key. 

 

 

3. Ideal Lattices and Their Hard Problems 

Our results are restricted to the sequence of rings
3 3

: ( [ ] [ ])[ ]/R xz z= ´ < F >Z Z  

with 1
(1,1,1,1) (1,1,1,1) ... (1,1,1,1) (1,1,1,1)

nn
x x x

−
 = + + + +  where n+1 is a prime 



Amir Hassani Karbasi 

 
 

54 

 

 

that is irreducible cyclotomic polynomial. We can refer to [19] for 

irreducibility of cyclotomic polynomials 
n

F in 
3

[ ][ ]xzZ  where n is prime in 
3

[ ]zZ

The R-LWE problem is known to be hard when   is cyclotomic [16]. The 

security analysis for our proposed scheme  allows encrypting and decrypting 

( )n  plaintext bits for ( )O n  bit operations, while achieving security against ( )
2

g n

-time attacks, for any g(n) that is (log )n and o(n), assuming the worst-case 

hardness of poly(n)-Ideal-SVP against ( ( ))
2

O g n -time quantum algorithms for 

each element component-wise in complex pair-wise system because note that 

each polynomial in R has its coefficients of the form 
3 3

(( , ), ( , ))
i i i i

a b c dz z (ai, bi 3 ) 

where ,  , ,
i i iia b c d Z , so in this paper, all operations execute for ai's, bi's, ci's and 

di's separately, that is,   2 component-wise. The latter assumption is believed 

to be valid for any g(n)=o(n). Also we can define £  and ³  as poset orders. 

 

3.1. Notation 

Similar to [14] we denote by 
1 2 3 4( , , , ) 1 2 3 4( ), , ,x x x x    (respectively 

1 2 3 4( , , , )    ) the standard n-dimensional Gaussian function (respectively 

distribution) with center (0,0,0,0) and variance 
1 2 3 4( ), , ,    . We denote by 

( )Exp  the exponential distribution on 4n with mean  and by U(E) the uniform 

distribution over a finite set E . If D1 and D2 are two distributions on discrete 

oracle E, their statistical distance is 

2 1 21 1 2 3 4 1 2 3 4( ; ) 1 / 2 | ( ) ( ) |, , , , , ,
x E

D D D x x x x D x x x x


 = − . We write z D when the 

random variable z is chosen from the distribution D. The integer n is called the 

lattice dimension. Note that in our proposed scheme with pairwise components 

and coefficients in vectors, the dimension increases four times without 

increasing n. The minimum 
1
( )L (respectively 1 ( )L

 ) is the Euclidean 

(respectively infinity) norm of any shortest vector of L \ (0,0,0,0).  

The dual of lattice L is the lattice 

1 2 3 4

4 4

1 2 3 4 1 2 3 4
ˆ {( ) }: ,  ( ), (, , , , , , , , , )

i i i i

n
L c c c c R c c c ci b b b b=    Z  where the bij’s 

are a basis of L. For a lattice L, 
1 2 3 4( ) (0, 0, 0, 0), , ,     and (c1,c2,c3,c4)

4n, 

we define the lattice Gaussian distribution of support L, deviation 
1 2 3 4( ), , ,   

and center (c1,c2,c3,c4) by 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
( , , , ),( , , , ) ( , , , ),( , , , )1 2 3 4 1 2 3 4,( , , , ),( , , , ) 1 2 3 4 1 2 3 4( ) ( ) / ( ), , , , , ,

c c c c c c c cL c c c cD b b b b b b b b L
            = , for any 

1 2 3 4( ), , ,b b b b L .  

We extend the definition of  
1 2 3 4 1 2 3 4,( , , , ),( , , , )L c c c cD     to any M L

(not necessarily a sub-lattice), by setting 



A New Provably Secure Cryptosystem Using Dedekind Domain Direct 

Product Approach 
 

 

55 

 

 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
( , , , ),( , , , ) ( , , , ),( , , , )1 2 3 4 1 2 3 4,( , , , ),( , , , ) 1 2 3 4 1 2 3 4( ) ( ( )) / ( ( )), , , , , ,

c c c c c c c cM c c c cD b b b b b b b b M
            =

and for  

1 2 3 4( ) (0, 0, 0, 0), , ,     , we denote the smoothing parameter 
1 2 3 4( , , , ) ( )L   

as the smallest 
1 2 3 4( ) (0, 0, 0, 0), , ,     such that  

1 2 3 4(1,1,1,1)/( , , , ) 1 2 3 4
ˆ( \ (0, 0, 0, 0)) ( ), , ,L        .  

It quantifies how large 
1 2 3 4( ), , ,    needs to be for 

1 2 4 1 2 3 4,( , , 3, ),( , , , )L c c c cD     to 

behave like a continuous Gaussian. We will typically consider 2
n

i
−

= . 

 

3.2. Definition 

Let n+1 be a prime and 1
(1,1,1,1) (1,1,1,1) ... (1,1,1,1) (1,1,1,1)

nn
x x x

−
 = + + + + 

which is irreducible over
3 3

[ ] [ ]z z´Q Q also let
3 3

: ( [ ] [ ])[ ]/R xz z= ´ < F >Z Z . An 

(integral) ideal I of R is a subset of R closed under addition and multiplication by 

arbitrary elements of R. By mapping polynomials to the vectors of their 

coefficients, we see that an ideal (0, 0, 0, 0)I  corresponds to a full-rank sub-

lattice of 4n. Thus we can view I as both a lattice and an ideal. An ideal lattice 

for   is a sub-lattice of (*)2n that corresponds to a non-zero ideal I R . The 

algebraic norm N(I) is equal to det I, where I is regarded as a lattice. In the 

following, an ideal lattice will implicitly refer to a  -ideal lattice.  

By restricting SVP (respectively  -SVP) to instances that are ideal lattices, 

we obtain Ideal-SVP (respectively  -ideal-SVP). The latter is implicitly 

parameterized by the polynomial
1

(1,1,1,1) (1,1,1,1) ... (1,1,1,1) (1,1,1,1)
nn

x x x
−

 = + + + +  . No algorithm is known to 

perform non-negligibly better for  -ideal-SVP than for  -SVP [14]. 

 

3.3. Properties of The Ring of Cartesian Product 

For 1 2 3 4( ), , ,v v v v R we define by ||(v1, v2, v3, v4)|| its Euclidean norm. We 

denote the multiplicative expansion factor by 

, 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4( ) max (|| ( ) ( ) ||) / (|| ( ) || . || ( ) ||), , , , , , , , , , , ,
u v Ri i

R u u u u v v v v u u u u v v v v
 =  . 

Since  is the n+1-th cyclotomic polynomial, the ring R is exactly the maximal 

order of the cyclotomic field 3 3( [ ] [ ])[ ]
: [ , ']

x
K

z z
z z

´
= @

F

Q Q
Q . We denote by 

1 2 3 4( ), , ,i i i i i n    
the complex embeddings. We can choose 

2 1 2 1 2 1 2 1

1 2 3 4 1 2 3 4( : (       ), , , ) , , ,i i i i

i i i i K K       
+ + + +

→ for i n . 

Lemma 3.1. The norm of  as an element in 
3( ) is a2 + b2 - ab. This is 

also 2
| | , where  is denoted as an element of  . 
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Proof. The minimal polynomial of 
3 over  is the cyclotomic polynomial 

2

3 1x x = + + . Thus, there exist exactly two monomorphisms (isomorphisms 

in this case) from  to  fixing  and permuting the roots of 
3 . Since 

3 has 

two roots
3 and 2

3 , the embeddings are 
3 31( )a b a b  + = +  and 

3

2

2 3( )a b a b  + = + , where ,a b. By definition, the algebraic norm of 

3a b = + is  

2

2

3

1

3

( ) ( ) ( )

           ( )( )

N

a b a b

    

 

=

= + +
 

Note that 
3

2

3 =  and 
33 1  = −+ . So we have 

2

2

3 3

3 3

2

2

( ) ( )( )

           ( )

          

N a b a b

a b ab

a b ab

 

  = + +

= + + +

= + −

 

Now we show that 2
( ) ( ) | |d N  = = . 

2

3

2

2
2

2 2

2

1 3

2

3

2 2

| |  | |

          | ( ) |

          | |

3
          

2 2

          

b b

a b

i
a b

i
a

b b
a

a b ab

 

− +

= +

= +

= − +

= − +

= + −

  
   
   

 

□ 

In rest of the paper, all of computations are done component-wise for each 

complex element as an integer. We define T2-norm by 
2 2 2 22

1 1 2 2 3 3 4 42 1 2 3 4( ) ( | ( ) | | ( ) | | ( ) | | ( ) |, , , , , , )
i i i i

i n i n i n i n

T            
   

=     . We also 

use the fact that for any 1 2 3 4( ), , , R     , we have |N 1 2 3 4( ), , ,    | = det <

1 2 3 4( ), , ,    >, where < 1 2 3 4( ), , ,    > is the ideal of R generated by

1 2 3 4( ), , ,    . Let (q1, q2, q3, q4) be a prime element such that  has n distinct 

linear factors modulo (q1, q2, q3, q4), that is, 

1 2 3 41 2 3 4 1 2 3 4( (( ) ( ))  mod  ( ), , , , , , , , ,i i i i

i n

x x x x q q q q   


 = −  where i 's are primitive 

n+1-th root of unity modulo (q1, q2, q3, q4) component-wise. Also we know that  

1 2 3 4
( , , , ) 1 2 3 4

/ ( ) / ( ) / ( ) / ( )
q q q q

R R q R R q R R q R R q R= ´ ´ ´ . 
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3.4. Adaptation of Ideal Lattice Problems 

Definition 3.1. The ring small integer solution problem with parameters 

1 2 3 4 1 2 3 4
( , , , ), , ( , , , ),q q q q m b b b b F is: Given m polynomials 

11 21 31 41 1 1 1 1
( , , , ), ..., ( , , , )

m m m m
a a a a a a a a chosen uniformly and independently in 

1 2 3 4( , , , )q q q qR , find 
1 2 3 4

( , , , )t t t t in assumed R-module such that 

1 2 3 4 1 2 3 4
|| ( , , , ) || ( , , , )t t t t b b b b£ . 

In [14] is shown that R-SIS and R-LWE are dual. For 

1 2 3 41 2 3 4 ( , , , )( ), , , q q q qs s s s R and 1 2 3 4( ), , ,    some distributions in
1 2 3 4( , , , )q q q qR , we 

have 
1 2 3 4 1 2 3 4( , , , ),( , , , )s s s sA     as the distribution obtained by sampling the pair 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4(( ), ( )( ) ( )), , , , , , , , , , , ,a a a a a a a a s s s s e e e e+ with 

1 2 3 41 2 3 4 1 2 3 4 ( , , , ) 1 2 3 4(( ), ( )) ( ) ( ), , , , , , , , ,q q q qa a a a e e e e U R      . The Ring Learning With 

Errors problem (R-LWE) was introduced by Lyubashevsky et al.[16] and shown 

hard for specific error distributions  . The error distributions 1 2 3 4( ), , ,    that 

we use are an adaptation of those introduced in [16]. 

Definition 3.2.
1 2 3 4 1 2 3 4( , , , ),( , , , )( )q q q qR LWE    


− : Let 

1 2 3 41 2 3 4 ( , , , )( ), , ,         

and 
( )1 2 3 41 2 3 4 , , ,( ) ( ), , ,
q q q q

s s s s U R where 
1 2 3 4( , , , )    is a family of distributions. 

Given access to an oracle O that produces samples in 
1 2 3 4

( , , , )1 2 3 4( , , , ) q q q qq q q qR R

, distinguish whether O outputs samples from 
1 2 3 4 1 2 3 4( , , , ),( , , , )s s s sA     or from

1 2 3 4
( , , , )1 2 3 4( , , , )( )
q q q qq q q qU R R . The distinguishing advantage should be

( )
1 / ( )  ( .  2 )

o n
poly n resp

− over the randomness of the input, the randomness of the 

samples and the internal randomness of the algorithm, component-wise [14]. 

Theorem 1 in [14] indicates that R-LWE is hard, assuming that the worst-

case  -Ideal-SVP cannot be efficiently solved using quantum computers, for 

small  . It was recently improved by Lyubashevsky et al. [18] if the number of 

samples that can be chosen to the oracle O is bounded by a constant (which is 

the case in our application), then the result also holds with simpler errors than 

1 2 3 41 2 3 4 1 2 3 4 ( , , , )( ) ( ), , , , , ,e e e e          , and with an even smaller Ideal-SVP 

approximation factor  . This should allow to both simplify the proposed 

scheme and to strengthen its security guarantee. 

 

3.5. Our Proposed Variants of R-LWE 

For
1 2 3 41 2 3 4 ( , , , )( ), , , q q q qs s s s R and

1 2 3 4( ), , ,    some distributions in
1 2 3 4

( , , , )q q q q
R , 

we denote 
1 2 3 4 1 2 3 4, , , , , ,( ),( )s s s sA    

 as the distribution obtained by sampling 
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the pair 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4(( ), ( )( ) ( )), , , , , , , , , , , ,a a a a a a a a s s s s e e e e+ with 

1 2 3 41 2 3 4 1 2 3 4 ( , , , ) 1 2 3 4(( ), ( )) ( ) ( ), , , , , , , , ,q q q qa a a a e e e e U R    


  , where 
1 2 3 4( , , , )q q q qR


is 

the set of invertible elements of 
1 2 3 4( , , , )q q q qR . This variant is hard and called 

R LWE


++− as [14]. Furthermore, as explained in [18], the nonce 1 2 3 4( , , , )s s s s

can also be sampled from the error distribution without incurring any security 

loss. We call this variant HNFR LWE


++− . According to adaptation of lemmas 7, 8 

and 9 as well as Theorem 2 in [14] the problems R LWE


++− and HNFR LWE


++−

are dual to  -Ideal-SVP  and are defined some families of R-modules for I, an 

arbitrary ideal of 
1 2 3 4( , , , )q q q qR  as a lattice, also short vectors exist in ideal and 

statistical distance (regularity bound) is exactly appropriate and reliable. 

 
 

4. The Proposed Key Generation Algorithm 

We now use the results of the previous section on modular ideal lattice to 

derive a key generation algorithm for the ETRU for each component in vectors, 

where the generated public key follows a distribution for which Ideal-SVP 

reduces to R-LWE. Algorithm 1 is as follows. 
 

 

Input: 
1 2 3 41 2 3 4 1 2 3 4 ( , , , ) 1 2 3 4, ,  , ( ), , , , , , , , ,q q q qn q q q q p p p p R    


  Z R . 

Output: 
1 2 3 4( , , , )A key pair ( , ) q q q qsk pk R R


  . 

Sample 
1 2 3 4

( , , , ) 'f f f f  from 4
1 2 3 4,( , , , )nD

   Z
; let 

1 2 3 4 1 2 3 4 1 2 3 4( , ) ( , ).( , ) ' (1,1,1,1), , , , , ,f f f f p p p p f f f f= + ; if (
1 2 3 4

( , , , )f f f f  mod

1 2 3 4
( , , , )q q q q )

1 2 3 4( , , , )q q q qR


 , resample. Sample 
1 2 3 4

( , , , )g g g g  from 

4
1 2 3 4,( , , , )nD

   Z
; if (

1 2 3 4
( , , , )g g g g  mod

1 2 3 4
( , , , )q q q q ) 

1 2 3 4( , , , )q q q qR


 , resample. 

Return secret key sk = 
1 2 3 4

( , , , )f f f f  and public key pk = 
1 2 3 4

( , , , )h h h h  =

1 2 3 4
1 2 3 4 1 2 3 4 1 2 3 4 ( , , , )

( , , , )( , , , ) / ( , , , )
q q q q

p p p p g g g g f f f f R
´

Î . 

 

The following Theorem ensures that for some appropriate choice of 

parameters, the key generation algorithm terminates in expected polynomial 

time. 

Theorem 4.1[Adapted from 14]. Let 8n  and n+1 be a prime such that 
1

(1,1,1,1) (1,1,1,1) ... (1,1,1,1) (1,1,1,1)
nn

x x x
−

 = + + + +  splits into n linear factors 

modulo prime 1 2 3 4( ) (5,5,5,5), , ,q q q q  component-wise. Let 
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1/
ln(2 (1 1 / )) / .

n

i i in n q   + , or an arbitrary (0,1 / 2)i  . Let 1 2 3 4( , ), ,a a a a R and

1 2 3 41 2 3 4 ( , , , )( , ), , q q q qp p p p R


   

Then 

  

 
component-wise. 

The following Lemma ensures that the generated secret key is small. 

Lemma 4.1[Adapted from 14]. Let 8n   and n+1 be a prime such that 
1

(1,1,1,1) (1,1,1,1) ... (1,1,1,1) (1,1,1,1)
nn

x x x
−

 = + + + +   splits into n linear factors 

modulo prime 1 2 3 4( ) (8,8,8,8), , ,q q q q n . Let 
1/

2 ln(6 ) / .
n

i in n q  . The secret 

key polynomials
1 2 3 4 1 2 3 4

( , , , ), ( , , , )f f f f g g g g  returned by the algorithm 1 satisfy, 

with probability 3
1 2

n− +
 − : 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4|| ( , ) || (2, 2, 2, 2) || ( , ) || ( )   || ( , ) || ( ) , , , , , , , , , , , ,f f f f n p p p p and g g g g n         . 

If deg
1 2 3 4

( , , , )p p p p (1,1,1,1) , then 

1 2 3 4 1 2 3 4 1 2 3 4|| ( , ) || (4, 4, 4, 4) || ( , ) || ( ), , , , , , ,f f f f n p p p p      with probability

3
1 2

n− +
 −  component-wise. 

Theorem 3 in [14] shows that the public key can be uniformly distributed in 

the whole ring and this satisfy cryptographic pseudo randomness for our 

Algorithm 1, which seems necessary for exploiting the established hardness of 

R-LWE (and R-SIS). Now we can construct the proposed cryptosystem over 

ideal lattices with high efficiency and provable security (CPA-secure). 

 
 

5. The Proposed New Cryptosystem 

Using our new results above, we describe our proposed cryptosystem for 

which we can provide a security proof under a worst-case hardness assumption. 

 

5.1. Decryption Failure 

The correctness condition for each pairwise coefficient in the proposed 

cryptosystem is as follows. 

Lemma 5.1 [Adapted from 14]. If 
21.5

( log ) deg(( )) || ( ) || (1,1,1,1)i i i in n p p     (resp. 
20.5

( log ) || ( ) || (1,1,1,1)   deg( ) (1,1,1,1)i i i in n p if p     ) and 0.5

i iq n  , then the 

decryption algorithm of the proposed cryptosystem recovers 
1 2 3 4

( , , , )M M M M  

with probability 
(1)

1 n
−

−  over the choice of si, ei, fi and gi component-wise. 
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Proof. In the decryption algorithm, we have 

 

  
and let  

 

 
 computed in R (not modulo

1 2 3 4
( , , , )q q q q ). If 

1 2 3 4 1 2 3 4|| ( , )" || ( ) / 2, , , , ,C C C C q q q q  then we have 

1 2 3 4 1 2 3 4( , ) ' ( , )", , , ,C C C C C C C C=  in R and hence, since 

( ) (1,1,1,1) mod ( ), ( ) ' mod  ( ) ( )" mod  ( ) ( )  mod  ( )i i i i i i i if p C p C p M p = = , i.e., the 

decryption algorithm succeeds. It thus suffices to give an upper bound on the 

probability that 1 2 3 4 1 2 3 4|| ( , )" || ( ) / 2, , , , ,C C C C q q q q . From Lemma 2, we know 

that with probability 3
1 2

n− +
 −  both 

1 2 3 4
( , , , )f f f f  and 

1 2 3 4
( , , , )g g g g  have 

Euclidean norms 2 || ( ) || ( . (4, 4, 4, 4) || ( ) ||    deg( ) (1,1,1,1))i i i i in p resp n p if p    this 

implies that, 2 21.5
|| ( )( ) ||, || ( )( ) || (2, 2, 2, 2) || ( ) || ( . (8,8, 8,8) || ( ) || )ni i i i i i i ip f p g n p resp p   

with probability 3
1 2

n− +
 − . From Lemma 6 in [14], both 

1 2 3 4 1 2 3 4 1 2 3 4
( , , , )( , , , )( , , , )p p p p f f f f e e e e  and 

1 2 3 4 1 2 3 4 1 2 3 4
( , , , )( , , , )( , , , )p p p p g g g g s s s s  

have infinity norm 

 (resp. 21.5
(2, 2, 2, 2) (log ). || ( ) ||i i i iq n n p    

2
(8,8,8,8) (log ). || ( ) ||i i i iq n n p  

), with probability 
(1)

1 n
−

− . Independently: 
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Proposed Encryption Scheme 

Parameters Creation: 

1. We use 
1

(1,1,1,1) (1,1,1,1) ... (1,1,1,1) (1,1,1,1)
nn

x x x
−

 = + + + +   with 8n   

and n+1 a prime, 
3 3

: ( [ ] [ ])[ ]/R xz z= ´ < F >Z Z  and 

1 2 3 4( , , , ) 1 2 3 4/ ( ) / ( ) / ( ) / ( )q q q qR R q R R q R R q R R q R=    with 

1 2 3 4( ) (5,5,5,5), , ,q q q q   prime such that 
1

n

k

k


=

 = in 
1 2 3 4( , , , )q q q qR  with distinct 

k 's component-wise. 

Key Generation: 

2. We use the algorithm 1 and return 
1 2 3 41 2 3 4 ( , , , )( , ), , q q q qsk f f f f R


=  with 

1 2 3 4 1 2 3 4( , ) (1,1,1,1) mod ( , ), , , ,f f f f p p p p , and pk = 
1 2 3 4

( , , , )h h h h  =

1 2 3 4
1 2 3 4 1 2 3 4 1 2 3 4 ( , , , )

( , , , )( , , , ) / ( , , , )
q q q q

p p p p g g g g f f f f R
´

Î , component-wise. 

Encryption: 

3. Given message 1 2 3 4( , ), ,M M M M P , set 

1 2 3 41 2 3 4 1 2 3 4 ( , , , )( ), ( ), , , , , ,s s s s e e e e      and return ciphertext 

1 2 3 41 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ( , , , )( , ) ( , )( ) ( , )( ) ( , ), , , , , , , , , , , , , , q q q qC C C C h h h h s s s s p p p p e e e e M M M M R= + +   

Decryption: 

4. Given ciphertext 
1 2 3 4

( , , , )C C C C  and secret key 
1 2 3 4

( , , , )f f f f , compute 

1 2 3 41 2 3 4 1 2 3 4 1 2 3 4 ( , , , )( , ) ' ( , ).( , ), , , , , , q q q qC C C C f f f f C C C C R=   and return 

1 2 3 4
( , , , ) 'C C C C  mod 

1 2 3 4
( , , , )p p p p . 

 

 
2 2

|| ( )( ) || || ( )( ) || || ( ) || . || ( ) || (2, 2, 2, 2).(deg( ) (1,1,1,1). || ( ) ||i i i i i i i i inf M f M f M p n p    +  

(resp. 2
(8,8,8,8) || ( ) ||i in p  ). Since i iq n  , we conclude that 

1.5 2
|| ( )" || ((6, 6, 6, 6) (2, 2, 2, 2) deg( )). (log ). || ( ) ||i i i i i iC p q n n p   +           (resp. 

20.5
(24, 24, 24, 24) (log ). || ( ) ||i i i iq n n p   ), with probability 

(1)
1 n

−
− , 

component-wise.                                               

        □ 
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5.2. Security 

The security of the proposed cryptosystem follows by an elementary 

reduction from the decisional HNFR LWE


++− , exploiting the uniformity of the 

public key in 
1 2 3 4( , , , )q q q qR


(adaptation of Theorem 3 in [14]), and the invertibility 

of 
1 2 3 4

( , , , )p p p p  in 
1 2 3 4( , , , )q q q qR . 

Lemma 5.2 [adapted from 7]. Suppose n+1 is a prime such that 
1

(1,1,1,1) (1,1,1,1) ... (1,1,1,1) (1,1,1,1)
nn

x x x
−

 = + + + +  splits into n linear factors 

modulo prime (1)iq = . Let (1/2,1/2,1/2,1/2)
(2, 2, 2, 2) ln(8 ). i

i i in nq q



+

  and 

1 2 3 41 2 3 4 1 2 3 4 1 2 3 4 ( , , , )( ), ( ) (0, 0, 0, 0), ( ), , , , , , , , , q q q qp p p p R       


  . If there exists 

an IND-CPA attack against the proposed cryptosystem that runs in time T and 

has success probability (1 / 2,1 / 2,1 / 2,1 / 2) i+  with parameters  i and qi, then 

there exists an algorithm solving HNFR LWE


++−  that runs in time T'  = T + O(n) 

and has success probability ( )
'

n

i i iq 
−

= − . 

Proof. Let A denote the given IND-CPA attack algorithm. We construct an 

algorithm B against HNFR LWE


++− that runs as follows, given oracle O that 

samples from either ( )
qi iqU R R


 or ,i isA 


for some previously chosen i is  and 

ii    .Algorithm B first calls O to get a sample ((hi)', (Ci)') from 
qi iqR R


 . 

Then, algorithm B runs A with public key ( ) ( ).( ) '
ii i i qh p h R=  . When A outputs 

challenge messages
10( , () )

iiM M P , algorithm B picks ({0,1})b U , computes 

the challenge ciphertext ( ) ( ).( ) ' ( )
qii i i biC p C M R= +  , and returns (Ci) to A. 

Eventually, when A outputs its guess b' for b, algorithm B outputs 1 if b' = b and 

0 otherwise. The (hi)' used by B is uniformly random in
iqR


and therefore so is 

the public key (hi) given to A, thanks to the invertibility of (pi) modulo (qi). Thus, 

by Theorem 3 in [14], the public key given to A is within statistical distance 
( )n

q
−

of the public key distribution in the genuine attack, component-wise. 

Moreover, since ( ) ' ( ).i i i iC h s e= + with ,i i is e  , the ciphertext (Ci) given to A 

has the right distribution as in the IND-CPA attack. Overall, if O outputs 

samples from ,i isA 


then A succeeds and B returns 1 with probability

( )
(1 / 2,1 / 2,1 / 2,1 / 2)

n

i iq
−

 + − . Now, if O outputs samples from ( )
qi iqU R R


 , 

then, since 
ii qp R


 , the value of (pi)(Ci)' and hence (Ci), is uniformly random in 

Rqi and independent of b. It follows that B outputs 1 with probability 1/2, 

component-wise. The claimed advantage of B follows.                                                □ 
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By combining lemmata 3 and 4 (with adaptation of Theorem 1 in [14]) we 

obtain main result. 

 

6. Conclusions 

In this paper, we provided a new cryptosystem that uses the properties of the ETRU 

cryptosystem and its structured lattice to achieve high efficiency by providing a 

provable security (CPA-secure) based on ideal lattices and a variant of R-LWE 

problem. Also we showed that each polynomial in 
1

3 3
( [ ] [ ])[ ]/ (1,1,1,1) (1,1,1,1) ... (1,1,1,1) (1,1,1,1)

n n
R x x x x 

−
=   + + + + Z Z  has its 

coefficients of the form 
3 3

(( , ), ( , ))
i i i i

a b c dz z  where ,  , ,
i i iia b c d Z , so we made both 

lemmata and theorems here for ai's, bi's, ci's and di's separately, that is, we reflected 
2 2

( , ) ( , )@C C R R . Hence, we could enhance the dimension of lattice 4-times without 

increasing n.  
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